УДК 512.542

On \mathfrak{F} -covering subgroups of finite groups

BAOJUN LI AND WENBIN GUO

1. Introduction. Throughout this paper, all groups considered are finite groups. Recall that a subgroup H of a group G is said to be a \mathfrak{X} -covering subgroup for a set \mathfrak{X} of groups if $H \in \mathfrak{X}$ and T = KH whenever $H \leq T \leq G$ and $T/K \in \mathfrak{X}$. A subgroup H of a group G is called a Carter subgroup of G if H is a nilpotent group and $N_G(H) = H$. It is well known that a Carter subgroup of G is an \mathfrak{N} -covering subgroup of G where \mathfrak{N} is the class of all nilpotent groups (cf. [4], Theorem 2.2.1). In 1961, Carter [1] proved that a soluble group has a Carter subgroup and any two Carter subgroups of a soluble group are conjugate. In 1963, Gaschütz [3] introduced the concept of an F-covering subgroup where F is a class of groups. This is the concept which enables us to generalize the Carter's result. Gaschütz [3] proved that if \mathfrak{F} is a nonempty saturated formation and G a soluble group, then G has an F-covering subgroup and any two F-covering subgroups of Gare conjugate. Later on, Erickson [2], Schmid [6] and Shemetkov [7] weakened the solubility condition and proved that if the F-residual $G^{\mathfrak{F}}$ of G is $\pi(\mathfrak{F})$ -soluble, then G has an \mathfrak{F} -covering subgroup and any two \mathfrak{F} -covering subgroups are conjugate in G. Let π be a set of prime numbers. By Chunikhin [4], A group G is called a π -selected group, if $|\pi(H/K) \cap \pi| \leq 1$ for every nonabelian chief factor H/K of G. Obviously, a π -soluble group is a π -selected group, but the converse does not hold. In connection with the above results, the following open problem has been proposed by W. Guo in his monograph [4]:

Open Problem([4], Problem 3-4). Let \mathfrak{F} be a nonempty saturated formation and the \mathfrak{F} -residual $G^{\mathfrak{F}}$ of a group G be a $\pi(\mathfrak{F})$ -selected group. 1) Has G an \mathfrak{F} -covering subgroup? 2) If G has \mathfrak{F} -covering subgroups, are any two \mathfrak{F} -covering subgroups of G conjugate ?

In this paper, we will prove that the answer of the problem is affirmative.

All unexplained notations and terminologies are standard. The reader is referred to the text of Guo [4] and Shemetkov [7].

2. Elementary Properties. Let π be a set of some prime numbers and π' the complement of π in the set of all prime numbers. For a group G, let |G| be the order of G, $\pi(G)$ the set of all prime divisors of the order of G, $\mathcal{O}_p(G)$ the maximal normal *p*-subgroup of G, F(G) the Fitting subgroup of G, $\Phi(G)$ the Frattini subgroup of G. $H \leq G$ denotes that H is a subgroup of G; $H \leq G$ denotes that H is a normal subgroup of G; [N]H denotes the semidirect product of groups N and H. Let $H \leq G$. We denote by H_G the largest normal subgroup of G contained in H.

Let \mathfrak{X} be a class of groups. We set $\pi(\mathfrak{X}) = \bigcup_{G \in \mathfrak{X}} \pi(G)$. A subgroup H of a group G is said to be an \mathfrak{X} -covering subgroup of G if the following conditions are satisfied: 1) $H \in \mathfrak{X}$; 2) if $H \leq T \leq G$, $K \leq T$ and $T/K \in \mathfrak{X}$, then T = KH. A subgroup H of a group G is said to be an \mathfrak{X} -projector of G if HN/N is an \mathfrak{X} -maximal subgroup of G/N whenever $N \leq G$.

