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On the Shemetkov — Schmid subgroup and related subgroups of finite groups
A.F. VASIL'EV, V.l. MURASHKA

B pabote ycranoBiens! cBoiictBa noarpynms! lllemerkosa — llImuaa F(G)u cBsi3aHHBIX ¢ Hel 0000-

OICHHBIX moArpynn @OUTTHHTa KOHEYHBIX Tpymi. Mbl HaszpiBaeM moarpynny H R-cyOHOpmambHOI
B rpynne G, ecniu H cybnopmaneHa B ( H, R). M3ydensl rpymnmbel ¢ 3aJaHHBIMH CHCTEMaMH

R-cybnopmanbnbIx moarpymm, ecnu R € {F(G), F*(G), F(G)}. HaiiieHb! HOBBIE XapaKTEPU3AIIMN HUJIb-

MIOTEHTHBIX U CBEPXPA3PEIIUMBIX IPYIIIL.
KuroueBble cjioBa: KoHe4Has rpymmna, noarpynna ®durunra, noarpynmna Illemerxkosa — IlIMuna, kBazu-
HIIBIIOTEHTHBIN paJuKall, HIIBIOTEHTHAs IPYIINa, CBepXpa3perinumas Tpyma.

In this paper the properties of the Shemetkov-Schmidt subgroup as well as generalized Fitting subgroups
related with it have been determined. We call a subgroup H R-subnormal in a group G, if H is subnormal
in (H,R). Finite groups with given systems of R-subnormal subgroups have been studied for

R e{F(G),F (G),F(G)}. New characterizations of nilpotent and supersolvable groups have been ob-

tained.
Keywords: finite group, the Fitting subgroup, the Shemetkov — Schmid subgroup, R-subnormal subgroup,
nilpotent group, supersoluble group.

1 Introduction. All the considered groups are finite. In 1938 H. Fitting [1] showed that a
product of two normal nilpotent subgroups is again nilpotent subgroup. It means that in every group
there is the unique maximal normal nilpotent subgroup F(G) called the Fitting subgroup. This sub-

group has a great influence on the structure of a solvable group. For example Ramadan [2] proved
the following result.

Theorem 1.1. Let G be a soluble group. If all maximal subgroups of Sylow subgroups of
F(G) are normal in G then G is supersoluble.

Analyzing proofs of such kind's theorems in solvable case one can note that the following
properties of the Fitting subgroup F(G) are often used:

(1) Cs(F(G)) < F(G);

(2) ®(G)c F(G) and F(G/®(G))=F(G)/ D(G);

(3) F(G)/®(G) < Soc(G/d(G)).

But only (2) and (3) are held for the Fitting subgroup of an arbitrary group. Note that there are
many groups G with F(G) =1. That is why there were attempts to generalize the Fitting subgroup.

In 1970 H. Bender [3] introduced the quasinilpotent radical F*(G). It can be defined by the
formula F7(G)/F(G) = Soc(C, (F(G))F(G)/F(G) and can be viewed as a generalization of the
Fitting subgroup. For F*(G) the statements like (1) and (3) are held. This subgroup proved useful
in the classification of finite simple groups. Also F*(G) was used by many authors in the study of
nonsimple groups.

In 1985 P. Forster [4], [5] showed that there is the unique characteristic subgroup F(G)
(F'(G) in Forster notation) in every group G which satisfies the statements like (1)-(3). Firstly

subgroup with this properties was mentioned by P. Schmid [6] in 1972. It was defined in explicit
form by L. Shemetkov in 1978 [7, p.79]. P. Schmid and L. Shemetkov used this subgroup in the
study of stable groups of automorphisms for groups.

Definition 1.2. The Shemetkov-Schmid subgroup F(G) of group G is defined as follows:
(1) F(G) 2 @(G);



24 A.F. Vasil'ev, V.I. Murashka

(2) F(G)/ ®(G) = Soc(G / ©(G)).
Proposition 1.3 [8], [9]. F"(G)F(G) for any group G.
The following example shows that in general case F*(G) # F(G).

Example 1.4. Let G = As be the alternating group on 5 letters and K = F3. According to [10]
there is a faithful irreducible Frattini KG-module A of dimension 4. According to known Gaschitz

theorem [11], there exists a Frattini extension A— R =G such that A is G-isomorphic ®(R)

and R/®(R) = G. From the properties of module A it follows that F(R)=R and F"(R) = ®(R).

