512.552

Колчаны треугольных черепичных порядков

В. Н. Дармосюк

Обозначим через $M_n(\mathbf{Z})$ кольцо всех квадратных $n \times n$ -матриц над кольцом целых чисел \mathbf{Z} . Пусть $\mathcal{E} = M_n(\mathbf{Z})$.

Определение 1. Матрица $\mathcal{E} = (\alpha_{ij})$ называется матрицей показателей, если $\alpha_{ij} + \alpha_{jk} \geqslant \alpha_{ik}$ для i,j,k=1,...,n и $\alpha_{ii} = 0$ для i=1,...,n. Матрица показателей \mathcal{E} называется приведенной, если $\alpha_{ij} + \alpha_{ji} > 0$ для i,j=1,...,n.

Пусть
$$T_{n,\alpha} = \begin{pmatrix} 0 & 0 & \dots & \dots & 0 \\ \alpha & 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 & 0 \\ \alpha & \dots & \dots & \alpha & 0 \end{pmatrix}$$
, где $\alpha \geqslant 1$, $T_{n,\alpha} \in M_n(\mathbb{Z})$. Очевидно, $T_{n,\alpha}$ яв-

ляется циклической горенштейновой матрицей с $\sigma=\sigma\left(T_{n,\alpha}\right)=(n\,n-1\,...2\,1)$. Запишем $J_n^+(0)=e_{12}+e_{23}+...+e_{n-1\,n}$. Легко видеть, что $[Q(T_{n,1})]=J_n^+(0)+e_{n1}$ и $[Q(T_{n,\alpha})]=E_n+J_n^+(0)+e_{n1}$, где E_n единичная матрица и $\alpha\geqslant 2$. Пусть $T_{n,1}=H_n$, тогда $Q(H_n)$ является простым циклом C_n , а колчан

Пусть $T_{n,1}=H_n$, тогда $Q(H_n)$ является простым циклом C_n , а колчан $Q(T_{n,\alpha})$ $(\alpha\geqslant 2)$ - простой цикл с петлей в каждой вершине LC_n .

Напомним, что черепичным порядком называется первичное двусторонне нетерово полусовершенное полудистрибутивное кольцо с ненулевым радикалом Джекобсона.

Мы будем использовать следующие обозначения: $A = \{\mathcal{O}, \mathcal{E}(A)\}$, где $\mathcal{E}(A) = (\alpha_{ij})$ матрица показателей черепичного порядка A. В этом случае $A = \sum\limits_{i,j=1}^n e_{ij}\pi^{\alpha_{ij}}\mathcal{O}$, где e_{ij} матричные единицы. Если черепичный порядок является приведенным, то $\alpha_{ij} + \alpha_{ji} > 0$ для i,j=1,...,n и $i\neq j$, то есть матрица $\mathcal{E}(A)$ является приведенной.

Определение 2. Две матрицы показателей $\mathcal{E} = (\alpha_{ij})$ и $\Theta = (\theta_{ij})$ называются эквивалентными, если одна может быть получена из другой преобразованиями следующих двух типов:

- 1. Вычитание целого числа из элементов i-ой строки с одновременным сложением κ элементам i-го столбца этого числа;
- 2. Одновременная перестановка двух строк и столбцов с теми же номерами.

Напомним, что правый (левый) A -модуль M(N) называется правой (левой) A - решеткой, если M(N) является конечнопорожденным свободным $\mathcal O$ - модулем.

Отметим, что все конечнопорожденные проективные A - модули являются A - решетками.

Пусть $M_n(\mathbb{D})$ является классическим кольцом частных черепичного порядка A. Обозначим через $S_r(A)$ ($S_l(A)$) структуру (по включению), образованную всеми A - решетками, лежащими в простом правом $M_n(\mathbb{D})$ - модуле U (соответственно в простом левом $M_n(\mathbb{D})$ - модуле V). Такие A -решетки называются неприводимыми A - решетками. Отметим, что каждый простой правый $M_n(\mathbb{D})$ - модуль изоморфен простому правому $M_n(\mathbb{D})$ - модулю U с D - базисом $e_1, ..., e_n$ таким, что $e_ie_{jk} = \delta_{ij}e_k$, где $e_{jk} \in M_n(D)$ - матричные единицы. Каждый простой левый $M_n(\mathbb{D})$ - модуль изоморфен левому простому модулю V с D - базисом $e_1, ..., e_n$ таким, что $e_{ij}e_k = \delta_{jk}e_i$.