A class of groups \mathfrak{F} is called a formation if \mathfrak{F} is closed under homomorphic images and subdirect products. It is clear that for every non-empty formation \mathfrak{F} , every group G has the smallest normal subgroup with quotient in \mathfrak{F} . We call such a smallest normal subgroup of G the \mathfrak{F} -residual of G, and denote by $G^{\mathfrak{F}}$. It is also clear that for every formation \mathfrak{F} , any \mathfrak{F} -covering subgroup of a group G is an \mathfrak{F} -projector, but the converse does not hold (cf.[4], p.67). Let p be a prime number. We denote by \mathfrak{N}_p the formation of all p-groups. We call a formation \mathfrak{F} p-local (or p-saturated), if $\mathfrak{N}_p\mathfrak{F}(p)\subseteq\mathfrak{F}$, i.e. $G\in\mathfrak{F}$ whenever $G^{\mathfrak{F}(p)}\subseteq\mathfrak{N}_p$, where

$$\mathfrak{F}(p) = \begin{cases} \varnothing, & \text{if } p \notin \pi(\mathfrak{F}), \\ form\{G/F_p(G) \mid G \in \mathfrak{F}\}, & \text{if } p \in \pi(\mathfrak{F}). \end{cases}$$

A formation \mathfrak{F} is called a saturated formation (or local formation) if $G \in \mathfrak{F}$ whenever $G/\Phi(G) \in \mathfrak{F}$.

0 10

Part 001 - 041

A group G is called an E_{π} -group, if G has at least one Hall π -subgroup. A group is called a D_{π} -group if G has the Sylow π -property, i.e. G has Hall π -subgroups, any two Hall π -subgroups of G are conjugate in G and every π -subgroup of G is contained in a Hall π -subgroup of G. A group G is called an E_{π}^{n} -group, if G has a nilpotent Hall π -subgroup.

Lemma 2.1 (see [7], Lemma 1.2). $(G/N)^{\mathfrak{F}} = G^{\mathfrak{F}}N/N$.

Lemma 2.2 (see [9]).Let G be a π -selected group. Then every subgroup of G and every factor group of G is a π -selected groups.

Lemma 2.3. (see [7], Lemma 4.2). Let \mathfrak{F} be a nonempty saturated formation. If $\mathfrak{N}_p \cap \mathfrak{F} \neq 1$, then $\mathfrak{N}_p \subseteq \mathfrak{F}$.

Lemma 2.4(see [4], Theorem 2.2.4). Let \mathfrak{F} be a nonempty saturated formation and G a group. Then the following statements hold.

1) If H is an \mathfrak{F} -covering subgroups of G and $N \triangleleft G$, then HN/N is an \mathfrak{F} -covering subgroups of G/N;

2) If R/N is an \mathfrak{F} -covering subgroups of G. and H is an \mathfrak{F} -covering subgroups of R, then H is an \mathfrak{F} -covering subgroup of G.

Recall that a group G is called a primitive group if it has a maximal subgroup M, such that $M_G = 1$. We say that a class of groups \mathfrak{F} is primitively closed if the following condition is satisfied: if all primitive factor groups of a group G belong to \mathfrak{F} , then G also belongs to \mathfrak{F} .

Lemma 2.5 (Erickson [2]). Let \mathfrak{F} be a nonempty class of groups. Then every group has an \mathfrak{F} -projectors if and only if \mathfrak{F} is closed under homomorphic images and \mathfrak{F} is primitively closed.

Lemma 2.6. Let \mathfrak{F} be a saturated formation. Then \mathfrak{F} is primitively closed.

Proof. Assume that all primitive factor groups of a group G belong to \mathfrak{F} . We prove that $G \in \mathfrak{F}$. If G is not primitive, then G/M_G is a primitive group for every maximal subgroup M of G. So, $G/M_G \in \mathfrak{F}$, for all maximal subgroups of G. It follows that $G/\cap M_G = G/\Phi(G) \in \mathfrak{F}$. Thus, $G \in \mathfrak{F}$ since \mathfrak{F} is saturated. This completes the proof.

