УДК 535.42

Процессы энергетического переноса при двухволновом взаимодействии на отражательных решетках в кристалле Bi₁₂SiO₂₀ произвольного среза

В. Н. НАВНЫКО, В. В. ШЕПЕЛЕВИЧ

Целью настоящей работы является установление закономерностей влияния оптической активности и пьезоэффекта на процессы энергетического переноса при встречном двухволновом взаимодействии на отражательной голографической решетке в кубических оптически активных фоторефрактивных пьезокристаллах точечной группы симметрии 23.

Выражения, характеризующие комплексные компоненты дифрагированной предметной волны для случая встречного двухволнового взаимодействия на отражательных голографических решетках, представлены в работах [1, 2]. На основании этих выражений рассчитывается поляризационно оптимизированное значение относительной интенсивности предметной волны γ^{opt} . Входные азимуты поляризации взаимодействующих волн выбираются в соответствии с поляризационным условием, приведенным в работе [3]. Учет пьезоэффекта производится на основании выражений, приведенных в работе [4].

Для характеристики зависимости $\gamma^{opt}(\vec{K})$ применяется указательная поверхность, допускающая наличие положительных и отрицательных значений модуля радиус-вектора, формирующего эту поверхность [5]. За нулевой уровень принимается интенсивность предметной волны на входе в кристалл ($\gamma^{opt} = 1$). Модуль радиус-вектора указательной поверхности для кристалла с фиксированными толщиной и срезом равняется разности между поляризационно оптимизированным значением интенсивности предметной волны на выходе из кристалла и интенсивностью предметной волны на входе в кристалл. Знак плюс перед модулем радиус-вектора соответствует случаю, когда разность является положительной, а знак минус соответствует случаю, когда разность является отрицательной. Часть указательной поверхности, которой соответствует положительное значение разности, окрашивается в светло-серые тона, а оставшаяся часть – в темно-серые тона.

На рис. 1а–1г представлены сечения указательной поверхности зависимости $\gamma^{\text{opt}}(\vec{K})$ плоскостью (1 T0), рассчитанные для кристалла $\text{Bi}_{12}\text{SiO}_{20}$ (BSO) с толщиной $d_1 = 4.028$ мм, вместе с двумерной разверткой этих сечений в декартовой системе координат (рис. 1д). Плоскость (1 T0) выбрана секущей на основании того, что в плоскостях вида {110} лежат экстремальные направления указательной поверхности. Толщина кристалла d_1 соответствует повороту плоскости поляризации в кристалле на угол в $\pi/2$ рад. Пьезоэффект характеризуется компонентой соответствующего тензора e_{14} , оптическая активность – удельным вращением плоскости поляризации ρ . Угол β , образованный вектором \vec{K} и кристаллографической осью [001], отсчитывается от этой оси против часовой стрелки, если смотреть вдоль направления (1 T0).

Из анализа рис. 1 видно, что *в отсутствие оптической активности и пьезоэффекта* наибольшие значения γ^{opt} достигаются вдоль направлений <001> (точки A₁ и A₂ на рис.1а, а также на кривой 1, рис. 1д). «Включение» пьезоэффекта *в отсутствие оптической активности* не влияет на наибольшее значение γ^{opt} (точки A₁ и A₂ на рис. 1б, а также на кривой 2, рис. 1д) и приводит только к количественной трансформации указательной поверхности (см. кривые 1 и 2 на рис. 1д). При «включении» оптической активности *в отсутствие пьезоэффекта* (кривая 3) наибольшее уменьшение γ^{opt} имеет место при ориентациях вектора \vec{K} вдоль направлений <001> (точки). В этом случае максимальные значения γ^{opt} достигаются в точках \mathcal{K}_1 и \mathcal{K}_2 , соответствующих значениям угла β , равным 147° и 213°. «Включение» пьезоэффекта *при наличии оптической активности* (реальный кристалл) (рис. 1г) переводит точки \mathcal{K}_1 и \mathcal{K}_2 , в которых достигались максимальные значения γ^{opt} в предыдущем случае, в

Рисунок 1 – Сечения указательной поверхности зависимости $\gamma^{opt}(\vec{K})$ плоскостью (110) для кристалла $Bi_{12}SiO_{20}$ с толщиной 4.028 мм.

рис. 1а и кривая 1 на рис. 1д – $e_{12}=0,\,\rho=0;$ рис. 1б и кривая 2 на рис. 1д – $e_{12}=1.12$ Кл/м², $\rho=0;$

рис. 1в и кривая 3 на рис. 1д – $e_{12} = 0$, $\rho = 390$ рад/м; рис. 1г и кривая 4 на рис. 1д – $e_{12} = 1.12$ Кл/м², $\rho = 390$ рад/м.

