УДК 512.542

Критерий принадлежности конечных групп насыщенной формации О. В. Нетвай, А. Н. Скива

Все рассматриваемые нами группы конечны. Напомним, что подгруппа A группы G называется перестановочной с подгруппой B, если AB = BA. Если A перестановочна со всеми подгруппами из G, то A называется nepecmanosouhoù [1] или keasuhopmanohoù [2] подгруппой в G.

Часто встречается такая ситуация, когда подгруппы A и B группы G не являются перестановочными, но в G имеется такой элемент x, для которого имеет место $AB^x = B^xA$. При анализе ситуаций подобного рода удобно пользоваться следующими определениями работы [3].

Определение 1. Пусть A, B — подгруппы группы G и X — непустая подгруппа из G. Тогда будем говорить, что:

- (1) A-X-перестановочна с B, если $AB^x=B^xA$ для некоторого $x\in X.$
- (2) A- наследственно X-перестановочна с B, если $AB^x=B^xA$, для некоторого $x\in X\cap < A,B>$.

Определение 2. Подгруппа A группы G называется наследственно X-перестановочна в G, если A (наследственно) X-перестановочна со всеми подгруппами из G.

Значение понятия (наследственной) X перестановочности связано прежде всего с тем, что многие важные классы конечных групп допускают точное описание в терминах X-перестановочных подгрупп (см. обзор [4]). Целью данной работы является доказательство следующей теоремы в данном направлении.

Теорема. Пусть \mathfrak{F} — насыщенная формация, содержащая все сверхразрешимые группы, G — группа с нормальной подгруппой E нечетного порядка такой, что $G/E \in \mathfrak{F}$. Предположим, что каждая нециклическая силовская подгруппа P группы E содержит такую подгруппу D, что 1 < |D| < |P| и все подгруппы P порядка, равного порядку подгруппы P, наследственно G-перестановочны в G. Тогда $G \in \mathfrak{F}$.

Для доказательства основной теоремы нам понадобятся некоторые предварительные результаты.

Лемма 1 [3, лемма 2.1]. Пусть A, B, X — подгруппы группы G и $K \subseteq G$. Тогда (1) Если A X-перестановочна c B, тогда B X-перестановочна c A.

- (2) Если A X-перестановочна c B, тогда A^y X^y -перестановочна c B^y для всех $y \in G$.
- (3) Если A (наследственно) X-перестановочна c B, тогда AK/K (наследственно) XK/K-перестановочна c BK/K в G/K.
- (4) Пусть $K \leq A$. Тогда A/K (наследственно) XK/K-перестановочна с BK/K в G/K тогда и только тогда, когда A (наследственно) X-перестановочна с B в G.
- (5) Если $A, B \leq M \leq G$ и A наследственно X-перестановочна c B, то A наследственно $(X \cap M)$ -перестановочна c B.
- (6) Если F перестановочная подгруппа группы G и A (наследственно) X-перестановочна c B, то AF (наследственно) X-перестановочна c B.
- Лемма 2 [5, теорема 24.2]. Пусть $\mathfrak F$ является локальной формацией, G группа с разрешимым $\mathfrak F$ -корадикалом. Если $G^{\mathfrak F} \neq 1$ и каждая $\mathfrak F$ -абнормальная подгруппа из G принадлежит $\mathfrak F$, тогда:

- (1) $G^{\mathfrak{F}}$ является p-группой для некоторого простого p;
- (2) $G^{\mathfrak{F}}/\Phi(G^{\mathfrak{F}})$ является \mathfrak{F} -эксцентральным главным фактором в G;
- (3) если p > 2, то $G^{\mathfrak{F}}$ является группой экспоненты p; если p = 2, то экспонента $G^{\mathfrak{F}}$ не превышает 4;
- (4) если $G^{\mathfrak{F}}$ неабелева, то ее центр, коммутант и подгруппа Фраттини совпадают.