Corollary 2.7. If \mathfrak{F} is a nonempty saturated formation, then every group G has an \mathfrak{F} -projector.

Lemma 2.8 ([2]). Let \mathfrak{F} be a class of groups which is closed under homomorphic images and is primitively closed. If G = F(G)E and $E \in \mathfrak{F}$, then G has an \mathfrak{F} -covering subgroup and E is contained in an \mathfrak{F} -covering subgroup of G.

Lemma 2.9 ([5]). Let G be a finite group and $H \leq G$. If H is a E_{π}^{n} -group and G/H is a D_{π} -group, then G is a D_{π} -group.

Lemma 2.10 ([8]). A formation \mathfrak{F} is saturated if and only if \mathfrak{F} is p-local (p-saturated) for every prime p.

Lemma 2.11. Let $H \leq G$ and L be an abelian minimal normal subgroup of G. If G = LH, and $H \neq G$, then H is a maximal subgroup of G.

Proof. Assume that $H \neq G$ and M is a maximal subgroup of G with $H \leq M$. Then LM = LH = G and $L \not\subseteq M$. We claim that $L \cap M = L \cap H = 1$. In fact, it is clear that $M \cap L \trianglelefteq G$. But L is a minimal normal subgroup of G and $L \not\subseteq M$. Thus $M \cap L = 1$ and

hence $H \cap L = 1$. It follows that |H||L| = |HL| = |ML| = |M||L| and |H| = |M|. Therefore H = M is a maximal subgroup of G. The lemma is proved.

3. Main Results. Theorem 3.1. Let \mathfrak{F} be a nonempty saturated formation and G a group. If $G^{\mathfrak{F}}$ is a $\pi(\mathfrak{F})$ -selected group, then G has an \mathfrak{F} -covering subgroup.

Proof. Assume that the theorem is false and G is a counterexample of minimal order. Then, obviously, $G \notin \mathfrak{F}$. Let $\pi = \pi(\mathfrak{F})$. If G is simple, then it is clear that $G = G^{\mathfrak{F}}$ and so $|\pi(G) \cap \pi| \leq 1$ since $G^{\mathfrak{F}}$ is $\pi(\mathfrak{F})$ -selected. If $|\pi(G) \cap \pi| = 0$, then 1 is the \mathfrak{F} -covering subgroup of G. If $|\pi(G) \cap \pi| = 1$, i.e. $\pi(G) \cap \pi = \{p\}$, for some $p \in \pi(\mathfrak{F})$, then by Lemma 2.1, we see that Sylow p-subgroups of G are just the \mathfrak{F} -covering subgroups of G. This condridiction shows that G is not a simple group. Let N be a minimal normal subgroup of G. If $G/N \notin \mathfrak{F}$, then by Lemma 2.1, we have $(G/N)^{\mathfrak{F}} = G^{\mathfrak{F}}N/N \cong G^{\mathfrak{F}}/(G^{\mathfrak{F}}\cap N)$. Since $G^{\mathfrak{F}}$ is a $\pi(\mathfrak{F})$ -selected group, by Lemma 2.2, $G^{\mathfrak{F}}/(G^{\mathfrak{F}}\cap N)$ is also a π -selected group. Thus, by the choice of G, G/Nhas an \mathfrak{F} -covering subgroup R/N and R < G. Since $R/(R \cap G^{\mathfrak{F}}) \cong RG^{\mathfrak{F}}/G^{\mathfrak{F}} = G/G^{\mathfrak{F}} \in \mathfrak{F}$, we have $R^{\mathfrak{F}} \leq R \cap G^{\mathfrak{F}}$. Then, by Lemma 2.2, $R^{\mathfrak{F}}$ is a π -selected group. This shows that R satisfies all conditions of the theorem. Hence, by the choice of G, R has an \mathfrak{F} -covering subgroup H. Then, by Lemma 2.4, we have that H is also an \mathcal{F} -covering subgroup of G. This contradiction shows that $G/N \in \mathfrak{F}$. If G has another minimal normal subgroup $H \neq N$ with $G/H \in \mathfrak{F}$, then $G \cong G/H \cap N \in \mathfrak{F}$, a contradiction. Therefore, without loss of generality, we can assume that G has a unique minimal normal subgroup $N = G^{\mathfrak{F}}$. This implies that $|\pi(G^{\mathfrak{F}}) \cap \pi| \le 1.$

