

On τ -quasinormal and weakly τ -quasinormal subgroups of finite groups

VLADIMIR O. LUKYANENKO, ALEXANDER N. SKIBA

Throughout this paper, all groups are finite. All unexplained notations and rminologies are standard. The reader is referred to [1], [3], [5] and [6] if necessary. G ways denotes a group. We use $\pi(G)$ to denote the set of all primes dividing |G|. For any bgroup H of G we put $\tau_G(H) = \{q \in \pi(G) \setminus \pi(H) \mid (|H|, |Q^G|) \neq 1 \text{ for a Sylow } q$ -subgroup of $G\}$, where Q^G is the normal closure of Q in G.

Recall that a subgroup A of a group G is said to permute with a subgroup B if B = BA. A subgroup H of a group G is said to be $\pi(G)$ -permutable or $\pi(G)$ -quasinormal). Kegel, [7]) in G if H permutes with every Sylow p-subgroup of G for all primes $p \in \pi$. subgroup H of G is said to be *c*-normal in G (Y. Wang, [10]) if G has a normal subgroup such that HT = G and $T \cap H \leq H_G$, where H_G is the normal core of H in G.

In spite of the fact that the $\pi(G)$ -quasinormality and the *c*-normality are quite fferent generalizations of normality, there are several analogous results which were obtained dependently for $\pi(G)$ -quasinormal and *c*-normal subgroups (see Section 5 in [9]). In this aper we analyze some of these results on the base of the following more general concepts.

Definition. Let H be a subgroup of a group G. Then we say that:

(1) *H* is τ -quasinormal in *G* if *H* permute with all Sylow *q*-subgroups of *G* for all $\in \tau_G(H)$;

(2) *H* is weakly τ -quasinormal in *G* if *G* has a subnormal subgroup *T* such that UT = G and $T \cap H \leq H_{\tau G}$.

In this definition $H_{\tau G}$ denotes the τ -core of H in G, that is, the subgroup generated y all those subgroups of H which are τ -quasinormal in G.

It is clear that every $\pi(G)$ -quasinormal subgroup and every *c*-normal subgroup of *G* re weakly τ -quasinormal. The following simple example shows that in general the set of reakly τ -quasinormal subgroups is wider than the set of all $\pi(G)$ -quasinormal subgroups nd the set of all *c*-normal subgroups.

Example. Let p < r < q be odd primes, C_q be a group of order q and R a faithful reducible C_q -module over a field \mathbb{F}_r . Let P be a faithful irreducible $([R]C_q)$ -module over a field \mathbb{F}_p and $A = [P]([R]C_q)$. Let $M(r) = \langle x, y, z \mid x^r = y^r = z^r = 1, [x, z] = [y, z] = 1$ and $x, y] = z \rangle = [\langle x, z \rangle] \langle y \rangle$ (see p. 203 in [4]). Finally, let $G = A \wr M(r) = [K]M(r)$, where K s the base group of the regular wreath product of G. By [3, A, 18.5(b)], $L = P^{\natural}$ is the only minimal normal subgroup of G. Note also that since by [3, A, 18.2], $G/P^{\natural} \simeq (A/P) \wr M(r)$ and $C_A(P) = P$, then $L \not\subseteq \Phi(G)$ by [6, III, 3.5]. Hence $L = C_G(L)$.

(1) C_q is τ -quasinormal in A, but not $\pi(G)$ -quasinormal in A (this follows directly rom the fact that $R^A \leq PR$).

(2) $H = \langle x, z \rangle$ is weakly τ -quasinormal in G and H is neither c-normal in G nor τ -quasinormal in G.