Доказательство. По лемме 2, $P = G^{\mathcal{F}}$ является p-группой для некоторого простого p. Допустим, что каждая циклическая подгруппа группы P простого порядка или порядка 4 (если p=2 и P — неабелева), не имеющая сверхразрешимого добавления в группе G, является G-перестановочной в G. Пусть $\Phi = \Phi(P)$ Y/Φ — подгруппа простого порядка в P/Φ . Пусть $y \in Y \setminus \Phi$ и $L = \langle y \rangle$. Тогда |L| = p или |L| = 4 (если p = 2 и P— неабелева группа) и поэтому, по условию леммы, подгруппа L либо имеет сверхразрешимое добавление T в G, либо является G-перестановочной в группе G. В первом случае мы можем считать, что $T \neq G$ и поэтому $T\Phi \neq G$, так как $\Phi \leq \Phi(G)$. С другой стороны, LT=G, и поэтому $(T\Phi/\Phi)(L\Phi/\Phi)=(T\Phi/\Phi)(Y/\Phi)=G/\Phi$. Таким образом, $|G/\Phi|$: $T\Phi/\Phi| = \frac{|Y/\Phi||T\Phi/\Phi|}{|(Y/\Phi)\cap (T\Phi/\Phi)||T\Phi/\Phi|} = \frac{|Y/\Phi|}{|(Y/\Phi)\cap (T\Phi/\Phi)|} = \frac{p}{|(Y/\Phi)\cap (T\Phi/\Phi)|}.$ Если $|(Y/\Phi)\cap (T\Phi/\Phi)| = p$, то $G/\Phi = T\Phi/\Phi$, что невозможно. Следовательно, $|G/\Phi: T\Phi/\Phi| = p$. Так как P/Φ — главный фактор группы G, то P/Φ является минимальной нормальной подгруппой в G/Φ . Поскольку $G/\Phi = (P/\Phi)(T\Phi/\Phi)$, то $|G/\Phi| = \frac{|P/\Phi||T\Phi/\Phi|}{|(P/\Phi)\cap(T\Phi/\Phi)||T\Phi/\Phi|} = \frac{|P/\Phi|}{|(P/\Phi)\cap(T\Phi/\Phi)|}$. Покажем, что $(P/\Phi)\cap (T\Phi/\Phi)=\Phi/\Phi$. Допустим обратное, т.е. $(P/\Phi)\cap (T\Phi/\Phi)\neq \Phi/\Phi$. Ясно, что $(P/\Phi)\cap (T\Phi/\Phi)$ — нормальная подгруппа в $T\Phi/\Phi$. А так как P/Φ является абелевой группой, то $(P/\Phi) \cap (T\Phi/\Phi)$ является нормальной подгруппой в G/Φ . Значит, либо $(P/\Phi) \cap (T\Phi/\Phi) = P/\Phi$, либо $(P/\Phi) \cap (T\Phi/\Phi) = \Phi/\Phi$. В первом случае имеем $(P/\Phi) \leq (T\Phi/\Phi)$, а значит $G/\Phi = T\Phi/\Phi$, что невозможно. Следовательно. $(P/\Phi) \cap (T\Phi/\Phi) = \Phi/\Phi$, и поэтому $|P/\Phi| = p$.

Допустим теперь, что L является G-перестановочной подгруппой в группе G. Тогда $L\Phi/\Phi=Y/\Phi$ является G/Φ -перестановочной подгруппой в G/Φ , по лемме 1(3). Так как P/Φ является G-главным фактором, то в группе G/Φ существует подгруппа M/Φ такая, что P/Φ не содержится в M/Φ . Следовательно, $G/\Phi=(P/\Phi)(M/\Phi)$, и поэтому $|G/\Phi:M/\Phi|=\frac{|P/\Phi|M/\Phi|}{|(P/\Phi)\cap(M/\Phi)|M/\Phi|}=\frac{|P/\Phi|}{|(P/\Phi)\cap(M/\Phi)|}$. Если $|(P/\Phi)\cap(M/\Phi)|\neq 1$, то $(P/\Phi)\cap(M/\Phi)$ является нормальной подгруппой в G/Φ . Поэтому $(P/\Phi)\cap(M/\Phi)=\Phi/\Phi$. Следовательно, $|G/\Phi:M/\Phi|=|P/\Phi|$. Так как $Y/\Phi\leq P/\Phi$ и Y/Φ является G/Φ -перестановочной в G/Φ , то найдется такой элемент $x\Phi\in G/\Phi$, что $(Y/\Phi)(M/\Phi)^{x\Phi}=(M/\Phi)^{x\Phi}(Y/\Phi)$. Покажем, что Y/Φ не содержится в $(M/\Phi)^{x\Phi}$. Так как $(M/\Phi)^{x\Phi}=M^x/\Phi$. то $(P/\Phi)\cap(M^x/\Phi)=\Phi/\Phi$, как показано выше. Это влечет, что Y/Φ не содержится в $(M/\Phi)^{x\Phi}$. Следовательно, $(Y/\Phi)(M/\Phi)=G/\Phi$, и поэтому $|G/\Phi:M/\Phi|=\frac{|Y/\Phi|}{|(Y/\Phi)\cap(M/\Phi)|}=p$. Отсюда следует, что $|P/\Phi|=p$. Лемма доказана.