In this paper we continue to investigate the properties of the Shemetkov — Schmid subgroup
and related subgroups. There is an overview of some applications of considered subgroups.

2 Preliminaries. We use standard notation and terminology, which can be found in [12], [13]
if necessary. Recall that for a group G, ®(G) is the Frattini subgroup of G; A(G) is the intersec-

tion of all maximal abnormal subgroups of G and G; Z(G) is the center of G; Z_(G) is the hy-
percenter of G; Soc(G) is the socle of G ; Gr is the F-radical of G for a N, -closed class F with 1;

G" is the F-residual of G for a formation F; N is the class of all nilpotent groups, N” is the class of
all quasinilpotent groups; F, is a field composed by p elements.

A class of group F is said to be N, -closed if A,B<G and A BeFimply AB eF.

A class of group Fis said to be S, -closed if A<G and G eFimply AeF.

Lemma 2.1 [12, p. 127]. Let G be a group. Then C,(F (G)) < F(G).

Lemma 2.2 [7, p. 95], [14]. Let G be a group. Then A(G / ®(G)) =A(G)/ ®(G)=Z_(G/ D(G)) =
=Z(G/®d(G)) and A(G) is nilpotent.

3 Properties of F(G) and related subgroups. It is well known that F(F(G)) = F(G) and
F(F"(G))=F"(G). In [4] P. Forster showed that there is a group G such that F(F(G)) < F(G).
He shows that there is a nonabelian simple group E which has F E-module V such that
R =Rad (V) is faithful irreducible F E-module and V /R is irreducible trivial F E -module. Let
H be the semidirect product VAE. Then H'=RE is a primitive group and |H :H’| = p. There is
F,H-module W with C,(W)=H’', where q=p. Let G=WAE. Then ®(G)=®(H)=R and
Soc(G/R) =W xER/R. So F(G) =W x ER and ®(F(G)) =1. ltmeansthat F (F (G)) = Soc(F(G)) =
= RW < F(G). This example led us to the following definition.

Definition 3.1. Let G be a finite group. For any nonnegative integer n define the subgroup
F"(G) by: F°(G)=G and F"(G) = F(F"*(G)) for n>0.

It is clear that F'(G)=F'"*(G)=F(F'*(G)) for some i. So we can define the subgroup
F”(G) as the minimal subgroup in the series G=F°(G)oF*G)>... Now
F*(G) = F*(F*(G)).

Proposition 3.2. Let n be a natural number, N and H be normal subgroups of a group G.
Then:

(1) If N <®(F"*(G)) then F"(G/N)=F"(G)/N;
(2) F'(G) = F"(G);

(3) If ®(F"*(G))=1then F"(G) = F'(G);

(4) C.(F"(G)) = F(G);

(5) F"(N)<F"(G);

(6) F"(G)N/N <F"(G/N);

(7)1f G=NxH then F"(G)=F"(H)xF"(N).
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Proof. (1) When n=1 it directly follows from the definition of F(G)
and®(G/N)=®(G)/N. By induction by n we obtain this statement.

(2) The proof was proposed by L. Shemetkov to the authors in case ifn=1. Let a group G be
the minimal order counterexample for (2). If ®(G)=1 then for G/®(G) the statement is true.

From F"(G)/®(G) c F'(G/®(G)) and F(G/®(G))=F(G)/®(G) we have that F"(G) c F(G).
It is a contradiction with the choice of G .

Let®(G) =1. Now F(G) = Soc(G). By 13.14.X [12] F"(G) = E(G)F(G). Note ®(E(G))=1.
Since 13.7.X [12] E(G)/Z(E(G)) is the direct product of simple nonabelian groups,
Z(E(G)) = F(E(G)). From the theorem 10.6.A [15] we conclude that E(G)=HZ(E(G)), where
H is the complement to Z(E(G) in E(G). Now H is the direct product of simple nonabelian
groups. Since HcharE(G) < G, we have H < G. Note H < Soc(G). Since Z(E(G)) < F(G) < F(G)
and H < Soc(G), it follows that E(G) — F(G). Now F'(G)=E(G)F(G)c F(G). It is a contra-
diction with the choice of G.

Assume that F*(G)c F"(G) for n>1. It means that F"(F"(G))=F"(G). By induction
F*(G) c F™(G).

(3) If ®(F"*(G)) =1 then F"(G) is the socle of F"*(G) and hence F"(G) is quasinilpotent.
From F*(G) c F"(G) it follows that F"(G) = F"(G).

