УДК 512.542

O конечных группах с p-нильпотентными нормализаторами силовских подгрупп

А. А. Родионов

В работе рассматриваются только конечные группы.

Целью данной работы является ослабление условий, накладываемых на нормализаторы силовских подгрупп в теореме, доказанной А. Баллестером-Болинше и Л. А. Шеметковым в статье [1]. Мы докажем следующую теорему.

Теорема 1. Пусть в группе G для любого простого числа $p \geqslant 5$ нормализатор силовской p-подгруппы из G p-нильпотентен. Тогда G разрешима и имеет нильпотентную холлову $\{2,3\}'$ -подгруппу.

В работе [2] доказано, что группа нильпотентна, если нормализаторы силовских p-подгрупп нильпотентны для любого простого числа p. Усилением этого результата является следующая теорема.

Теорема 2 (см. [1]). Группа G нильпотентна, если для каждого $p \in \pi(G)$ нормализатор силовской p-подгруппы из G p-нильпотентен.

Для доказательства теоремы 1, которая обобщает теорему 2, нам потребуются некоторые известные результаты. Пусть m — натуральное число. Через $\pi(m)$ обозначим множество всех различных простых делителей числа m. Вместо $\pi(|G|)$ будем писать $\pi(G)$.

Пусть π — некоторое множество простых чисел, $\pi' = \mathbb{P} \setminus \pi$. Подгруппа H группы G называется π -подгруппой, если |H| является π -числом, то есть $\pi(H) \subseteq \pi$. Подгруппа H называется холловой π -подгруппой, если $|H| - \pi$ -число, а $|G:H| - \pi'$ -число. Через G_{π} будем обозначать одну из холловых π -подгрупп группы G.

Аналогом теоремы Силова в разрешимых группах является теорема Φ . Холла о холловых подгруппах.

Теорема 3 (Ф. Холл.) Пусть G — разрешимая группа и $\pi \subseteq \mathbb{P}$. Тогда справедливы следующие утверждения: 1) холловы π -подгруппы в G существуют; 2) любые две холловы π -подгруппы G сопряжены между собой; 3) всякая π -подгруппа из G содержится в некоторой холловой π -подгруппе группы G.

Доказательство следующей леммы использует классификацию конечных простых групп.

Лемма 1 (см. [2]). Пусть p — наибольшее простое число, делящее порядок неабелевой простой группы N. Тогда p не делит |Out(N)|.

Теорема 4 (Томпсон, см. [5]). Пусть $p \ge 5$ — простое число и P — силовская p-подгруппа группы G. Если $N_G(P)/C_G(P)$ есть p-группа, то $O^p(G)$ есть собственная подгруппа группы G.

Напомним, что $O^p(G)$ — наименьшая нормальная подгруппа в G, факторгруппа по которой является p-группой.

Теорема 5 (см. [3]). Пусть L- простая группа u $|\pi(L)|=3$. Тогда $|L|=2^{\alpha}3^{\beta}p, \quad p>3$ u силовская p-подгруппа группы L самоцентрализуема.

Приступим к доказательству основной теоремы.

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ 1.

Предположим, что заключение теоремы неверно. Пусть G — контрпример наименьшего порядка. В этом случае порядок G делится по крайней мере на одно простое число, которое больше 3.

Если G простая, то она неабелева. Пусть $p \in \pi(G)$, $p \geqslant 5$, тогда по теореме 4 из p-нильпотентности нормализатора силовской p-подгруппы следует, что $O^p(G)$ — собственная подгруппа группы G, что противоречит простоте G.

Таким образом, G не простая. Пусть L — минимальная нормальная подгруппа группы G. Так как $N_G(P)L/L = N_{G/L}(PL/L)$ для любой силовской подгруппы P, то условия теоремы выполняются для G/L. Ввиду выбора G отюда следует, что G/L разрешима. А так как G неразрешима, то L неразрешима. Более того, L — единственная минимальная нормальная подгруппа в G, и она неабелева.

Докажем, что $\pi(L)=\pi(G)$. Предположим противное. Пусть $\pi=\pi(L)\neq\pi(G)$. В силу разрешимости, в G/L существует холлова π -подгруппа K/L. Для K выполнены условия теоремы и |K|<|G|. По индукции K разрешима. Кроме того, $L\subseteq K$, что противоречит неразрешимости L.

Докажем теперь, что в G существуют силовская 2-подгруппа и силовская 3-подгруппа, входящие в L. Предположим противное. Пусть $\pi=\pi(G)\backslash\{2,3\}$. В силу разрешимости, в G/L существует разрешимая холлова π -подгруппа K/L. Для K выполнено условие теоремы, и она собственная в G. По индукции K разрешима, что противоречит неразрешимости L.

Так как L неабелева, то $L=L_1\times\ldots\times L_t$, где все L_i — простые неабелевы группы. А так как $\pi(G/L)\subseteq\pi(G)\backslash\{2,3\}$, то для G/L условие p-нильпотентности выполняется для всех простых чисел из $\pi(G/L)$. Поэтому все силовские подгруппы в G/L нормальны, то есть G/L нильпотентна.

Рассмотрим 2 случая.

Случай 1. Предположим, что порядок G/L делится по крайней мере на два различных простых числа p,q. Из нильпотентности G/L следует, что силовская p-подгруппа G_pL/L нормальна в G/L, а значит G_pL нормальна в G.