Пусть $A=\{\mathcal{O},\mathcal{E}(A)\}$ -череничный порядок и U(V) простой правый (левый) $M_n(\mathsf{D})$ - модуль.

Тогда любая правая (соответственно левая) A - решетка M(N), лежащая в U(V), является A - модулем с \mathcal{O} - базисом $(\pi^{\alpha_n}e_1,...,\pi^{\alpha_n}e_n)$, где

- (ullet) $lpha_i + lpha_{ij} \geq lpha_j$ для правого случая
- (••) $\alpha_{ij} + \alpha_j \geq \alpha_i$ для левого случая.

Таким образом, правые неприводимые A - решетки могут быть отожествлены с целочисленными векторами $(\alpha_1,...,\alpha_n)$, удовлетворяющими условиям (\bullet) . Обозначим через $(\alpha_1,...,\alpha_n)^T$ векторстолбец с координатами $\alpha_1,...,\alpha_n$. Очевидно, всякая левая неприводимая A - решетка может быть отожествлена с $(\alpha_1,...,\alpha_n)^T$ целочисленным векторстолбцом, удовлетворяющим условиям $(\bullet \bullet)$.

Очевидно, две неприводимые A - решетки $M_1=(\alpha_1,...,\alpha_n)$ и $M_2=(\beta_1,...,\beta_n)$ изоморфны тогда и только тогда, когда $\alpha_i=\beta_i+z$ для i=1,...,n и фиксированного $z\in {\bf Z}.$

Отметим, что структуры $S_r(A)$ и $S_l(A)$ не зависят от выбора простых $M_n({\bf D})$ - модулей U та V.

В дальнейшем мы будем рассматривать правые неприводимые A - решетки. Для них справедливы следующие отношения порядка, суммы и пересечения. Пусть $M_1 = (\alpha_1,...,\alpha_n)$ и $M_2 = (\beta_1,...,\beta_n)$. Тогда $M_1 \supseteq M_2$ тогда и только тогда, когда $\alpha_i \le \beta_i$ для всех i=1,...,n. Обозначим $M_1+M_2=(\delta_1,...,\delta_n)$. Очевидно, $\delta_1=\min(\alpha_1,\beta_1),\,\delta_2=\min(\alpha_2,\beta_2),...,\delta_n=\min(\alpha_n,\beta_n)$. Если $M_1 \cap M_2 = (\theta_1,...,\theta_n)$, то $\theta_i=\max(\alpha_i,\beta_j)$ для i=1,...,n.

Определение 3. Черепичный порядок A будем называть горенштейновым черепичным порядком, если A является бисктивной A - решеткой, то есть $A^* = Hom_{\mathcal{O}}(A,\mathcal{O})$ является проективной девой A - решеткой.

Определение 4. Черепичный порядок $A = \{\mathcal{O}, \mathcal{E}(A)\}$ называется треугольным, єсли матрица показателей $\mathcal{E}(A) = (\alpha_{ij})$ является треугольной, то есть $\alpha_{ij} = 0$ для $1 \leq j$.

В [2] доказана следующая теорема:

Теорема 5. (/2/, p.4239)

Приведенный черепичный порядок $A = \{\mathcal{O}, \mathcal{E}(A)\}$ является горенштейновым треугольным черепичным порядком тогда и только тогда, когда Q(A) является простым циклом C_n или колчаном LC_n . В таком случае A является изоморфным порядку $T_{k,s}$.

Рассмотрим два треугольных черепичных порядка, которые широко известны [4], [5], [6]).

Обозначим через $\Omega_n(\mathcal{O})$ черешичный треугольный порядок с матрицей показателей

$$\Omega_n = \left(egin{array}{cccccc} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 2 & 1 & 0 & \dots & 0 & 0 \\ & 1 & 0 & \dots & 0 & 0 \\ & 1 & 0 & \dots & 0 & 0 \\ & 1 & 0 & \dots & 0 & 0 \\ & 1 & 0 & \dots & 1 & 0 \\ & 1 & 0 & \dots & 1 & 0 \\ & 1 & 0 & \dots & 1 & n \end{array}\right).$$
 Хорошо известно, что колчан $\Omega_n(\mathcal{O})$ имеет вид

Покажем, что любой приведенный черепичный порядок с таким колчаном изоморфен треугольному.