(4) From F"(G)<F"(G) it follows that C,(F"(G)) <C4(F"(G)). Since C.(F"(G)) < F(G)
by lemma 2.1, we see that C (F"(G)) < F(G).

(5) Since ®(N) <d(G), we see that F(G/P(N))=F(G)/d(N). Note that F(G)/D(N) is
quasinilpotent.  Hence F(N)/®(N)c F (G/®(N)) c F(G/®(N))=F(G)/®d(N).  Thus
F(N) < F(G). By induction F"(N)< F"(G).

(6) Note that F(G)N/N/®(G)N/N=F(G)N/D(G)N =F(G)/F(G)n®(G)N. From
®(G)c F(G)N®(G)N it follows that F(G)N/N/®(G)N/N is quasinilpotent. Since
®(G)N /N < ®(G/N), we see that F(G)N/N <F(G/N).

Assume that F"(G)N /N < E"(G/N) for some n>1. Now
F™(G/N)=F(F"(G/N))=F(F"(G)N/N)=F(F"(GIN)N/N=F(F"(G))N/N =F"(G)N/N
by the previous step and (5).

(7) Assume that the statement is false for n=1. Let a group G be a counterexample of mini-
mal order. Assume that ®(G) =1. Then G/ D(G) = H®D(G)/ D(G)x N®(G)/ D(G).

Note that H®(G)/ ®(G)zH/HN®(G)=H/H N (®(H)xD(N))=H /®(H). By analogy
N®(G)/®(G)=N/D(N). So F(G/D(G))=F(H/Dd(H))xF(N/d(N)). From
IE(G [ ®(G)) = IE(G)/G)(G), IE(N [®(N)) = IE(N)/(I)(N) and IE(H [®(H)) = IE(H)/(D(H)
it follows that F(G)/d(G) = F(H)/d(H)x E(N)/d(N). Now
F@)| [FH) [Fy)
@G)] [@(H)] [©(N)]
From ®(G)=®(N)x®d(H) it follows that |If(G)|:|If(N)||If(H)|. From (5) it follows that
F(N)<F(G) and F(H) < F(G). Thus F(G)=F(H)xF(N), a contradiction.
Now ®(G)=1. So F(G)=F"(G), F(N)=F"(N) and F(H)=F"(H). It is well known that
F'(HxN)=F"(H)xF"(N), the final contradiction.
By induction we have that F"(G) = F"(H)xF"(N). O
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From proposition 3.2 properties of F(G) follow.

Corollary 3.3. Let N andNH be norrrlal subgroups of a group G. Then:

(D) [O]1f N<®(G) then F(G/N)=F(G)/N;

(2)[8],[91 F (G) < lf(G);

(3) [4] If ®(G) =1 thenF(G) = F (G);

(4) [6], [7] C5(F(G)) < F(G);

(5) 4] F(N)<F(G);_

(6) [4] F(G)IN/N <F(G/N);

(7)If G=NxH thenF(G)=F(H)xF(N).

Also we obtain new properties of F*(G).

Corollary 3.4. Let N and H be normal subgroups of a group G. Then

(1) F*(G)/®(F~*(G)) is quasinilpotent;

(2) F'(G) = F*(G) = F(G);

(3) If ®(F~(G)) =1 then F*(G)=F"(G);

(4) C5(F"(G) = F(G);

(5) F*(N)<F*(G);

(6) F*(G)N/N <F*(G/N);

(7)1If G=NxH thenF*(G)=F*(H)xF*(N).

In [4] Forster introduced a class N = E, N" = (G| F(G) =G ) and showed that N is N, -closed
Shunck class that is neither formation nor s, -closed. Note that N =(G|F*(G)=0G).

Proposition 3.5. Let G be a group. Then G, = F*(G), i.e. F*(G) is the maximal among
normal subgroups N of G such that N /®(N) is quasinilpotent.

Proof. From G, /®(G;) eN" and D (G, ) < @(G) it follows that G¢ < F(G). By induction
G, =F(G,) <F"(G). By proposition 3.2 and the definition of N we obtain G = F*(G). [

Problem 3.6. Let F be an N,-closed class of groups and 1<F. Then there is the maximal

normal F-subgroup Gg in any group G. In the context of our work the following general problem
appears: to describe all N, -closed classes (formations, Fitting classes, Shunck classes) F with 1 for
which one of the following statements holds:

(1) F(G) cGgc F ' (G) for any group G;

(2) F*(G) c G F(G) for any group G;

(3) F(G) =Grc F(G) for any group G.