Применяем лемму Фраттини к G_pL :

$$G = N_G(G_p)G_pL = N_G(G_p)L.$$

Пусть $L_p\subseteq G_p$ и $L_p=P_1\times\ldots\times P_t$, где P_i — силовская p-подгруппа из L_i . Рассмотрим G_q — силовскую q-подгруппу группы G. Получаем $G_q=QL_q$, где Q — силовская q-подгруппа из $N_G(G_p)$. Из p-нильпотентности $N_G(G_p)$ получаем $QG_p=Q\times G_p$, то есть L_p нормальна в QG_p , и следовательно, все P_i нормальны в QG_p для любого i. Таким образом, для любого $x\in Q$ имеем $P_i^x=P_i$, поэтому $P_i\subseteq L_i\cap L_i^x$, а это возможно лишь в случае когда $L_i=L_i^x$. Следовательно, $N_G(L_i)\supseteq QL\supseteq QL_q=G_q$. В силу произвольности выбора q получаем, что $N_G(L_i)\supseteq G_q$ для любого $q\in \pi(G)\backslash\{2,3\}$. Также имеем $N_G(L_i)\supseteq G_2$ и $N_G(L_i)\supseteq G_3$, так как $G_2,G_3\subseteq L$. Итак, $N_G(L_i)=L$. Поэтому t=1 и L — простая неабелева группа.

Теперь пусть r — наибольшее простое число, делящее |L|. По лемме 1, r не делит |G/L|, так как G/L изоморфна подгруппе Out(G). Значит, существует силовская r-подгрупа R в G такая, что $R\subseteq L$, и из r-нильпотентности $N_G(R)$ следует r-нильпотентность $N_L(R)$. Так как $N_L(R)/C_L(R)-r$ -группа, то по теореме 4 $O^r(L)$ —собственная подгруппа в L. Противоречие с минимальностью L.

Случай 2. Пусть G/L-p-группа для некоторого простого p. Ввиду условия и теоремы 4, в этом случае $|\pi(L)|=3$ и $p\geq 5$. Пусть $|G:L|=p^{\beta}$. Положим $|G|=p^{\alpha}m$, $|L|=p^{\epsilon}m_1,\ (p,m)=(p,m_1)=1$.

Ясно, что $G=LG_p$. По условию $N_G(G_p)$ p-нильпотентен, поэтому $N_G(G_p)=H\times G_p$ и $H\subseteq L$. Пусть $L_p=L\cap G_p,\ (L_i)_p=G_p\cap L_i,\ i=1,2,\ldots,t.$

Предположим, что $H \neq 1$. Если t=1, то H содержится в централизаторе силовской p-подгруппы простой группы L, что противоречит теореме 5. Значит, t>1. Тогда в H существует неединичный элемент $h=l_1l_2\dots l_t$, где l_i-p' -элемент из L_i и $[l_i,l_j]=1$ при $i\neq j$. Можно считать, что $l_1\neq 1$. Ясно, что $L_p=(L_1)_p\times\ldots\times(L_t)_p$. Так как $[h,L_p]=1$, то $[h,(L_1)_p]=1$. Имеем $h=l_1(l_2\dots l_t)=l_1\overline{l}$, где $[\overline{l},(L_1)_p]=1$. Теперь пусть $x\in (L_1)_p$, тогда

$$1 = [h, x] = [l_1 \overline{l}, x] = [l_1, x]^{\overline{l}} [\overline{l}, x] = [l_1, x]^{\overline{l}} \Longrightarrow [l_1, x] = 1.$$

Отсюда следует, что $[l_1,(L_1)_p]=1$ и $l_1\in C_{L_1}((L_1)_p)$, что противоречит строению простой группы L_1 (теорема 5).

Итак, доказано, что H=1. т. е. $N_G(G_p)=G_p$.

Подгруппа L_1^G нормальна в G и содержится в L, отсюда $L=L_1^G=L_1\times L_1^{g_2}\times \times \ldots \times L_1^{g_t}$ для некоторых $g_2,\ldots,g_t\in G$. Так как $G=LG_p=(L_1\times\ldots\times L_t)G_p$, то $|G:N_G(L_1)|=p^{\gamma}=t$. По теореме Силова,

$$|G:N_G(G_p)|=|G:G_p|=m=m_1^t=m_1^{p^r}$$

и $m_1^{p^{\gamma}}\equiv 1 (modp)$. Но по теореме Эйлера о вычетах получаем $m_1^{p-1}\equiv 1 (modp)$. Пусть $m_1^d\equiv 1 (modp)$ и d — наименьшее натуральное число с данным свойством. Поскольку в кольце классов вычетов группа по умножению циклическая, то d|p-1 и $d|p^{\gamma}$, что возможно только при $\gamma=0$. Тогда t=1, и значит, L — простая неабелева группа.

Итак, доказано, что L — неабелева простая группа. Теперь пусть r — наибольший простой делитель |L|. Очевидно, $r\geq 5$. По лемме 1, r не делит |G/L|, так как G/L изоморфна подгруппе Out(G). Значит, $r\neq p$. По теореме 5, $\pi(L)=\{2,3,r\}$. Но это противоречит тому, что $\pi(L)=\pi(G)$ и $p\in\pi(G)$. Теорема доказана.

Abstract. It is proved that a finite group is soluble if normalizers of its Sylow p-subgroups are p-nilpotent for every $p \ge 5$.

Литература

- 1. А. Баллестер-Болинше, Л. А. Шеметков. О нормализаторах силовских подгрупп в конечных группах. Сиб. мат. журнал, 1540 (1999), 3–5.
- 2. M. Bianchi, B. Gillio, P. Hauck. On finite groups with nilpotent Sylow-normalizers. Arch Math., 47 (1986), 193–196.
- 3. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson. Atlas of finite groups. Oxford University Press, Eynsham, 1985.
- 4. K. Doerk, T. Hawkes. Finite soluble groups. Berlin; New York: Walter de Gruyter, 1992.
 - 5. B. Huppert. Endliche Gruppen I. Berlin; New York: Springer-Verl., 1967.

Гомельский государственный университет имени Ф. Скорины