Введем следующие обозначения: $\mathcal{E}(A) = (\alpha_{ij})$ матрица показателей черепичного

порядка $A, P_i = (\alpha_{ij}, ..., 0, ..., \alpha_{in}), P_i R = (\alpha_{i1}, ..., 1, ..., \alpha_{in})$ для i = 1, ..., n. Предположим, что A приведенный порядок и $Q(A) = \{$ Покажем, что А изоморфен приведенному треугольному дорядку. Любой черепичный порядок изоморфен черешичному порядку с нулевой первой строкой, то есть $P_1 =$ $= (0\ 0\ ...\ 0)$ и $P_1R = (1\ 0\ ...\ 0)$. По определению колчана Q(A) имеем: $P_1R = \varphi(P_2)$. Очевидно, отображение φ является мономорфизмом и $\varphi(P_2) = (\alpha_{21} + y, y, \alpha_{23} + y, ..., \alpha_{2n} +$ (x,y)=(1,0,0,...,0), то есть y=0, $\alpha_{21}=1$ и $\alpha_{23}=\alpha_{24}=...=\alpha_{2n}=1,$ то есть $\alpha_{21}=(1,0,0,...,0)$. Далее $\alpha_{21}=(1,0,0,...,0)=(1,0,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,...,0)=(1,0,0,..$ $+y, \alpha_{32}+y, y, ..., \alpha_{3n}+y$). Обозначим через $(\alpha, \beta) = min(\alpha, \beta)$. Имеем $R_2R = (1\ 1\ 0\ ...\ 0\ 0)$. Поэтому (z,y)=0, откуда $z\geq 0$ и $y\geq 0$. Если z=0, то $(0\ 0\ 0\ \dots\ 0\ 0)=(1\ 1\ 0\ \dots\ 0\ 0).$ Получили противоречие. Поэтому $y=0,\ z\geq 1$ и $(z,\alpha_{3k})=0$ при $k\geq 4$. Продолжая этот процесс получим, что порядок A является треугольным. Отметим также, что следующее бесконечное множество приведенных треугольных матриц показателей $\mathcal{E}_{lpha}=$

$$=egin{pmatrix} 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ lpha+1 & lpha & 0 & 0 & 0 \ lpha+2 & lpha+2 & 1 & 0 & 0 \end{pmatrix}$$
 имеет колчан $Q(\mathcal{E}_lpha)=egin{pmatrix} 1 & 2 & 3 & 4 \ 2 & 3 & 4 & 3 \end{pmatrix}.$

Рассмотрим приведенный треугольный черепичный порядок $\Lambda_n(\mathcal{O})$ с матрицей показателей

$$\mathbf{R} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 2 & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 2 & 2 & 2 & \dots & 0 & 0 \\ 2 & 2 & 2 & \dots & 1 & 0 \end{pmatrix}.$$

Легко видеть, что колчан $Q(\Lambda_n(\mathcal{O}))$ имеет следующий вид:

Как и выше, легко показывается, что всякий приведенный черепичный порядок A с колчаном Q_n изоморфен приведенному треугольному порядку. Для этого снова первую строку делаем нулєвой и проводим вычисления, учитывая вид колчана Q_n . В заключение приведем бесконечное множество приведенных треугольных матриц пока-

зателей
$$\Lambda_4(\alpha)$$
 с колчаном Q_4 : $\Lambda_4(\alpha)=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \alpha+1 & \alpha & 0 & 0 \\ \alpha+1 & \alpha+1 & 1 & 0 \end{pmatrix}$. Отметим, что $\Lambda_4(1)=$ = Λ_4 .

приведенная матрица показателей, что $\left[Q\left(\mathcal{E}
ight)
ight]$

$$=\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}.$$
 Так как $Q(\mathcal{E})$ не меняется при преобразованиях первого

типа, мы можем считать, что первая строка нулевая. Обозначим $P_1=(0\,0\,0\dots0)$. Тогда $P_1R=(1\,0\,0\dots0\,0)$ и $P(P_1R)\cong P_2$, то есть $P_1R=(\alpha_{21}+z\,,z\,,\alpha_{23}+z\,,\dots,\alpha_{2n}+z)$.

Поэтому получаем: $P_1R=(100...00)=(\alpha_{21}+z,\,z\,,\alpha_{23}+z,\,...,\,\alpha_{2n}+z)$. Следовательно, z=0 и $(\alpha_{21}\,0\,\alpha_{23}\,..\,\alpha_{2n})=(1\,0\,0\,...\,00)$, то есть $P_2=(1\,0\,0\,...\,0\,0)$. Так как $P_2R=(1\,1\,0\,0\,...\,0\,0)=(\alpha_{31}+z,\,\alpha_{32}+z,\,z,\,\alpha_{34}+z,\,...,\,\alpha_{3n}+z)$, то z=0 и $P_3=(1\,1\,0\,0\,...\,0\,0)$. Продолжая этот процесс, мы получим, что $P_n=(1\,1\,...\,1\,0)$ и $P_nR=(1\,1\,1\,...\,1)\cong P_1$. Таким образом, колчан C_n является жестким и единственная, с точностью до эквивалентности, матрица показателей, колчаном которой он является, это матрица H_n .