Since \mathfrak{F} is a saturated formation, by Corollary 2.7, \mathfrak{G} has an \mathfrak{F} -projector H. Then, by the definition of a \mathcal{F} -projector, we have $G = HG^{\mathcal{F}}$ and H is an \mathcal{F} -maximal subgroup of G. Now, we prove that H is an \mathfrak{F} -covering subgroup of G. Assume that $H \leq T \leq G$. We only need to prove that $T = HT^3$. If it is not, then the set $\{T \mid H \leq T \leq G \text{ and } T \neq HT^3\} \neq \emptyset$. Let T be a group of minimal order in this set. First, we prove that T is a D_{π} -group. In fact, because $T/T \cap G^{\mathfrak{F}} \cong TG^{\mathfrak{F}}/G^{\mathfrak{F}} = HG^{\mathfrak{F}}/G^{\mathfrak{F}} \cong G/G^{\mathfrak{F}} \in \mathfrak{F}$, we have $T^{\mathfrak{F}} \subseteq G^{\mathfrak{F}}$. It follows that $|\pi(T^{\mathfrak{F}}) \cap \pi| \leq 1$, and consequently $T^{\mathfrak{F}} \in \mathcal{E}_{\pi}^{\mathfrak{n}}$. Since $T/T^{\mathfrak{F}} \in \mathfrak{F}, T/T^{\mathfrak{F}}$ is a π -group. By Lemma 2.9, we see that T is a D_{π} -group. Let H_1 be a Hall π -subgroup of T such that $H \subseteq H_1$. Then $T = H_1 T^{\mathfrak{F}}$. Assume that $H_1 < T$. Since $H_1/H_1 \cap T^{\mathfrak{F}} \cong H_1 T^{\mathfrak{F}}/T^{\mathfrak{F}} = T/T^{\mathfrak{F}} \in \mathfrak{F}$, we see $H_1^{\mathfrak{F}} \subseteq T^{\mathfrak{F}}$. On the other hand, by the choice of T, we have $H_1 = HH_1^{\mathfrak{F}} = H(H_1 \cap T^{\mathfrak{F}})$. Therefore, $T = H_1 T^{\mathfrak{F}} = H T^{\mathfrak{F}}$, a contradiction. Now, assume that $T = H_1$, then T is a π -group. Since $|\pi(T \cap G^{\mathfrak{F}}) \cap \pi| \leq |\pi(G^{\mathfrak{F}}) \cap \pi| \leq 1$, we have $T \cap G^{\mathfrak{F}} = 1$ or $T \cap G^{\mathfrak{F}}$ is a group of prime order p, for some $p \in \pi$. If $T \cap G^{\mathfrak{F}} = 1$, then $T \in \mathfrak{F}$ and hence T = H, a contradiction. Hence $T \cap G^{\mathfrak{F}}$ is a p-group. Consequently, $T \cap G^{\mathfrak{F}} \subseteq F(T)$. On the other hand, $HF(T) = H(T \cap G^{\mathfrak{F}}) = T \cap HG^{\mathfrak{F}} = T \cap G = T$. By Lemma 2.8, T has an \mathfrak{F} -covering subgroup K which contains H. However, since H is an \mathfrak{F} -projector of G, we have that H is an \mathfrak{F} -maximal subgroup of T. Thus, H = K is an \mathfrak{F} -covering subgroup of T. This leads to $T = HT^3$, a contradiction. The theorem is proved.