Лемма 4. Пусть \mathfrak{F} — насыщенная формация, содержащая все сверхразрешимые группы и G — группа с нормальной подгруппой E такой, что $G/E \in \mathfrak{F}$. Если E — циклическая подгруппа, то $G \in \mathfrak{F}$.

Доказательство. Для доказательства леммы достаточно рассмотреть случай, когда E — минимальная нормальная подгруппа в G. Ясно, что $E \not\subseteq \Phi(G)$. Пусть M — такая максимальная подгруппа группы G, что G = [E]M и $C = C_G(E)$. Тогда $M_G = C \cap M$, и поэтому $G/M_G = [EM_G/M_G](M/M_G)$ сверхразрешима, поскольку $M/M_G \simeq G/C$ — абелева группа. Следовательно, $G \simeq G/E \cap M_G \in \mathfrak{F}$.

Лемма 5 [6, лемма 2.2]. Пусть G — группа, p,q — различные простые делители порядка |G|, P — нециклическая силовская p-подгруппа группы G и Q — силовская q-подгруппа группы G. Если все максимальные подгруппы группы P (кроме, быть может, одной) имеют q-замкнутое добавление в G, то Q нормальна в G.

Лемма 6 [7, теорема 1.6]. Пусть p — нечетное простое число u F — поле характеристики p. Пусть G — вполне приводимая разрешимая линейная группа степени n над F. Допустим, что силовская p-подгруппа из G имеет порядок $p^{\lambda(n)}$. Тогда $\lambda(n) \leq n-1$, причем равенство имеет место лишь в случаях n=1 или n=2 u p=3. Доказательство теоремы.

(1) Условие теоремы выполняется в любой холловой подгруппе X группы E (относительно X) и для каждой факторгруппы G/X (относительно E/X), где X — нормальная холлова подгруппа группы E.

Пусть X — холлова подгруппа E, P — нециклическая силовская подгруппа X. По условию, P имеет подгруппу D такую, что 1 < |D| < |P|, и каждая подгруппа H группы P с порядком |H| = |D| наследственно G-перестановочна в G. Поэтому H является наследственно X-перестановочной в X, по лемме 1(5). Поэтому гипотеза выполняется для (X,X). Теперь пусть X нормальна в G. Тогда $(G/X)/(E/X) \simeq G/E \in \mathfrak{F}$. Пусть P^*/X является нециклической силовской p-подгруппой в G/X, где $p \mid |G/X|$, P — силовская p-погруппа из P^* такая, что $P^* = PX$. Тогда P является нециклической силовской погруппой в E, и поэтому, по условию теоремы, P имеет подгруппу D такую, что 1 < |D| < |P| и каждая подгруппа V в P с порядком |V| = |D| наследственно G-перестановочна в G. Пусть H^*/X — подгруппа в P^*/X с порядком $|H^*/X| = |D|$. Тогда $H^* = [X]H$, где H является силовской p-подгруппой в H^* . Ясно, что |H| = |D| наследственно G/X-перестановочна в G/X, по лемме 1(3). Таким образом, гипотеза выполняется для G/X (относительно E/X).

(2) Eсли X — неединичная нормальная холлова подгруппа группы E, то X = E. Так как X — характеристическая подгруппа группы E, то она нормальна в G, и поэтому ввиду (1), условие теоремы справедливо для G/X (относительно E/X). Значит, по выбору группы G и ее подгруппы E имеет место $G/X \in \mathfrak{F}$. Следовательно, условие теоремы справедливо для G (относительно X), и поэтому X = E, по выбору пары (G, E).

(3) Для наименьшего простого делителя р порядка группы E силовская р-подгруппа P группы E не является инклической.

Действительно, если P — циклическая группа, то ввиду [8, глава IV, теорема 2.8], E — p-нильпотентная группа. Тогда из (2) следует, что E = P. Так как G/E \in \mathfrak{F} , то ввиду леммы 4, имеем G \in \mathfrak{F} , что противоречит выбору группы G.