Предположим тенерь, что допустимый колчан Q состоит из одного простого цикла C_n такого, что хотя бы в одной вершине нет петли. Без ограничения общности, мы можем считать, что это первая вершина и первая строка нулевая. Как и выше, $P_1R=P_2$, то есть $P_2=(1\,0\,0\dots0\,0)$. Поэтому во второй вершине тоже нет петли и $P_2R=P_3$, то есть $P_3=(1\,1\,0\dots0\,0)$. В вершине 3 тоже нет петли. Поэтому $P_3R=P_4=(1\,1\,1\,0\dots0\,0)$ и в вершине 4 тоже нет петли. Продолжая этот процесс, получим, что $P_n=P_{n-1}R=(1\,1\dots1\,1\,0)$ и $P_nR\cong P_1$, то есть наша матрица показателей совпадает с матрицей H_n .

Следствие 6. Если допустимый колчан, состоящий только из простого цикла C_n и петель в некоторых вершинах, не имеет петли, хотя б в одной вершине, то он не имеет петель во всех вершинах и совпадает с простым циклом C_n .

Рассмотрим теперь приведенные матрицы показателей с колчаном LC_n . Пусть \mathcal{E} такая матрица, то есть $Q(\mathcal{E})=LC_n$. Без ограничения общности можно считать, что первая строка матрицы \mathcal{E} нулевая. Имеем $(1\,0\,0...\,0\,0)=(z\,z\,...\,z\,z)+(\alpha_{21}+y,\,y,\,\alpha_{23}+y,\,...\,,\alpha_{2n}+y)$, откуда (z,y)=0. Поэтому y=0 и $(1\,0\,...\,0)=(z\,z\,...\,z)+(\alpha_{21}\,0\,0\,...\,0)$. Так как в вершине 2 есть петля, то $\alpha_{21}\geqslant 2$. Следовательно, $P_1=(0\,0\,0\,...\,0),\,P_2=(\alpha\,0\,0\,...\,0\,0),\,\alpha\geqslant 2$. Очевидно, $P_2R=(\alpha\,1\,0\,...\,0\,0)=(z+\alpha\,z\,z\,...\,z)+(\alpha_{31}\,\alpha_{32}\,0\,...\,\alpha_{3n})$. Отсюда следует, что $P_3=(\alpha_{31}\,\alpha_{32}\,0\,...\,0)$, то есть мы

нмеем такую подматрицу: $\begin{pmatrix} 0 & 0 & 0 \\ \alpha & 0 & 0 \\ \alpha_{31} & \alpha_{32} & 0 \end{pmatrix}$, где $\alpha_{31} \geq \alpha$ и $\alpha_{31} \geqslant \alpha_{32} \geqslant 2$. Пока-

жем, что матрица \mathcal{E} имеет треугольный вид. Действительно, $P_3R=(\alpha_{31}\,\alpha_{32}\,1\,0\,...0)=$ = $(\alpha_{31}+z\,\alpha_{32}+z\,z\,z\,...z)+(\alpha_{41}\,\alpha_{42}\,\alpha_{43}\,0\,\alpha_{45}\,...\alpha_{4n})$, откуда $P_4=(\alpha_{41}\,\alpha_{42}\,\alpha_{43}\,0\,...0)$. Снова, $\alpha_{41},\alpha_{42},\alpha_{43}$ не меньше двух. $P_4R=(\alpha_{41}\,\alpha_{42}\,\alpha_{43}\,1\,0\,...\,0)=(\alpha_{41}+z,\alpha_{42}+z,\alpha_{43}+z,z,...,z)+(\alpha_{51}\,\alpha_{52}\,\alpha_{53}\,\alpha_{54}\,0\,\alpha_{56}\,...\,\alpha_{5n})$, откуда $\alpha_{56}=...=\alpha_{5n}=0$ и $\alpha_{5j}\geq 2$ при $1\leq j\leq 5$. Рассмотрим P_kR , где $k\leq n-1$. По предположению индукции мы можем считать, что

$$P_1 = (0 \ 0 \ 0 \dots 0 \ 0)$$

 $P_2 = (\alpha \ 0 \ 0 \dots 0 \ 0)$
 $P_3 = (\alpha_{31} \ \alpha_{32} \ 0 \dots 0 \ 0)$

$$\begin{array}{l} P_k = (\alpha_{k1} \ \alpha_{k2} \ \dots \ \alpha_{kk-1} \ 0 \ \dots \ 0) \\ P_k R \ = \ (\alpha_{k1} \ \alpha_{k2} \ \dots \ \alpha_{kk-1} \ 1 \ 0 \ 0) \ = \ (\alpha_{k1} + z \ \alpha_{k2} + z \ \dots \ \alpha_{kk-1} + z \ z \ \dots \ z) \ + \end{array}$$