Theorem 3.2. Let \mathfrak{F} be a nonempty saturated formation and G a group. If $G^{\mathfrak{F}}$ is a π -selected group where $\pi = \pi(\mathfrak{F})$, then any two \mathfrak{F} -covering subgroups of G are conjugate in G.

Proof. Let H_1 and H_2 be any two \mathfrak{F} -covering subgroups of G. We prove by induction on the order |G| of G that H_1 and H_2 are conjugate in G.

If G is a simple group, then we can see that the result is trivial. Let G be not a simple group. Suppose that N is a minimal normal subgroup of G. If $G/N \notin \mathfrak{F}$, then by Lemma 2.4, we have H_1N/N and H_2N/N are \mathfrak{F} -covering subgroups of G/N. Since $G^{\mathfrak{F}}$ is a π -selected group, by Lemma 2.2, we see that $G^{\mathfrak{F}}N/N$ is also a π -selected group. Hence, the factor group G/N satisfies the conditions of the theorem. By induction, there is an element $x \in G$ such

that $H_1N/N = H_2^x N/N$, and consequently $H_1N = H_2^x N$. By the definition of \mathfrak{F} -covering subgroups, we can see that H_2^x is also an \mathfrak{F} -covering subgroup of G. Then H_1 and H_2^x are \mathfrak{F} -covering subgroups of H_1N . Since $G/N \notin \mathfrak{F}$, we have $H_1N < G$. By induction, there exists an element y in NH_1 such that $H_1 = (H_2^x)^y = H_2^{xy}$. This shows that H_1 and H_2 are conjugate in G.

Now, we may assume that $G/N \in \mathfrak{F}$ and $N = G^{\mathfrak{F}}$ is a unique minimal normal subgroup of G. Since $G^{\mathfrak{F}}$ is a π -selected group, we have $|\pi(G^{\mathfrak{F}}) \cap \pi| \leq 1$, and hence $G^{\mathfrak{F}}$ is an E_{π}^{n} -group. Since $G/G^{\mathfrak{F}} \in \mathfrak{F}$, $G/G^{\mathfrak{F}}$ is π -group. Thus, by Lemma 2.9, we see that G is a D_{π} -group. Therefore, there is a Hall π -subgroup T of G and an element $x \in G$ such that $H_1 \subseteq T$ and $H_2^x \subseteq T$. Obviously, H_1 and H_2^x are \mathfrak{F} -covering subgroups of T. Assume that T < G. It is clear that $G = TG^{\mathfrak{F}}$. Since $G/G^{\mathfrak{F}} = TG^{\mathfrak{F}}/G^{\mathfrak{F}} \cong T/T \cap G^{\mathfrak{F}} \in \mathfrak{F}$, we have that $T^{\mathfrak{F}} \subseteq$ $\subseteq T \cap G^{\mathfrak{F}}$. Since $|\pi(G^{\mathfrak{F}}) \cap \pi| \leq 1$, we have $|\pi(T^{\mathfrak{F}}) \cap \pi| \leq 1$ and $T^{\mathfrak{F}}$ is a π -selected group. Thus, by induction, H_1 and H_2^x are conjugate in T. It follows that H_1 and H_2 are conjugate in G. Assume that G = T. Then G is a π -group and hence $G^{\mathfrak{F}}$ is an elementary abelian p-group, for some prime $p \in \pi(\mathfrak{F})$ because $|\pi(G^{\mathfrak{F}}) \cap \pi| \leq 1$. By the definition of \mathfrak{F} -covering subgroups, we have that $H_1G^{\mathfrak{F}} = H_2G^{\mathfrak{F}} = G$. If $G = H_i$, for some $i \in \{1, 2\}$, then $G \in \mathfrak{F}$ and $G = H_2 = H_1$. If $G \neq H_1$ and $G \neq H_2$, then by Lemma 2.11, we see that H_1 and H_2 are maximal subgroups of G. If $H_1 = H_2$, then H_1 and H_2 are already conjugate in G. Assume that $H_1 \neq H_2$. Then $H_1 \cap G^{\mathfrak{F}} = H_2 \cap G^{\mathfrak{F}} = 1$, and hence $[G^{\mathfrak{F}}]H_2 = [G^{\mathfrak{F}}]H_1 = G$. Let $R/G^{\mathfrak{F}}$ be a minimal normal subgroup of $G/G^{\mathfrak{F}}$ if $R/G^{\mathfrak{F}}$ is p'-group, then R is $D_{p'}$ -group by Schur-Zassenhaus Theorem. Hence R has a unique conjugate class of Hall p'-subgroups. Obviously, $H_{11} = H_1 \cap R$ and $H_{21} = H_2 \cap R$ are Hall p'-subgroups of $R, H_1 \subseteq N_G(H_{11})$ and $H_2 \subseteq N_G(H_{21})$. If $H_{11} \trianglelefteq G$, then $G^{\mathfrak{F}} \subseteq H_{11}$ since $G^{\mathfrak{F}}$ is a unique minimal normal subgroup of G, a contradiction. This shows that $N_G(H_{11}) < G$ and hence $H_1 = N_G(H_{11})$ since H_1 is a maximal subgroup of G. Analogously, $H_2 = N_G(H_{21})$. Because H_{11} and H_{21} are conjugate in R, we see that H_1 and H_2 are conjugate in G. If $R/G^{\mathfrak{F}}$ is a p-group, then R is a p-group. Thus, $R \subseteq F(G) = C_G(G^{\mathfrak{F}}) = G^{\mathfrak{F}}$, a contradiction. Finally, we assume that $F_p(G/G^{\mathfrak{F}}) = 1$. Then, $(G/G^{\mathfrak{F}})/F_p(G/G^{\mathfrak{F}}) = G/G^{\mathfrak{F}} \in \mathfrak{F}(p)$. Since $G^{\mathfrak{F}}$ is a p-group, we have $G \in \mathfrak{N}_p\mathfrak{F}(p)$. Hence by Corollary 2.10, we obtain that $G \in \mathfrak{F}$, a contradiction. This completes the proof of the theorem.