Зафиксируем теперь некоторую силовскую p-подгруппу P группы E, где p — наименьший простой делитель |E|. Тогда ввиду (3), P — нециклическая группа и поэтому, по условию теоремы, P содержит такую подгруппу D, что 1 < |D| < |P| и каждая подгруппа H группы P порядка, равного порядку подгруппы D, наследственно G-перестановочна в G.

(4) $Ecnu\ E = G\ unu\ E = P,\ mo\ |D| > p.$

Если E=G, то ввиду (2) группа G не p-нильпотентна и поэтому, согласно [8, глава IV, теорема 5.4], G содержит p-замкнутую подгруппу Шмидта $H=[H_p]H_q$. Значит,

если |D|=p, то, согласно лемме 3, имеет место $|H_p/\Phi(H_p)|=p$, что невозможно, поскольку p — наименьший простой делитель порядка группы G. Пусть теперь E=P. $L=G^{\mathfrak{F}}$ и $\Phi=\Phi(L)$. Предположим, что |D|=p. Понятно, что $L\leq E$, и поэтому условие теоремы верно для G относительно L, что в силу выбора пары (G,E) влечет L=E. Пусть M — максимальная подгруппа группы G, не содержащая E. Тогда $G/E\simeq M/M\cap E\in \mathfrak{F}$, и поэтому, ввиду леммы 3, имеет место $|L/\Phi|=p$. Значит, по лемме 4, $G/\Phi\in \mathfrak{F}$. Но тогда $L\leq \Phi$, и поэтому $L=\Phi$, противоречие. Следовательно. |D|>p.

(5) Для каждой абелевой минимальной нормальной подгруппы N группы G, со-

держащейся в $P \setminus \Phi(G)$, имеет место $|N| \leq |D|$.

Предположим, что |D| < |N|. Согласно условию, каждая подгруппа H группы N порядка, равного порядку подгруппы D, наследственно G-перестановочна в G. Так как $N \not\subseteq \Phi(G)$, то существует максимальная подгруппа M такая, что G = [N]M. Тогда MH — подгруппа группы MN = G. Если MH = M, то H является подгруппой в M. что невозможно. Тогда MH = G. В этом случае, $N = N \cap MH = H(N \cap M) = H$, что противоречит выбору группы H. Следовательно, имеет место $|N| \leq |D|$.

(6) Если E = G или E = P и N — минимальная нормальная подеруппа группы G, которая содержится в E, то условие теоремы справедливо для G/N (относительно

E/N).

Утверждение очевидно в каждом из случаев, когда либо |N| < |D|, либо |P| : D| = p. Пусть |P| : D| > p и |N| = |D|. Тогда каждая подгруппа H группы P порядка, равного порядку подгруппы D, наследственно G-перестановочна в G. Заметим также, что, согласно (4), имеет место |D| > p, и поэтому подгруппа N а, значит, и каждая подгруппа группы G, содержащая N, нециклична. Пусть $N \le K \le P$, где |K| : N| = p. Поскольку K — нециклическая группа, то она имеет максимальную подгруппу $L \ne N$. Так как |N| = |D| = |L|, то подгруппа L наследственно G-перестановочна в G. Поэтому K = LN наследственно G-перестановочна в G. Таким образом, условие теоремы справедливо для G/N, по лемме I(4) и (4).

 $(7) \ E - q$ -замкнутая группа, г $de \ q - наибольший простой делитель <math>|E|$.

Согласно (1) и в силу выбора группы G нам лишь необходимо рассмотреть случай E=G. Кроме того поскольку подгруппа E разрешима и по (1) условие теоремы справедливо для каждой холловой подгруппы X группы G (относительно X). То мы можем предполагать, что $|G|=p^aq^b$ для некоторых $a,b\in\mathbb{N}$. Допустим, что группа G не является q-замкнутой. Ввиду (6) и выбора группы G для каждой минимальной нормальной подгруппы N из G, содержащейся в P, факторгруппа G/N сверхразрешима. Следовательно, $N\not\subseteq\Phi(G)$ и N— единственная минимальная нормальная подгруппа из G, содержащаяся в P. Покажем, что $N=O_p(G)$. Действительно, пусть M— такая максимальная подгруппа группы G, что G=[N]M. Тогда $O_p(G)=O_p(G)\cap NM=N(O_p(G)\cap M)$. Поскольку $O_p(G)\leq F(G)\leq C_G(N)$, то $O_p(G)\cap M$ нормальна в G и поэтому $O_p(G)\cap M=1$. Значит, $N=O_p(G)$.