First suppose that H is τ -quasinormal in G. Let Q be a Sylow q-subgroup of K. It is not difficult to show that r divides $|Q^G|$. Besides, Q is a Sylow q-subgroup of G. Hence HQ = QH is a subgroup of G. Note that since by [3, A, 18.2], $G/(PR)^{\natural} \simeq (A/PR) \wr M(r) \simeq$ $C_q \wr M(r)$ and evidently $QH(PR)^{\natural}/(PR)^{\natural} \simeq QH$, $H \leq N_G(Q)$. For any $x \in G$, $H^*Q = QH^*$, which as above implies $H^* \leq N_G(Q)$. Hence $H^G \leq N_G(Q)$ and so $L \leq N_G(Q)$, which implies $Q \leq C_G(L)$. This contradiction shows that H is not τ -quasinormal in G. Now suppose that H is c-normal in G and let T be a normal subgroup of G such that TH = G and $T \cap H \leq H_G = 1$. Then $M(r) = M(r) \cap TH = H(T \cap M(r))$ is Abelian, a contradiction. Finally note that $T = K\langle y \rangle$ is subnormal in G, TH = G and $T \cap H = 1$. Hence H is weakly τ -quasinormal in G.

Note that many results in which one of the conditions "to be a *c*-normal subgroup" or "to be a $\pi(G)$ -quasinormal subgroup" is involved can be non-trivially generalized on the 'oase of the weakly τ -quasinormality. The following our theorem serves a partial illustration for this.

Theorem. Let \mathcal{F} be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup P of $F^*(E)$ has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-Abelian 2-group) are weakly τ -quasinormal in G. Then $G \in \mathcal{F}$.

The proof of this theorem consists of a large number of steps. The sketch of this proof is concluded in following lemmas.

Lemma 1. Let G be a group and $H \leq K \leq G$, $L \leq G$. Then:

(1) If H is τ -quasinormal in G, then H is τ -quasinormal in K.

(2) Suppose that H is normal in G and $\pi(K/H) = \pi(K)$. If K is τ -quasinormal in G, then K/H is τ -quasinormal in G/H.

(3) Suppose that H is τ -quasinormal in G. If HL = LH and $\pi(H \cap L) = \pi(H) \cap \pi(L)$, then $H \cap L$ is τ -quasinormal in L.

(4) Suppose that H is normal in G. Then the subgroup EH/H is τ -quasinormal in G/H for every τ -quasinormal in G subgroup E satisfying (|H|, |E|) = 1.

(5) If H is τ -quasinormal in G and $H \leq O_p(G)$ for some prime p, then H is $\pi(G)$ -quasinormal in G.

(6) Suppose that H and L are τ -quasinormal in G. If HL = LH and $\pi(H \cap L) = \pi(H) = \pi(L)$, then $H \cap L$ is τ -quasinormal in G.

Proof. (1) Let K_q be a Sylow q-subgroup of K such that $q \notin \pi(H)$ and $(|H|, |K_q^K|) \neq 1$. Then for some Sylow q-subgroup Q of G we have $K_q = Q \cap K$. Since $K_q^K \leq Q^G \cap K \leq Q^G$, $(|H|, |Q^G|) \neq 1$. Hence $q \in \tau_G(H)$ and so $HK_q = H(Q \cap K) = HQ \cap K = (Q \cap K)H = K_qH$.

(2) Let Q/H be a Sylow q-subgroup of G/H such that $q \notin \pi(K/H) = \pi(K)$ and $(|K/H|, |(Q/H)^{(G/H)}|) \neq 1$. Then for some Sylow q-subgroup G_q of G we have $Q = G_q H$. Since $(Q/H)^{(G/H)} = Q^G/H = (G_q H)^G/H = G_q^G H/H \simeq G_q^G/(G_q^G \cap H), (|K|, |G_q^G|) \neq 1$. Hence $q \in \tau_G(K)$ and so $(K/H)(Q/H) = KQ/H = KG_q H/H = (Q/H)(K/H)$.

(3) By (1), H is τ -quasinormal in HL. Let Q be a Sylow q-subgroup of L such that $q \notin \pi(H \cap L)$ and $(|H \cap L|, |Q^L|) \neq 1$. Then $q \notin \pi(H)$, so Q is a Sylow q-subgroup of HL. Besides, $Q^L \leq Q^{HL} \cap L \leq Q^{HL}$. Hence $(|H|, |Q^{HL}|) \neq 1$ and so $q \in \tau_{HL}(H)$. Therefore, $Q(H \cap L) = QH \cap L = (H \cap L)Q$.

