УДК 658.012.011.56

Имитационное моделирование распределенной обработки информации в ЛВС

О.М. Демиденко, И.В. Максимей, С. Ф. Маслович, В.И. Селицкий

Введение. Имитационное моделирование ЛВС представляет собой использование двух типом ИМ ЛВС и РН, реализованных на основе транзактно-процессного способа имитации при высоком уровне детализации вычислительного процесса в узлах ЛВС. Наличие заданий РН в узлах ЛВС с непредсказуемостью характера использования их ресурсов, имеющими произвольные функции распределения запросов этих ресурсов затрудняет использование аналитических математических моделей для изучения динамики использования ресурсов ЛВС в ходе реализации ВП. Поэтому только с помощью имитационного моделирования можно наблюдать за использованием ресурсов узлов ЛВС множеством запросов РН. Использование имитации при выборе организации обработки информации в ЛВС не является новым. Однако, во всех этих исследованиях [1] обычно рассматривались влияние потоков запросов на характеристики оборудования элементов ЛВС и слабо принимались во внимание особенности внутренней структуру запросов. Кроме того, в данной статье предлагается рассмотреть динамику использования ресурсов ЛВС, которая может быть задействована при распределенной обработке информации (РОИ) при наличии сервера с высокой скоростью обработки информации, что позволяет использовать режим диалогового взаимодействия узлов ЛВС с пользователями (DR_i) и режим отложенного счета (ZOC_i) модулей задач, также при наличии РОИ в ЛВС.

Организация динамики взаимодействия компонентов ЛВС и модели. Динамика взаимодействия компонентов ЛВС во всех указанных режимах использования ресурсов ЛВС согласно предлагаемому методу имитации исследуется с помощью двух типов ИМ. Первая ИМ отображает расход запросами PH i-го типа ресурсов оборудования j-го ЛВС (ИМ $OBOR_j$) (здесь i-номер типа PH, а j-номер узла ЛВС). Схема узла ЛВС и типы поступающих на него задач PH представлены на рисунке 1.

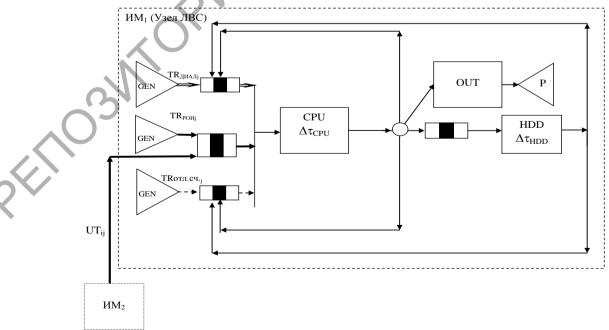
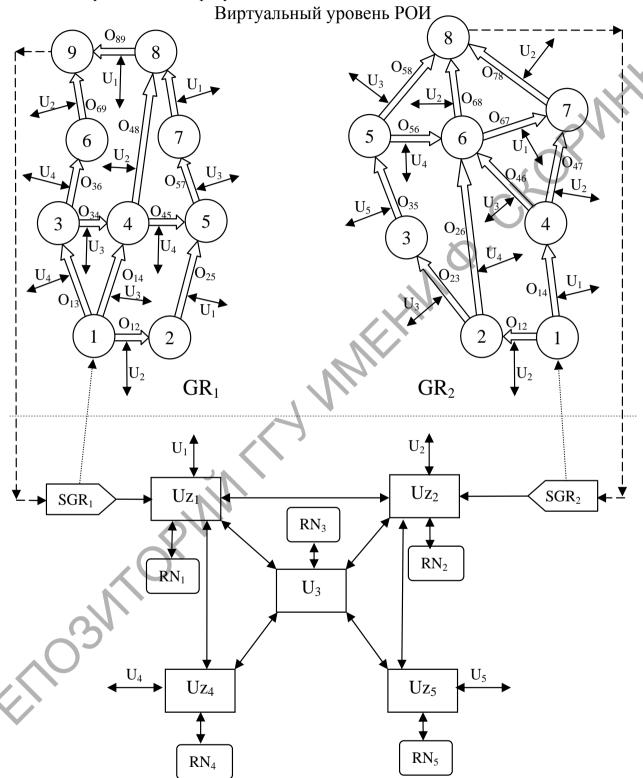



Рисунок 1 – Схема модели имитационной модели узла ЛВС (ИМ OBOR)

Вторая ИМ отображает во времени последовательность i-го типа запросов PH на ресурсы j-го узла ЛВС. Уровень отображения расходов ресурсов j-го узла назовем физическим уровнем обработки информации в ЛВС, а отображение структуры i-го типа PH во времени виртуальным уровнем представления PH на узлах ЛВС. Структура второго типа имитационной модели представлена на рисунке 2.