Пусть V — такая подгруппа из P с порядком |V| = |D|, что P = VN и M = VQ, где Q — силовская q-подгруппа группы G. По условию, V наследственно G-перестановочна в G. Так как G = PQ и P = VN, то G = NVQ = NM и $M \cap N = 1$. В противном случае, $N \cap M$ является нормальной подгруппой в G, что противоречит минимальности подгруппы N. Значит, G = [H]M и M является максимальной подгруппой в G. Пусть G — минимальная нормальная подгруппа из G , которая содержится в G0 и G1 — максимальная подгруппа в G2. Тогда G3 — и поэтому, согласно условию, G4 является наследственно G4 — максимальная подгруппой в G6. Значит, G5 — G8 является подгруппой в G6. Так как G4 — максимальная подгруппой в G8 значит, G9 — G9 и G9 — максимальная подгруппой в G9 и G9

то $LV_1M=LM=G$. Следовательно, |G:M|=|L|=p=|N|, что невозможно ввиду леммы 4. Поэтому $P\neq VN$ для всех подгрупп V из P с порядком |V|=|D|. По условию теоремы, V является наследственно G-перестановочной подгруппой в G. Покажем, что $V\leq M$. Действительно, пусть M_p — силовская p-подгруппа группы M. По лемме 6, $|M_p|<|N|$. Ввиду (5), $|N|\leq |D|$. Тогда $|M_p|<|D|$. Пусть теперь H — такая подгруппа из P с порядком |H|=|D|, что $|M_p|<|H|$. В этом случае $P=M_pN=HN$. что противоречит нашему допущению. Таким образом, мы имеем (7).

(8) E = P.

Действительно, пусть q — наибольший простой делитель порядка |E| и Q — силовская q-подгруппа группы E. Тогда ввиду (7), Q нормальна в E и поэтому согласно (2), Q=E=P.

Заключительное противоречие.

Пусть N — минимальная нормальная подгруппа группы G, содержащаяся в P. Тогда ввиду (6) и (8), N — единственная минимальная нормальная подгруппа группы G, содержащаяся в P, и поэтому $N=O_p(G)=P=E$. Пусть M — такая максимальная подгруппа в G, что G=[N]M. Тогда |G:M|=|N|. Пусть V — нодгруппа из P, с порядком |V|=|D|. По условию подгруппа V наследственно G-перестановочна в G. Так как M — максимальная подгруппа в G и $V\cap M \leq P\cap M=N\cap M=1$, то VM=G и |G:M|=|V|<|P|=|N|, что противоречит (5). Теорема доказана.

Abstract. Let G be a finite group, H be a subgroup of G. Let A and B be subgroups of G. Then we say following [3] that A is heredirarly G-permutes with B if $AB^x = B^xA$ for some $x \in A$, B >. We fix in every non-cyclic Sylow subgroup P of G some its subgroup D satisfying 1 < |D| < |P| and study the structure of G under assumption that all subgroups H with |H| = |D| are heredirarly G-permutable in G.

Литература

- 1. Stonehewer, S.E. Permutable subgroups in Infinite Groups / S.E. Stonehewer // Math. Z. -1972. $-\mathrm{Vol.}\ 125.$ $-\mathrm{P.}\ 1-16.$
- 2. Ore, O. Contributions in the theory of groups of finite order / O. Ore // Duke Math. J. -1939. -Vol. 5. <math display="inline">-P. 431--460.
- 3. Skiba, A.N. H-permutable subgroups / A.N. Skiba // Известия Гомельского государственного университета имени Ф.Скорины. —2003. —N 4(19). —С. 37—39.
- 4. Skiba, A.N. Finite groups with given systems of generalized permutable subgroups / A.N. Skiba // Известия Гомельского госуниверситета им. Φ . Скорины. —2006. №. 3(36). —C. 12–31.
 - 5. Шеметков, Л.А. Формации конечных групп / Л.А.Шеметков; М.: Наука, 1978.
- 6. Скиба, А.Н. On weakly s-permutable subgroups of finite groups / А.Н. Скиба; Гомель, 2005. (Препринт / Гомельский госуниверситет; декабрь).
- 7. Weinstein, M. Between Nilpotent and Solvable / M. Weinstein; Passaic N. J.: Polygonal Publishing House, 1982.
- 8. Huppert B. Endliche Gruppen I / B. Huppert; Berlin–Heidelberg–New York: Springer, 1967.

Гомельский государственный университет имени Ф. Скорины Поступило 15.02.08