УДК 512.542

О построении регулярных транзитивных подгрупповых функторов

Л.А.Воробей

В работе рассматриваются только конечны группы. Используются определения и обозначения, принятые в [1–3]. Приведем лишь некоторые из них.

Пусть Θ — функция, сопоставляющая каждой группе G из произвольного непустого класса групп $\mathfrak X$ некоторую систему ее подгрупп $\Theta(G)$. Говорят, что Θ — подгрупповой $\mathfrak X$ -функтор, если выполняется следующее условие абстрактности:

$$(\Theta(G))^{\varphi} = \Theta(G^{\varphi})$$

для любого изоморфизма φ и каждой группы G из \mathfrak{X} .

Если $\mathfrak{X}=\mathfrak{G}$ — класс всех групп, то подгрупповой \mathfrak{X} -функтор называется просто подгрупповым функтором.

Подгрупповой \mathfrak{X} -функтор называется транзитивным, если для любой группы $G \in \mathfrak{X}$ всегда из $S \in \Theta(H)$ и $H \in \Theta(G) \cap \mathfrak{X}$ следует $S \in \Theta(G)$.

Подгрупповой \mathfrak{X} -функтор Θ называется эпиморфным, если для любого эпиморфизма $\varphi:A\to B$, где $A,B\in\mathfrak{X}$ (в дальнейшем эпиморфизм \mathfrak{X} -группы в \mathfrak{X} -группу будм называть \mathfrak{X} -эпиморфизмом), справедливо равенство

$$(\Theta(A))^{\varphi} = \Theta(B).$$

Эпиморфный подгрупповой \mathfrak{X} -функтор Θ называется регулярным, если для любого \mathfrak{X} -эпиморфизма $\varphi:A\to B$ выполняется включение

$$\Theta(B)^{\varphi^{-1}} \subseteq \Theta(A)$$

и, кроме того, $G \in \Theta(G)$ для любой группы $G \in \mathfrak{X}$.

Исследования в данной статье группируются вокруг вопроса профессора А.Н.Скибы: "Можно ли классифицировать все регулярные транзитивные подгрупповые функторы?" (вопрос 1.2.12 из [2]). В работе [4] при изучении этого вопроса были построены примеры регулярных транзитивных подгрупповых функторов (\mathfrak{X} -субнормальный, \mathfrak{X} -достижимый и \mathfrak{X} -субабнормальный). Все три серии регулярных транзитивных подгрупповых функторов, описанные в теоремах, связаны с выделением в группах таких подгрупп, которые соединяются с группой цепью подгрупп с определенными свойствами. Это приводит к гипотезе о том, что и любой регулярный транзитивный подгрупповой \mathfrak{X} -функтор может быть описан аналогичной процедурой. В достаточно широком диапозоне (\mathfrak{X} — наследственный гомоморф) такая гипотеза находит подтверждение в следующих двух теоремах.

Теорема 1. Пусть \mathfrak{X} — непустой наследственный гомоморф и τ — регулярный подгрупповой \mathfrak{X} -функтор, а τ' — наименьший транзитивный регулярный подгрупповой \mathfrak{X} -функтор, содержащий τ . Тогда в том и только в том случае $T \in \tau'(G)$, когда в группе $G \in \mathfrak{X}$ имеется такая цепь подгрупп

$$T = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_n = G,$$

что $G_{i-1} \in \tau(G_i)$ для всех i = 1, 2, ..., n.

Доказательство. Пусть τ_1 — такая функция, что для любой группы $H \in \mathfrak{X}$ множество $\tau_1(H)$ содержит только те подгруппы N, для которых в H имеется такая цепь

$$N = N_0 \subseteq N_1 \subseteq \ldots \subseteq N_n = H$$
,

что $N_{i-1} \in \tau(N_i)$ для всех i = 1, 2, ..., n. Заметим, что из наследственности \mathfrak{X} следует, что $N_i \in \mathfrak{X}$ для всех i = 1, 2, ..., n.

Покажем, что τ_1 — регулярный транзитивный подгрупповой \mathfrak{X} -функтор. Пусть $\varphi:A\to B$ — эпиморфизм групп, где $A\in\mathfrak{X},\,B\in\mathfrak{X}$ и $N\in\tau_1(A),\,T\in\tau_1(B)$. Пусть

$$N = N_0 \subseteq N_1 \subseteq \ldots \subseteq N_r = A$$
,

где $N_{i-1} \in \tau(N_i)$ для всех i = 1, 2, ..., r и

$$T = T_0 \subseteq T_1 \subseteq \ldots \subseteq T_k = B$$
,

где $T_{i-1} \in \tau(T_i)$ для всех i = 1, 2, ..., k.

Рассмотрим цепь

$$N^{\varphi} = N_0^{\varphi} \subseteq N_1^{\varphi} \subseteq \ldots \subseteq N_r^{\varphi} = A^{\varphi} = B.$$

 $N^{arphi}=N_0^{arphi}\subseteq N_1^{arphi}\subseteq\ldots\subseteq N_r^{arphi}=A^{arphi}=B.$ да при эпиморфизме $arphi_{N_i}:N$ $(N_{i-1})^{arphi}\in au(N_i)^{arphi}$ С цепь Пусть $i \in \{1,2,...,r\}$. Тогда при эпиморфизме $\varphi_{N_i}:N_i \longrightarrow N_i^\varphi$ мы имеем по определению подгруппового функтора $(N_{i-1})^{\varphi} \in \tau(N_i)^{\varphi}$. Следовательно, $N^{\varphi} \in \tau_1(B)$.