(4) Let Q/H be a Sylow q-subgroup of G/H such that $q \notin \pi(EH/H) = \pi(E)$ and $(|EH/H|, |(Q/H)^{(G/H)}|) \neq 1$. Then for some Sylow q-subgroup G_q of G we have $Q = G_q H$. Since $(Q/H)^{(G/H)} = Q^G/H = G_q^G H/H \simeq G_q^G/(G_q^G \cap H), (|E|, |G_q^G|) \neq 1$. Hence $q \in \tau_G(E)$ and so $(EH/H)(Q/H) = EQ/H = EG_q H/H = (Q/H)(EH/H)$.

(5) Let Q be any Sylow q-subgroup of G, where $q \neq p$. Suppose that $HQ \neq QH$. Then by hypothesis, $Q^G \leq O_{p'}(G)$. Hence $H \leq O_p(G) \leq C_G(Q)$, a contradiction.

(6) Let Q be a Sylow q-subgroup of G such that $q \notin \pi(H \cap L) = \pi(H) = \pi(L)$ and $(|H \cap L|, |Q^G|) \neq 1$. Then $(|H|, |Q^G|) \neq 1$ and $(|L|, |Q^G|) \neq 1$. Hence $q \in \tau_G(H)$ and $q \in \tau_G(L)$. Therefore, $Q(H \cap L) = QH \cap QL = (H \cap L)Q$.

From Lemma 1 we directly have

ips 207

Lemma 2. Let G be a group and $H \leq K \leq G$. Then the following statements hold: (1) If H is a p-group for some prime p, then $H_{\tau G}$ is a τ -quasinormal subgroup of G and $H_G \leq H_{\tau G}$.

(2) $H_{\tau G} \leq H_{\tau K}$.

(3) Suppose that K is a p-group for some prime p and H is normal in G. Then $K_{\tau G}/H \leq (K/H)_{\tau (G/H)}$.

(4) Suppose that H is normal in G. Then $E_{\tau G}H/H \leq (EH/H)_{\tau(G/H)}$ for every subgroup E satisfying (|H|, |E|) = 1.

Lemma 3. Let G be a group and $H \leq K \leq G$. Then

(1) If H is τ -quasinormal in G, then H is weakly τ -quasinormal in G.

(2) Suppose that K is a p-group for some prime p and H is normal in G. If K is weakly τ -quasinormal in G, then K/H is weakly τ -quasinormal in G/H.

(3) If H is weakly τ -quasinormal in G, then H weakly τ -quasinormal in K.

(4) Suppose that H is normal in G. Then the subgroup EH/H is weakly τ -quasinormal in G/H for every weakly τ -quasinormal in G subgroup E satisfying (|H|, |E|) = 1.

(5) Suppose that H is a p-group for some prime p and H is not τ -quasinormal in G. Assume that H is weakly τ -quasinormal in G. Then G has a normal subgroup M such that |G:M| = p and G = HM.

Proof. Statement (1) is evident.

(2) Assume that for some subnormal subgroup T of G we have KT = G and $T \cap K \leq K_{\tau G}$. Then by [3, A, 14.1 and 14.4], TH/H is subnormal in G/H. Besides, (TH/H)(K/H) = G/H and $(TH/H) \cap (K/H) = (TH \cap K)/H = (T \cap K)H/H \leq K_{\tau G}H/H = K_{\tau G}/H \leq (K/H)_{\tau(G/H)}$ by Lemma 2(3). Thus K/H is weakly τ -quasinormal in G/H.

(3) Let T be a subnormal subgroup of G such that HT = G and $T \cap H \leq H_{\tau G}$. Then $K = K \cap HT = H(K \cap T)$. By [3, A, 14.1], $K \cap T$ is subnormal in K. By Lemma 2(2) we also know that $(K \cap T) \cap H \leq H_{\tau G} \leq H_{\tau K}$. Hence H is weakly τ -quasinormal in K.