Физический уровень реализации РОИ на ЛВС

Рисунок 2 — Схема модели имитационной модели распределенной обработки информации на ЛВС

Таким образом, в ЛВС используются три режима (DR_i , ZOC_i , POU_i ,). ИМ ОВО R_j является универсальной для обоих типов ИМ и состоит из следующих процессов: расхода ресурсов центрального процессора j-го узла ЛВС ($PR.CPU_j$); расхода ресурсов внешней памяти ($PR.HDD_j$); устройства связи узлов ЛВС (PR.SPD); устройства вывода информации ($PR.OUT_j$). Эти процессы отображают алгоритмы расхода ресурсов узла ЛВС запросами PH каждого типа, которые обслуживаются процессами согласно следующих приоритетов. Наиболее высокий приоритет имеют запросы режима DR_i , а самый низкий — запросы режима POU_i . Выделение ресурсов в процессе PR.CPU осуществляется квантами времени использования CPU длительности $\Delta \tau_{cpu}$. Появление более приоритетного запроса приводит к прерыванию выделения ресурса менее приоритетному запросу. Остальные типы ресурсов выделяются запросами PH полностью без прерываний. ИМ $OBOR_j$ является универсальной и не требует программирования на этапах эксплуатации со стороны руководства ЛВС. Из-за того, что программы процессов ИМ $OBOR_j$ являются реентерабельными, исследователям для задания структуры и состава узлов ЛВС достаточно указать только количественный состав ЛВС.

ИМ рабочей нагрузки также является универсальной для обоих типов ЛВС и состоит из следующих типов процессов: генератор запросов диалоговых задач (GENDIAL_i): генератор запросов задач отложенного счета (GENZOC_k); генератор запросов на распределенную обработку информации (GENPOИ₀). Для задания состава и структуры PH на узлах ЛВС руководству достаточно задать число процессов-генераторов транзактов сложной структуры каждого типа (I, K, Q). Все эти генераторы имеют стандартный алгоритм имитации вероятностных запросов ресурсов узлов ЛВС, что позволяет реализовать их в виде реентерабельных программ. В информационной базе данных (ИБД) ИМ ЛВС для каждой версии генераторов отведено место для хранения рабочей информации и сбора статистики имитации. В итоге ИМ рабочей нагрузки состоит из трех реентерабельных программ-генераторов запросов ресурсов узлов ЛВС, которые в своей работе используют индивидуальные рабочие места в ИБД (соответственно по одной области в ИБД для каждой версии генераторов). Каждый іый генератор, используя рабочие места в ИБД по адресу α_i формирует транзакт сложной структуры (TRSS_i) стандартного типа, а в одну из очередей оборудования ЛВС посылает триаду (i, π_i , α_i). Здесь i-номер запроса ресурсов; π_i – приоритет запроса; α_i – адрес информационной части запросов і-го типа.

GENDIAL_i с интенсивностью α_i формирует «подкрашенный» транзакт вида TRSS1_i=(i, π_I , α_i), у которого в информационной части находятся запросы ресурсов CPU_i и HDD_i, разыгранные по соответствующим функциям распределения, сформированным до имитационного эксперимента (ИЭ) по данным мониторинга поведения диалоговых запросов.

GENZOC $_k$ в моменты окончания выделения ресурсов для предыдущей стадии решения задач отложенного счета формирует «подкрашенный» транзакт вида $TRSS2_k=(k,\,\pi_k,\,\alpha_k)$, у которого в информационной части находятся запросы ресурсов CPU_k и HDD_k , также разыгранные по соответствующим функциям распределения, сформированным до ИЭ по данным мониторинга выполнения задач на прототипах ЛВС.