Рисунок 2 – Сечения указательной поверхности зависимости $\gamma^{opt}(\vec{K})$ плоскостью (110) для кристалла $Bi_{12}SiO_{20}$ с толщиной 8.055 мм.

рис. 2а и кривая 1 на рис. $2d - e_{12} = 0$, $\rho = 0$; рис. 2б и кривая 2 на рис. $2d - e_{12} = 1.12 \text{ Kл/m}^2$, $\rho = 0$; рис. 2в и кривая 3 на рис. $2d - e_{12} = 0$, $\rho = 390$ рад/м; рис. 2г и кривая 4 на рис. $2d - e_{12} = 1.12$ Кл/м², $\rho = 390$ рад/м. точки Б₁ и Б₂ на кривой 4, которые характеризуют новые положения максимумов сечения поверхности $\gamma^{opt}(\vec{K})$. Следует отметить, что в случаях, когда вектор \vec{K} ориентирован вдоль направлений <001>, пьезоэффект не проявляется, а если этот вектор ориентирован вдоль направлений <111>, то оптическая активность не влияет на значение γ^{opt} .

Рассмотрим указательную поверхность относительной интенсивности предметной волны для другой характерной толщины кристалла BSO $d_2 = 8.055$ мм. Для такой толщины угол поворота плоскости поляризации составляет π рад. На рис. 2a - 2r изображены сечения этой указательной поверхности зависимости $\gamma^{opt}(\vec{K})$ плоскостью (110) вместе с двумерной разверткой этих сечений в декартовой системе координат (рис. 2д). Из сравнения рис. 2 с рис. 1 видно, что фигуры, изображенные на рис. 1а и рис. 1б, изменяются только количественно, сохраняя качественные особенности своей формы. Этот факт подтверждается также сравнением кривых 1 и 2 на рис. 2 и рис. 1. Из рис. 2 также видно, что при «включении» оптической активности *с учетом или без учета пьезоэффекта* (рис. 2в и рис. 2г) изменяются положения максимумов указательной поверхности (точки B₁, B₂ и точки Γ_1 , Γ_2), причем экстремумы на обеих кривых 3 и 4 (рис. 2д) достигаются при одинаковых значениях угла β .

Таким образом, найдены направления вектора голографической решетки в кубическом фоторефрактивном кристалле, для которых достигается максимальные поляризационно оптимизированные значения относительной интенсивности предметной волны. Проведен анализ особенностей формы указательной поверхности $\gamma^{opt}(\vec{K})$ при «включении» различных физических свойств кристалла. Отмечено, что оптическая активность и пьезоэффект при ориентации вектора отражательной голографической решетки вдоль кристаллографических направлений <100> и <111> соответственно, не влияют на относительную интенсивность дифрагированной предметной волны. Показано, что при некоторых значениях толщины кристалла учет оптической активности приводит к изменению оптимальных направлений, вдоль которых достигается наибольшая относительная интенсивность предметной волны.

Abstract. The effect of the optical activity and piezoeffect on relative intensity of subject wave in process of the two-wave interaction recorded in photorefractive BSO crystal of arbitrary cut in reflection geometry is investigated.

Литература

1. В.В. Шепелевич, В.Н. Навныко, С.Ф. Ничипорко, С.М. Шандаров, А.Е. Мандель, *Дифракция световых волн на отражательных голограммах в кубических пьезокристаллах*, Письма в ЖТФ, **29**, № 18 (2003), 22–28.

2. В.Н. Навныко, В.В. Шепелевич, С.Ф. Ничипорко, С.М. Шандаров, А.Е. Мандель, Двухволновое взаимодействие света в отражательных голограммах, Мозырь, 2005, 71 с (препринт №3, УО МГПУ).

3. S. Mallick, M. Miteva, L. Nikolova, *Polarization properties of self-diffraction in sillenite crystals: reflection volume gratings*, J. Opt. Soc. Am. B., **14**, № 5 (1997), 1179–1186.

4. С.М. Шандаров, В.В. Шепелевич, Н.Д. Хатьков, Изменение тензора диэлектрической проницаемости в кубических фоторефрактивных кристаллах под действием электрического поля голографической решетки, Оптика и спектр, **67**, №4 (1989), 819–822.

5. А.Ф. Константинова, Б.Н. Гречушников, Б.В. Бокуть, Е.Г. Валяшко, Оптические свойства кристаллов, Минск, Наука и техника, 1995, 302 с.

Мозырский государственный педагогический университет имени И. П. Шамякина

Поступило 11.09.06