(4) Assume that for some subnormal subgroup T of G we have ET = G and $T \cap E \leq E_{\tau G}$. Clearly, $H \leq T$ and by [3, A, 14.1], T/H is subnormal in G/H. Besides, (T/H)(EH/H) = G/H and $(T/H) \cap (EH/H) = (T \cap EH)/H = (T \cap E)H/H \leq E_{\tau G}H/H \leq (EH/H)_{\tau(G/H)}$ by Lemma 2(4). Thus EH/H is weakly τ -quasinormal in G/H.

(5) By hypothesis G has a subnormal subgroup T such that HT = G and $T \cap H \leq H_{\tau G} \neq H$. Hence G has a proper normal subgroup V such that $T \leq V$. Since G/V is a p-group, G has a normal maximal subgroup M such that HM = G and |G:M| = p.

Recall that a formation is a homomorph \mathcal{F} of groups such that each group G has a smallest normal subgroup (denoted by $G^{\mathcal{F}}$) whose quotient is still in \mathcal{F} . A formation \mathcal{F} is said to be saturated if it contains each group G with $G/\Phi(G) \in \mathcal{F}$. In view of Lemma 1(5) and 2(1) the following two observations are corollaries of Lemmas 2.11 and 2.12 in [9] respectively.

Lemma 4. Let N be an Abelian normal p-subgroup of a group G for some prime p. Assume that N has a subgroup D such that 1 < |D| < |N| and every subgroup H of N satisfying |H| = |D| is weakly τ -quasinormal in G. Then some maximal subgroup of N is normal in G.

Lemma 5. Let \mathcal{F} be a saturated formation containing all nilpotent groups and G a group with soluble \mathcal{F} -residual $P = G^{\mathcal{F}}$. Suppose that every maximal subgroup of G not containing P belongs to \mathcal{F} . Then P is a p-group for some prime p and if every cyclic subgroup of P with prime order and order 4 (if p = 2 and P is non-Abelian) not having a p-nilpotent supplement in G is weakly τ -quasinormal in G, then $|P/\Phi(P)| = p$.

Lemma 6. Let $V = A \times B$ be a subgroup with order 4 of a group G such that |A| = |B| = 2 and A, V are τ -quasinormal in G. Then B is τ -quasinormal in G.

Proof. Suppose that this lemma is false. Then G has a Sylow q-subgroup Q such that $q \neq 2, 2 \mid |Q^G|$ and $BQ \neq QB$. By hypothesis, VQ = QV and AQ = QA. Hence Q is normal in VQ. Therefore BQ = QB, a contradiction. This completes the proof.

Lemma 7. Let $V = \langle x \rangle$ be a cyclic subgroup with order 4 of a group G and V is τ -quasinormal in G. Then $\langle x^2 \rangle$ is τ -quasinormal in G.

Proof. See the proof of Lemma 6.

The following lemma is well known (see, for example, [8]).

Lemma 8. Let H be a p-subgroup of a group G for some prime p. Then H is $\pi(G)$ quasinormal in G if and only if $O^p(G) \leq N_G(H)$.

In this paper we use \mathcal{U} to denote the class of the supersoluble groups; $Z_{\mathcal{U}}(G)$ denotes the \mathcal{U} -hypercenter of a group G, that is, the product of all such normal subgroups of G whose G-chief factors have prime order.

Lemma 9. Let G be a group, p an odd prime and $P \neq 1$ a normal p-subgroup of G. Suppose that every minimal subgroup of P is $\pi(G)$ -quasinormal in G. Then $P \leq Z_{\mathcal{U}}(G)$.

Proof. Suppose that this lemma is false and consider a counterexample (G, P) for which |G||P| is minimal. First we show that $P \leq O^p(G)$. Indeed, assume $P \not\leq O^p(G)$. Then $|P \cap O^p(G)| < |P|$, so $P \cap O^p(G) \leq Z_{\mathcal{U}}(G)$ by the choise of (G, P). On the other hand, from the G-isomorphism $PO^p(G)/O^p(G) \simeq P/P \cap O^p(G)$ we have $P/P \cap O^p(G) \leq Z_{\mathcal{U}}(G/P \cap O^p(G))$. Hence $P \leq Z_{\mathcal{U}}(G)$, a contradiction. Therefore $P \leq O^p(G)$. Let G_p be a Sylow p-subgroup of G. Consider the series $1 \leq \Omega_1(P) \leq \Omega_2(P) \leq \ldots \leq \Omega_k(P) = P$. Since all members of this series are characteristic in P, the series may be refinemented to G_p -chief series of P