 $GENPOU_q$ с интенсивностью α_q формирует «подкрашенный» транзакт вида $TRSS3_i$ = (q, π_q, α_q) , у которого в информационной части находятся запросы ресурсов CPU_q и HDD_q , разыгранные по соответствующим функциям распределения по данным мониторинга поведения POU. Важным отличием информационной части этого транзакта является описание структуры POU, которая представляет собой вероятностный сетевой график ($BC\Gamma P$). Узлами $BC\Gamma P$ является свершение события в $BC\Gamma P$, а ветвями являются запросы на ресурсы q-го узла q-го модуля задачи управления объектами реального времени. Таким образом, в транзакте q-го модуля задачи управления объектами реального времени. Таким образом, в транзакте q-го типа q-го модуля на q-ом узле q-го q-го узла используется процедура монте-Карло. В ходе q-го реализации q-го узла q-го соответствующим функциям формируются q-го q-го позволяет при имитации q-го реализации q-го q-го реализации q-го q-го q-го реализации q-го q-г

вестный алгоритм [2], рассчитывает моменты свершения событий, начиная от начального события ВСГР₁ и заканчивая завершающим событием ВСГР₁. На событиях ВСГР₁ осуществляется синхронизация их свершения, и по завершении самого позднего момента выделения ресурсов ЛВС активизируются все модули РОИ, начинающиеся в только что завершенном событии. В моменты завершения 1-ой реализации ВСГР₁ фиксируется в ИБД статистика свершения всех событий в информационном поле транзакта TRSS3_q по адресу α_q . При этом ведется контроль за окончанием числа реализаций процедуры Монте-Карло для РОИ q-го узла ЛВС. Когда $1 > N_m$ (где N_m – количество реализаций процедуры Монте-Карло), эта статистика усредняется, то и является статистиками и откликами имитации РОИ в ЛВС. По завершении N_m реализаций ИМ ЛВС статистика имитации усредняется и определяются усредненные значения откликов ИМ ЛВС и при конкретном наборе параметров имитационного моделирования $\{X_s\}$ получаются множества откликов имитации $\{Y_h\}$ и статистик имитации $\{S_T_r\}$ (здесь s-номера компонентов параметров моделирования; h и r — номера компонентов откликов и статистик моделирования).

Выводы. Как видим, все генераторы РН на ЛВС используют транзакты сложной структуры, что обеспечивает очень высокий уровень детализации ВП в ЛВС для всех режимов совместного использования запросами трех типов ресурсов узлов ЛВС. Этим существенно отличается данный метод имитационного моделирования ЛВС или ЛВС от известных из рассмотренных нами в п.1.2, описывающим существующие методы исследования ВП в ЛВС и ЛВС. Вторым важным отличием от известных попыток имитации ЛВС предлагаемого метода имитации ЛВС является использование транзактно-процессного способа имитации, реализуемого системой моделирования МІСІС4 [3], выбранной в качестве базовой системы моделирования для реализации метода. Третьим важным отличием метода является отсутствие программирования ИМ ЛВС или ИМ ЛВС на этапах эксплуатации этих ИМ. Все основные процессы-имитаторы реализованы в виде реентерабельных программ. Из-за стандартного алгоритма отображения ВП в узлах ЛВС они разработаны нами и не требуют модификации и программирования. Свойство реентерабельности программ процессовимитаторов позволяет автоматически одновременно в модельном времени обслуживать любое число копий этих процессов, поскольку каждая копия имеет свое информационное поле в ИБД ЛВС, расположено по адресам α_i , α_k , α_g .

Abstract. The problems of simulation modeling of distributed information processing in LANs are considered in the paper.

Литература

- 1. Шварц, М. Сети связи: протоколы, моделирование и анализ / М. Шварц: в 2-х ч. Ч.1: Пер. с англ. М.: Наука, 1992.
- 2. Жогаль, С.И. Задачи и модели исследования операций. Ч.1. Аналитические модели исследования операций / С.И. Жогаль, И.В. Максимей: учебное пособие. Гомель: БелГут, 1999.
- 3. Левчук, В.Д. Программно-технологические комплексы имитации сложных дискретных систем / В.Д. Левчук, И.В. Максимей.: М-во образов. РБ, Гомельский государственный университет им. Ф.Скорины. Гомель: ГГУ им. Скорины, 2006.

Гомельский государственный университет имени Ф. Скорины

Поступило 30.04.07