Theorem 3.7. Let F be a N, -closed formation. Then:

(1) If Fis a saturated formation and F(G) = G F(G) for any group G then F=N.

(2) If F*(G) c Gec F(G) for any group G then F = N*.

Proof. Let prove (1). From F(G) Gk it follows that N . Assume that the set F\N is not

empty and we choose a minimal order group G from it. Since F and N are both saturated for-
mations, from minimality of G we may assume that ®(G) = 1 and there is only one minimal normal
subgroup of G. From G cF(G) it follows that G = Soc(G) is nonabelian simple group. From [10]
it follows that for prime p dividing |G| there exist faithful irreducible F,G-module A admitting a
group extension A - E = G with Ac®(G). Since F is a saturated formation so E<F and A/1 is chief
factor of E. According to [15, p. 335] we see that H=A 4 (E/A) <F. Note that F(H) =A, a contradic-
tion. Thus N = F.

Let prove (2). From F'(G) cGe it follows that N* F. Assume that the set F\N* is not empty
and G is a group a minimal order from it. Since F and N* are both formations, from minimality of G
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we may assume that there is only one minimal normal subgroup N of G. If ®(G)=1 then
G = Soc(G) eN*, a contradiction. So N c®(G).

Now N is a normal elementary abelian p-subgroup G. By our assumption G/N eN*. Assume
that Cg(N) = G. Now G acts as inner automorphisms on N/1 and on every chief factor of G/N. By
definition of quasinilpotent groups G eN*, a contradiction. Hence Cg(N) # G. Note that N is the
unique minimal subgroup of H = N 4 (G/Cg(N)) <F by [15, p. 335] and ®(H) = 1. So F(H)=N and
He = H, a contradiction. Thus N" = F. ]

Let consider another direction of generalization of the Fitting subgroup. A subgroup functor
is called m -functor if 7(G) contains G and some maximal subgroups of G for every group G.

Recall [16, p. 198] that @ _(G) is the intersection of all subgroups from z(G).

Definition 3.8. Letz be m -functor. For every group G subgroup F.(G) is defined as follows:

1) @,(G) cF.(G);

2) F.(G)/ ®_(G) =Soc(G /D, (G)).

If 7(G) is the set of all maximal subgroups of G for any group G then we obtain the defini-
tion of F(G). If (G) is the set of all maximal abnormal subgroups and G for any group G then
®_(G) =A(G). Subgroup F (G)=F,(G) was introduced by M. Selkin and R. Borodich [17].

Proposition 3.9. Let G be a group. Then A(G) c F(G) and F(G/A(G)) = F(G)/A(G).

Proof. From lemma 2.2 it follows that A(G) — F(G). Let a group G be a counterexample of
minimal order to the second statement of proposition. Assume that ®(G) =1. By inductive hypoth-
esis

F(G/®(G))/AG/D(G))) = F(G/D(G))/AG ! D(G))

Now A(G/ ®(G)) = A(G)/ ®(G) bylemma2.2and F(G/®(G)) = F(G)/®(G) by corollary 3.3 (1).
F(G/®(G)/AGID(G)))=F(G/D(G)/AG)! D(G)) = F(G/AG))
F(G/®(G))/AG/D(G))=F(G)/D(G)/A(G)/ D(G) = F(G)/A(G)

Hence |F(G)/A(G)|=|F(G/A(G)). By corollary 33 (6) it follows that
F(G)/A(G)<F(G/A(G)). Thus F(G)/A(G) = F(G/A(G)), a contradiction.

Now ®(G)=1. It means that A(G)=2Z(G)<Soc(G). So Z(G) is complemented in G. Let
M be a complement of Z(G) in G. Hence M <G and G=M xZ(G)=M xA(G). Note that

M =G/ A(G). From corollary 3.3 (7) it follows that F(G)=F(M)xF(A(G)) = F(M)xA(G). Thus
F(G/A(G))=F(M)= F(G)/A(G). From corollary 3.3 (6) we obtain the final contradiction. [
Corollary 3.10. Let G be a group. Then F,(G) = F(G).
Proposition 3.11. Let G be a group. Then F_(G) > F(G). In particular C,(F.(G)) < F (G).
Proof. From corollary 3.3 it follows that if N <G and ®(G)< N then F(G)N/N is quasi-
nilpotent. Also note that ®(G/®_(G))=1. By corollary 3.3 F (G/®_(G))=Soc(G/®_(G)).
Hence F(G)®,(G)/®, (G)< Soc(G/®_(G)). Thus F.(G)>F(G). The second statement follows

from (4) of corollary 3.3. [

4. Applications of Shemetkov-Schmid subgroup and related subgroups. In [8] A. Vasil'ev
and etc. proved the following theorem.

