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On 3-covering subgroups of finite groups

Baojun Li and W enbin Guo

1. Introduction. Throughout this paper, all groups considered are finite groups. Recall
that a subgroup H of a group G is said to be a X-covering subgroup for a set X of groups
ifHeX and T = KH whenever H < T < G and T/K e X. A subgroup H of a group
G is called a Carter subgroup of G if H is a nilpotent group and NG(H) = H. It is well
known that a Carter subgroup of G is an Tt-covering subgroup of G where 'J1is the, class of
all nilpotent groups (cf. [4], Theorem 2.2.1), In 1961, Carter [1] proved that a soluble group
has a Carter subgroup and any two Carter subgroups of a soluble group are.conjugate. In
1963, Gaschutz [3] introduced the concept of an 3-covering subgroup where 3 is a class of
groups. This is the concept which enables us to generalize the Carter's result. Gaschutz [3]
proved that if S' is a nonempty saturated formation and G a soluble group, then G has
an ~-covering subgroup and any two 3-covering subgroups of G_are conjugate. Later on,
Erickson [2], Schmid [6] and Shemetkov [7] weakened the selubility condition and proved
that if the 3-residual G”™ of G is 7r(3)-soluble, then G has,an-3-covering subgroup and any
two 3-covering subgroups are conjugate in G. Let 7 be asset of prime numbers. By Chunikhin
[4], A group G is called a 7t-selected group, if |7r(9/A). M7 < 1 for every nonabelian chief
factor H/K of G. Obviously, a m-soluble group is @ 7r<selected group, but the converse does
not hold. In connection with the above results, thefollowing open problem has been proposed
by W. Guo in his monograph [4]:

Open Problem([4], Problem 3-4)./Let)3 be a nonempty saturated formation and the
3-residual G5 of a group G be a 7r(3)-selected group. 1) Has G an 3-covering subgroup? 2)
If G has 3-covering subgroups, are_any two 3-covering subgroups of G conjugate ?

In this paper, we will prove that the answer of the problem is affirmative.

All unexplained notations and terminologies are standard. The reader is referred to the
text of Guo [4] and Shemetkov, [7].

2. Elementary Properties. Let 7 be a set of some prime numbers and A the com-
plement of T in the set of all prime numbers. For a group G, let |G] be the order of G, 7t(G)
the set of all primg-divisors of the order of G, Op(G) the maximal normal p-subgroup of G,
F(G) the Fitting.subgroup of G, 4>(G) the Frattini subgroup of G. H < G denotes that H
is a subgroup” of\G; H <83 G denotes that H is a normal subgroup of G; [N]JH denotes the
semidirect{product of groups N and H. Let 4 < G, We denote by HG the largest normal
subgroup of 'G contained in H.

Let A be a class of groups. We set 7r(X) = UG6r7(<)- A subgroup H of a group G is
said to be an X-covering subgroup of G if the following conditions are satisfied: 1) H G X;
2)ifH<T <G, K<TandT/K € X, then T = KH. A subgroup H of a group G is said
to be an X-projector of G if HN/N is an X-maximal subgroup of G/N whenever N < G.

A class of groups 3 is called a formation if 3 is closed under homomorphic images and
subdirect products. It is clear that for every non-empty formation 3) every group G has the
smallest normal subgroup with quotient in 3- We call such a smallest normal subgroup of
G the 3 residual of G, and denote by Gs. It is also clear that for every formation 3> any
3-covering subgroup of a group G is an 3-projector, but the converse does not hold (cf.[4],
p.67).
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Let p be a prime number. We denote by YIP the formation of all p-groups. We call a
formation $ p-local (or p-saturated), if YIp$(p) C i.e. G G5 whenever G C 9lp, where

\ form{G/Fp(G) |G €S%, if p € 7tE).

A formation 5 is called a saturated formation (or local formation) if G G 5 whenever
C/o(C) Gb5-

A group G is called an E™-group, if G has at least one Hall 7r-subgroup. A group is
called a D#group if G has the Sylow m-property, i.e. G has Hall 7r-subgroups, any two Hall
7r-subgroups of G are conjugate in G and every T-subgroup of G is contained.in a Hall
7r-subgroup of G. A group G is called an E"-group, if G has a nilpotent Hall m=subgroup.

Lemma 2,1 (see [7], Lemma 1.2). (G/N)s — G”~N/N.

Lemma 2.2 (see [9]).Let G be a T¥selected group. Then every subgroup of G and every
factor group of G is a Trselected groups.

Lemma 2.3. (see [7], Lemma 4.2). Let $ be a nonempty saturated formation. If Mp I
MJ od 1, then VIp C

Lemma 2.4(see [4], Theorem 2.2.4). Let $ be a nonempty saturated formation and G
a group. Then the following statements hold.

1) If H is an $-covering subgroups of G and N\< G, then HN/N is an  covering
subgroups of G/N;

2) IfR/N is an covering subgroups of G/N."and H is an  covering subgroups of R,
then Il is an  covering subgroup of G.