This research is supported by the NNSF of China(#10171086).

Abstract. Let \mathfrak{F} be a nonempty saturated formation and G a finite group. In this paper, we proved that if the \mathfrak{F} -residual $G^{\mathfrak{F}}$ of G is $\pi(\mathfrak{F})$ -selected, then G has a unique conjugacy class of \mathfrak{F} -covering subgroups. This answers one open problem proposed by W. Guo.

References

- R. W. Carter, Nilpotent self-normalizing subgroups of soluble groups, Math. Z., 75 (1961). 136–139.
- 2. R.P. Erickson, Projectors of finite groups, Comm. Algebra, 10 (1982), 1919–1938.
- W. Gaschütz, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80(4) (1963), 300-305.
- 4. W.Guo, *The theory of classes of groups*, Beijing-New York, Kluwer Academic Publishers, Science Press, 2000.

5. B. Hartley, A Theorem of Sylow type for finite groups, Math. Z., 122, (1971), 223-226.

6. P.Schmid, Lokale Formationen endlicher Gruppen, Math. Z., 137 (1974), 31-48.

7. L. A. Shemetkov, Formations of finite groups, Moscow, Nauka, 1978.

8. L.A. Shemetkov, A. N. Skiba, Multiply ω -local formations and Fitting classes of finite groups, Siberian Advances in Mathematics, 10, No. 2 (2000), 112–141.

9. S.A.Chunikhin, Subgroups of finite groups, Gronungen, Wolters-Noordhoff, 1969.

Xuzhou Normal University, Xuzhou 221116, P. R. China

ŗ)

> Ņ ž

> > Received 29.10.03

University of Science and Technology of China, Hefei 230026, P. R. China