$$1 = P_0 \le P_1 \le \dots \le P_n = P. \tag{(*)}$$

By Lemma 8 and [2, 1(i)] every factor $\Omega_i(P)/\Omega_{i-1}(P)$ is elementary and by [9, 2.4] every subgroup of $\Omega_i(P)/\Omega_{i-1}(P)$ is normalyzed by every p'-element of G. Hence the series (*) is a chief series of G, so $P \leq Z_{\mathcal{U}}(G)$. This contradiction completes the proof.

Lemma 10. Let \mathcal{F} be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-Abelian 2-group) not having a supersoluble supplement in G are weakly τ -quasinormal in G. Then $G \in \mathcal{F}$.

Lemma 11. Let G be a group and P a Sylow p-subgroup of G, where p is the smallest prime divisor of G. Suppose that P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-Abelian 2-group) not having a p-nilpotent supplement in G are weakly r-quasinormal in G. Then G is p-nilpotent.

Finally, note that main results of many papers are special cases of our Theorem (see Section 5 in [9]). In particular, Theorem 1.3 in [9] is a corollary of the theorem.

Abstract. Let G be a finite group and H a subgroup of G. We put $\tau_G(H) = \{q \in \pi(G) \setminus \pi(H) \mid (|H|, |Q^G|) \neq 1 \text{ for a Sylow } q\text{-subgroup } Q \text{ of } G\}$. We say that: (1) H is τ -quasinormal in G if H permute with all Sylow q-subgroups of G for all $q \in \tau_G(H)$; (2) H is weakly τ -quasinormal in G if G has a subnormal subgroup T such that HT = G and $T \cap H \leq H_{\tau G}$. where $H_{\tau G}$ is the subgroup generated by all those subgroups of H which are τ -quasinormal in G. Our main result here is the following theorem: Let \mathcal{F} be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every non-cyclic Sylow subgroup P of $F^*(E)$ has a subgroup D such that

1 < |D| < |P| and every subgroup H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-Abelian 2-group) are weakly τ -quasinormal in G. Then $G \in \mathcal{F}$.

References

1. Ballester-Bolinches, A. Classes of Finite groups / A. Ballester-Bolinches, L.M. Ezquerro. — Springer, Dordrecht, 2006.

2. Buckley, J. Finite groups whose minimal subgroups are normal / J. Buckley // Math. Z. - 1970. - 15. - P. 15-17.

3. Doerk, K. Finite soluble groups / K. Doerk, T. Hawkes. — Berlin New York: Walter de gruyter, 1992.

4. Gorenstein, D. Finite Groups / D. Gorenstein. — New York-Evanston-London: Harper & Row Publishers, 1968.

5. Guo, W. The Theory of Classes of Groups / W. Guo. – Beijing–New York– Dordrecht–Boston–London: Science Press–Kluwer Academic Publishers, 2000.

6. Huppert, B. Endliche Gruppen I / B. Huppert. — Berlin-Heidelberg-New York: Springer, 1967.

7. Kegel, O.H. Sylow-Gruppen and Subnormalteiler endlicher Gruppen / O.H. Kegel // Math. Z. - 1962. - 78. - P. 205-221.

8. Schmid, P. Subgroups Permutable with All Sylow Subgroups / P. Schmid // J. Alg. - 1998. - 182. - P. 285-293.

9. Skiba, A.N. On weakly S-permutable subgroups of finite groups / A.N. Skiba // J. Alg. - 2007. - 315. - P. 192-209.

10. Wang, Y. c-normality of groups and its properties / Y. Wang // J. Algebra. - 1996. - 180. - P. 954–965.

F. Skorina Gomel State University

Поступило 09.09.08

E-mail:lucas84@server.by E-mail: alexander.skiba49@gmail.com