Recall that a group G is called a primitive group if it has a maximal subgroup M, such
that MG — 1. Wre say that a class of groups'£ is primitively closed if the following condition
is satisfied: if all primitive factor groups of a group G belong to  then G also belongs to £.

Lemma 2.5 (Erickson [2]). Let'$ be a nonempty class of groups. Then every group has
an projectors if and only if#. is closed under homomorphic images and J is primitively
dosed.

Lemma 2.6. Let $ be-a saturated formation. Then $ is primitively closed.

Proof. Assume that all primitive factor groups of a group G belong to $. We prove that
G G If G is not primitive, then G/Mg is a primitive group for every maximal subgroup M
of G. So, G/Mg G #, for all maximal subgroups of G. It follows that G/DMq = G/3${G) G5.
Thus, G G $,since J is saturated. This completes the proof.

CoroNary 2.7. If $ is a nonempty saturated formation, then every group G has an
5-projector.

Lemma 2.8 ([2]). Let $ be a class of groups which is closed under homomorphic images
and is primitively closed. If G = F{G)E and E G 5, then G has an  covering subgroup
and E is contained in an  covering subgroup of G.

Lemma 2.9 ([5]). Let G be afinite group and H < G. If H is a E™-group and G/H
is a Dn-group, then G is a group.

Lemma 2.10 ([8]). A formation $ is saturated if and only if$ is p-local (p-saturated)
for every prime p.

Lemma 2.11. Let H < G and L be an abelian minimal normal subgroup of G. If
G = LH, and H ¢ G, then H is a maximal subgroup of G.

Proof. Assume that H ® G and M is a maximal subgroup of G with H < M. Then
LM - LH = Gand L € M. We claimthat LIMM —LTINH = 1 In fact, it is clear that
MflL< G. But L is a minimal normal subgroup of G and L ¥ M. Thus M INL = 1 and
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hence HnL = 1 It follows that JtfjJL] = \HL\ = \ML\ = [M]|L] and 4] = [|M|]. Therefore
H — M is a maximal subgroup of G. The lemma is proved.

3. Main Results. Theorem 3.1. Let 3 be a nonempty saturated formation and G a
group. If G™ is a ir($)-selected group, then G has an 3-covering subgroup.

Proof. Assume that the theorem is false and G is a counterexample of minimal order.
Then, obviously, G ~ 3- Let n = 7r(3). If G is simple, then it is clear that G — G* and so
;7r(G) fitr] < 1since Gs is 7r(5)-selected. If (n-(C) I'r] = 0O, then 1is the 3-covering subgroup
of G. If (M) MA\= 1, i.e. ®A(G) MNT= {p}, for some p £ 7r(3), then by Lemma 2.1, we
see that Sylow p-subgroups of G are just the 3-covering subgroups of G. This condridiction
shows that G is not a simple group. Let N be a minimal normal subgroup of G. If G/N 3,
then by Lemma 2.1, we have (G / N = G™N/N = G?/(G~™nlV). Since G$ is a 7r(3)-selected
group, by Lemma 2.2, Gs/(Gsf\N) is also a 7r-selected group. Thus, by the choice 0f.G, G/N
has an 3-covering subgroup R/N and R < G. Since R/(R M G") = RGN/GN =, G/GN G 3,
we have R? < R M G5 Then, by Lemma 2.2, R5 is a 7r-selected group. This shows that
R satisfies all conditions of the theorem. Hence, by the choice of G, R/has an 3-covering
subgroup H. Then, by Lemma 2.4, we have that H is also an 3-covering subgroup of G. This
contradiction shows that G/N £ 3- If G has another minimal normal'subgroup H ¢ N with
G/H £ 3>then G = G/JH IN N £ 3, a contradiction. Therefore, ‘without loss of generality,
we can assume that G has a unique minimal normal subgroup. N = CN. This implies that
K G 3) n m < 1.

Since 3 is a saturated formation, by Corollary 2.7,°G has an ~-projector H. Then, by
the definition of a ~-projector, we have G = NGs and_ H is an ~-maximal subgroup of G.
Now, we prove that H is an 3-covering subgroup of'G” Assume that H < T < G. We only
need to prove that T = AT®. If it is not, then the.set {T \ <T <Gand T dp HT~} & 0.
Let | be a group of minimal order in this set. First, we prove that T is a Ar-group. In fact,
because T/TnGs = TGNGN = HGS/GS=,G/Gs £ we have T* C G5. It follows that
,F(T™) ] < 1, and consequently G Ef Since T/Ty G 3, T/T* is a 7r-group. By Lemma
2.9, we see that T is a /4 -group. Let be a Hall 7r- subgrou of T such that 4 C
Then T = Hdl*. Assume that ﬁX< T. Since H)gHXI‘I ﬁ = T/T* £ 3, we
see Af C TA On the other hand, by the choice of T, we have Hx = H Hf = H{HXOT?3J).
Therefore, T = HXIT$ = AT 5,"a contradiction. Now, assume that T = X, then is a
--group. Since \KT MGSKT#] < |WG5) M7 < 1, we have TN Gy = 1or I MG5is a
group of prime order.p, for some p Gm If TN G® = 1, then T G5 and hence T — H,
a contradiction. Hence. T N Gs is a p-group. Consequently, TfIG5 C F(T). On the other
hand, HF(T) =/kF M Gs) = TMNHG* —T NG =T. By Lemma 2.8, T has an 3-covering
subgroup K which contains A. However, since A is an ~-projector of G, we have that A is
an NM-maximalssubgroup of T. Thus, H = K is an 3-covering subgroup of T. This leads to
T = AT?, acontradiction. The theorem is proved.