Рассмотрим теперь цепь

$$T^{arphi^{-1}}=T_0^{arphi^{-1}}\subseteq T_1^{arphi^{-1}}\subseteq\ldots \subseteq T_k^{arphi^{-1}}=B^{arphi^{-1}}=A.$$

Пусть $j \in \{1,2,...,k\}$. Пусть $N = T_j^{\varphi^{-1}}$ Тогда поскольку $T_{j-1} \in \tau(T_j)$, то при эпиморфизме $\varphi_N : N \longrightarrow T_j$ имеет место $T_{j-1}^{\varphi^{-1}} \in \tau(N) = \tau(T_j^{\varphi^{-1}})$. Следовательно, $T^{\varphi^{-1}} \in \tau_1(A)$.

Ясно, что $H \in \tau(H)$, а поскольку $\tau(H) \subseteq \tau_1(H)$, то $H \in \tau_1(H)$. Таким образом, au_1 — регулярный подгрупповой \mathfrak{X} -функтор. Ясно, что au_1 — регулярный транзитивный подгрупповой Х-функтор.

Покажем, что au_1 — наименьший регулярный транзитивный подгрупповой \mathfrak{X} функтор, который содержит подгрупповой функтор au. Предположим, что это не верно. Пусть H — такая группа из \mathfrak{X} , в которой имеется такая подгруппа N, что $N \in \tau_1(H) \setminus$ $\setminus \tau'(H)$.

Согласно определению подгруппового \mathfrak{X} -функтора τ_1 существует такая цепь

$$N = N_0 \subseteq N_1 \subseteq \ldots \subseteq N_n = H,$$

что $N_{i-1} \in \tau(N_i)$ для всех i = 1, 2, ..., n. Так как $\tau \leq \tau'$, то $N_{n-1} \in \tau'(H)$. В свою очередь, $N_{n-2} \in \tau'(N_{n-1})$ и т.д. Значит, для любого $i \in \{1, 2, ..., n\}$ имеет место $N_{i-1} \in \tau'(N_i)$. Следовательно, поскольку функтор τ' является транзитивным, то $N \in \tau'(H)$. Получили противоречие. Теорема доказана.

Следствие. Пусть au — произвольный регулярный подгрупповой функтор, а au'— наименьший регулярный транзитивный подгрупповой функтор, содержащий au. Тогда в том и только в том случае $T \in \tau'(G)$, когда в группе G имеется такая цепь подгрупп

$$T = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_n = G$$
,

что $G_{i-1} \in \tau(G_i)$ для всех i = 1, 2, ..., n.

Пусть \mathfrak{X} — непустой наследственный класс. Если τ и θ — подгрупповые \mathfrak{X} -функторы, то отображение $\tau \circ \theta$, сопоставляющее каждой группе G множество ее подгрупп $\{H|H\in \tau(K), K\in \theta(G)\}$, является подгрупповым \mathfrak{X} -функтором, который называется произведением \mathfrak{X} -функторов τ и θ .

Для любых подгрупповых \mathfrak{X} -функторов θ_1 и θ_2 из $Reg(\mathfrak{X})$ подгрупповой функтор $\theta_1 \circ \theta_2$ также является регулярным. Поэтому произведение регулярных подгрупповых \mathfrak{X} -функторов является бинарной операцией на множестве $Reg(\mathfrak{X})$. Кроме того, эта операция удовлетворяет ассоциативному закону. Следовательно, $(Reg(\mathfrak{X}), \circ)$ — полугруппа с единицей. Роль единицы выполняет подгрупповой \mathfrak{X} -функтор θ такой, что $\theta(G) = \{G\}$ для любой \mathfrak{X} -группы G.

Теорема 2. Если \mathfrak{X} — непустой наследственный гомоморф, то регулярный подгрупповой \mathfrak{X} -функтор θ является транзитивным тогда и только тогда, когда θ — идемпотент полугруппы $(Reg(\mathfrak{X}), \circ)$.

Доказательство. Если регулярный подгрупповой \mathfrak{X} -функтор θ является транзитивным, то для любой группы $G \in \mathfrak{X}$ и ее θ -подгруппы H из наследственности класса \mathfrak{X} следует, что $\theta(H) \subseteq \theta(G)$. Это означает, что $\theta^2(G) \subseteq \theta(G)$. Так как $G \in \theta(G)$, то $\theta(G) = (\theta \circ 1)(G) \subseteq \theta^2(G)$. Таким образом, $\theta^2 = \theta$, то есть θ идемпотентный элемент полугруппы $(Reg(\mathfrak{X}), \circ)$.

Если же θ — идемпотент полугруппы $(Reg(\mathfrak{X}), \circ)$, то из наследственности \mathfrak{X} и определения операции \circ всегда из $K \in \theta(H)$ и $H \in \theta(G)$ следует $K \in \theta(G)$ для любой \mathfrak{X} -группы G, то есть подгрупповой \mathfrak{X} -функтор θ является транзитивным. Теорема доказана.

Следствие. Регулярный подгрупповой функтор θ является транзитивным тогда и только тогда, когда θ — идемпотент полугруппы $(Reg(\mathfrak{G}), \circ)$.

Abstract. The author proves a general result on the construction of regular transitive subgroup functors with given regular subgroup functors.

Литература

- 1. С. Ф. Каморников, М. В. Селькин, *Подгрупповые функторы в теории классов конечных групп*, Мінск, Беларуская навука, 2003.
- 2. А. Н. Скиба, Алгебра формаций, Мінск, Беларуская навука, 1997.
- 3. Л. А. Шеметков, Формации конечных групп, Москва, Наука, 1978.
- 4. Л. А. Воробей, *О регулярных транзитивных подгрупповых функторах*, Гомель, Препринт, Гомельский госуниверситет, № 80 (1999).

Белорусский торгово-экономический университет потребительской кооперации Поступило 21.10.04