 $+ (\alpha_{k+11} \dots \alpha_{k+1k} \ 0 \ \alpha_{k+1k+2} \dots \alpha_{k+1n}), \text{ To ects } \alpha_{k+1k-2} = \dots = \alpha_{k+1n} = 0.$

Отсюда следует, что матрица $\mathcal E$ треугольная и ее колчан является LC_n . Рассмотрим $P_nR=(\alpha_{n1}...\alpha_{nn-1}\,1)=(z\,...z)+(\alpha_{n1}+y,...,\alpha_{nn-1}+y,1+y)$. Отсюда следует, что (z,1+y)=1. Если z=1, то в вершине n нет петли, что является противоречием. Поэтому 1+y=1 и y=0. Можно считать, что $\alpha_{n1}\geqslant\alpha_{n2}\geqslant...\geqslant\alpha_{nn-1}\geqslant2$. Вообще можно считать, что все ненулевые $\alpha_{ij}\geqslant2$.

Дальше из вида колчана легко следует, что $\mathcal{E}=T_{n,\alpha}$ при $\alpha\geqslant 2$. Обратно, $Q\left(T_{n,\alpha}\right)=LC_{n}.$

Теорема 7. Приведенный черепичный порядок $A = \{\mathcal{O}, \mathcal{E}(A)\}$ является горенштейновым треугольным порядком тогда и только тогда, когда $B = A/\pi A$ является полуцепным кольцом.

Доказательство в одну сторону следует из теоремы 5 и теоремы 12.3.11 [3], то есть в случае, когда A является приведенным черепичным порядком с колчаном C_n или LC_n , то Q(B) является простым циклом. Наоборот, предположим, что A приведенный черепичный порядок такой, что $B = A/\pi A$ является полуценным кольцом. По предложению 7.6 ([1], 170) факторкольцо B является нетеровым слабопервичным кольцом. Поэтому по теореме 7.5 ([1], 170) колчан кольца B является простым циклом C_n . По предложению 7.7 ([1], 170) и сказанному выше, получаем, что колчан Q(A) черепичного порядка A является либо C_n , либо LC_n , откуда $\mathcal{E}(A) = T_{n,\alpha}$ или $\mathcal{E}(A) = H_n$.

Abstract. The quivers of triangular tiled orders are considered in the paper. Let A be a reduced tile with the quiver Q(A). If Q(A) is either a simple cycle or a simple cycle with a loop in each vertex, then A is isomorphic to Gorenstein triangular order. In this case $A/\pi A$ is serial. Conversely, if $A/\pi A$ is serial, the A is isomorphic to the triangular reduced tiled order.

Литература

- 1. Кириченко В.В., Журавлев В.Н., Хибина М.А. Черепичные порядки и их свойства // Известия Гомельского университета имени Ф. Скорины. 2006. №3(36). С. 155–172.
- 2. Roggenkamp K. W., Kirichenko V. V., Khibina M. A., and Zhuravlev V. N. Gorenstein tiled orders // Comm. in Algebra. 2001. Vol. 29, No. 9. P. 4231–4247.
- 3. Hazewihkel M., Gubareni N. and Kirichenko V. V. Algebras, Rings and Modules. Vol. 1, Series: Mathematics and Its Applications. 2004. Vol. 575, Kluwer Acad. Publish.
- 4. Jategaonkar V. A. Global dimension of triangular orders over a discrete valuation ring, // Proc. Amer. Math. Soc. 1973. Vol. 38. P. 8–14.
- 5. Jategaonkar V. A. Global dimension of tiled orders over a discrete valuation ring // Trans. Amer. Math. Soc. 1974. Vol. 196. P. 313–330.
- 6. Tarsy R. B. Global dimension of orders // Trans. Amer. Math. Soc. 1970. Vol. 151. P. 335–340.

Киевский национальный университет им. Тараса Шевченко Поступило 12.10.06 E-Mail: valendar@mail.ru