Theorem 3.2. Let 3 be a nonempty saturated formation and G a group. If G5 is a
lv-selected group where T= 7r(3), then any two 3-covering subgroups of G are conjugate in
G.

Proof. Let Hx and A2 he any two 3-covering subgroups of G. We prove by induction
on the order |G| of G that and A2 are conjugate in G.

If G is a simple group, then we can see that the result is trivial. Let G be not a simple
group. Suppose that N is a minimal normal subgroup of G. If G/N ¢ 3, then by Lemma
2.4, we have H\N/N and H2N/N are 3-covering subgroups of G/N. Since G” is a 7r-selected
group, by Lemma 2.2, we see that G*N/N is also a 7r-selected group. Hence, the factor group
G/N satisfies the conditions of the theorem. By induction, there is an element x £ G such



14 Baojun Li and Wenbin Guo

that HIN/N = H%N/N, and consequently HXN = H$N. By the definition of ~-covering
subgroups, we can see that L, is also an ~-covering subgroup of G. Then Hx and L, are
3-covering subgroups of HXN. Since G/N ¢ 3, we have HXN < G. By induction, there
exists an element y in NH Xsuch that Hx = {LL )y = L y. This shows that Hx and H2 are
conjugate in G.

Now, we may assume that G/N ¢ $ and N —Gs is a unique minimal normal subgroup
of G. Since G/ is a 7r-selected group, we have |7r(GN I'r] < 1, and hence G” is an E”~-group.
Since G/G® G #, G/G®is 7r-group. Thus, by Lemma 2.9, we see that G is a E”-group.
Therefore, there is a Hall 7r-subgroup T of G and an element x € G such that Hx C T
and Ll C T. Obviously, Hx and LL, are ~-covering subgroups of T. Assume that T < G.
It is clear that G = TG*. Since G/G* = TGS/G* S T/T NG* G we<have that T5 C
C T MNGs. Since Nr(Gs) M#] < 1, we have |7r(™) M7 < 1and T/ is'a 7r-selected group.
Thus, by induction, Hx and L, are conjugate in T. It follows that Hxand H2 are conjugate
in G. Assume that G — T. Then G is a 7r-group and hence G5"issan elementary abelian
p-group, for some prime p G 7r(30 because |7r(Cr) m mk< 1 By.the definition of J-covering
subgroups, we have that HXGS — H2G3 = G. If G — Hi, forysome i G {1,2}, then G G 3
and G = H2 — Hx. If G & Hxand G ¢ H2, then by lLemma 2.11, we see that Hx and
H: are maximal subgroups of G. If IIx= H2, then lIx.and H2 are already conjugate in G.
Assume that Hx ¢ H2. Then lixNGN = H2nGJ. =1, and hence [Gs]#2 = [GMNHX—G.
Let R/Gs be a minimal normal subgroup of G /°G If R/G” is p'-group, then R is E”-group
by Schur-Zassenhaus Theorem. Hence R has alunique conjugate class of Hall p'-subgroups.
Obviously, Hu = Hx(I R and H2X—H2Tl1R-are Hall p'-subgroups of R, Hx C Ng{Hu) and
H2C Ng(H2). If Hx < G, then G C Hn"since Gy is a unique minimal normal subgroup
of G, a contradiction. This shows that,NG(Hn) < G and hence Hx = NG{H XY since Hx is
a maximal subgroup of G. Analogously, H2 = NG(H2X. Because Hn and H2Xare conjugate
in R, we see that Hx and H2.are conjugate in G. If R/G®is a p-group, then R is a p-group.
Thus, R C F(G) = Cg{Gs) =G5, a contradiction. Finally, we assume that FP(G / G = 1
Then, (G/GMN)/FP(G/GY) =.G/G™ G 3(p)- Since G5 is a p-group, we have G G 91R3((p).
Hence by Corollary 2.10; we obtain that G G S, a contradiction. This completes the proof
of the theorem.
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Abstracty Let 3rbe a nonempty saturated formation and G a finite group. In this paper,
we proved that if the 3-residual G5 of G is 7r(")-selected, then G has a unique conjugacy
class of J-covering subgroups. This answers one open problem proposed by W. Guo.
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