Theorem 4.1. The intersection of all maximal subgroups M of a group G such that
MF (G) =G is the Frattini subgroup ®(G) of G.

Another direction of applications of generalizations of the Fitting subgroup is connected with
the following concept. Recall [16], that a subgroup functor is a function z which assigns
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to each group G a possibly empty set z(G) of subgroups of G satisfying f (z(G)) =7(f(G)) for
any isomorphism f :G -G,

Definition 4.2. Let & be a subgroup functor and R be a subgroup of a group G . We will call
asubgroup H of G the R-@-subgroup if H € 9((H,R)).

Let @ be the P-subnormal subgroup functor. Recall [18] that a subgroup H of a group G is
called P-subnormal in G if H =G or there is a chain of subgroup H=H,<H, <..<H_ =G

where |H, 1 H, | isaprime for i =1,...,n. O. Kramer's theorem [19, p.12] states

Theorem 4.3. If every maximal subgroup of a soluble group G is F(G)-P-subnormal then
G is supersoluble.

This theorem was generalized by Yangming Li, Xianhua Li in [9].

Theorem 4.4. A group G is supersoluble if and only if every maximal subgroup of G is
F(G) -P -subnormal.

It is well known that a group G is nilpotent if and only if every maximal subgroup of G is
normal in G.

Theorem 4.5. A group G is nilpotent if and only if every maximal subgroup of G is
F(G) -subnormal.

Let ¢ be the conjugate-permutable subgroup functor. Recall [20] that a subgroup H of a
group G is called conjugate-permutable if HH* =H*H forall xeG.

Corollary 4.4 [21]. A group G is nilpotent if and only if every maximal subgroup of G is
F (G) -conjugate-permutable.

Corollary 4.7 [8], [21]. If G is a non-nilpotent group then there is an abnormal maximal sub-
group M of G such that G=M F(G).

Theorem 4.8 The following statements for a group G are equivalent:

(1) G is nilpotent;

(2) Every abnormal subgroup of G is F’(G)-subnormal subgroup of G;

(3) All normalizers of Sylow subgroups of G are F"(G)-subnormal subgroups of G;

(4) All cyclic primary subgroups of G are F"(G)-subnormal subgroups of G;

(5) All Sylow subgroups of G are F(G)-subnormal subgroups of G.

Corollary 4.9. A group G is nilpotent if and only if the normalizers of all Sylow subgroups of
G contain F*(G).

Theorem 4.10 [22]. If a group G is a product of two F(G)-subnormal nilpotent subgroups A
and B then G is nilpotent.

Theorem 4.11. Let a group G=AB, where A and B are F(G)-subnormal supersoluble sub-
groups of G. If [A,B] is nilpotent, then G is supersoluble.

The well known result states that a group G is supersoluble if it contains two subnormal su-
persoluble subgroups with coprime indexes in G.

The following example shows this result will fail if we replace «normal» by
«F(G)-subnormal». Let G be the symmetric group on 3 letters. By theorem 10.3B [158, p. 173]
there is a faithful irreducible F;G-module V and the dimension of V is 2. Let R be the semidirect
product of V and G. Let A=VG; and B = VG, where Gy is a Sylow p-subgroup of G, pe{2, 3}.
Since 7 = 1 (mod p) for pe{2, 3}, it is easy to check that subgroups A and B are supersoluble.
Since V is faithful irreducible module, F(R) = V. Therefore A and B are the F(R)-subnormal sub-
groups of G. Note that R = AB but R is not supersoluble.

Theorem 4.12. Let A, B and C be a F(G)-subnormal supersoluble subgroups of a group G. If
indexes of A, B and C in G are pairwise coprime then G is supersoluble.

Corollary 4.13. Let A, B and C be a supersoluble subgroups of a group G. If indexes of A, B
and C in G are pairwise coprime and F(G) cAmBNC then G is supersoluble.
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