## Математика, информатика

УДК 517.977

## Система автоматизации имитационного моделирования UNIVERSAL

И. В. Максимей, О. В. Быченко, Д. О. Быченко, Н. А. Гроздицкий, Д. Н. Езерский, О. Н. Медведева

Введение. Обзор способов и средств имитации сложных систем на ЭВМ второго поколения приведен в монографии [1]. Недостатки использования классических способов имитации дискретных сложных систем (ДСС) и систем автоматизации моделирования (САМ) ДСС определили актуальность развития комбинации транзактно-процессного способа имитации и программно-технологических комплексов имитации (ПТКИ), реализующих этот способ имитации ДСС. Обзор возможностей сочетания транзактов сложной структуры процессами, являющимися обслуживающими устройствами (ОУ) в терминах систем массового обслуживания (СМО) и ПТКИ, автоматизирующих разработку, испытание и эксплуатацию ИМ ДСС приведен в монографии [2]. Опыт разработки и апробации ПТКИ определил актуальность развития комбинации агрегатно-процессного способа имитации вероятностных технологических процессов (ВТП) на основе формализации с помощью аппарата сетевого планирования [3]. Для автоматизации построения и эксплуатации ИМ ДСС, построенных на этом способе имитации, была разработана система САИМ [3]. Круг типов ДСС расширился и опыт разработки ПТКИ ПТКИ и САИМ определил новое направление имитации ДСС, возможности которого излагаются в данной статье. Наконец, существенным достоинством САМ INIVERSAL является органическое объединение способов формализации разных частей ИМ ДСС с процедурой Монте-Карло метода статистических испытаний. Перечисленные ниже достоинства CAM UNIVERSAL, по нашему мнению, обеспечит перспективу развития использования и дальнейшее развитие ее возможностей на основе результатов ее апробации.

- **1 Состав и структура САМ.** Для реализации нового способа имитации СС реализуется CAM UNIVERSAL (см. Рис. 1) состоящая из следующих компонентов:
- множества библиотек программ статических элементов 6 типов (LIB.CTЭ $\Pi_j$  1 типа ÷LIB.CTЭ $\Pi_j$  6 типа);
- множества библиотек программ динамических элементов (LIB.ДЭ $\Pi_{ij}$  1 типа ÷LIB ДЭ $\Pi_{ii}$  6 типа);
  - блока формирования структуры ИМ СС;
  - блока задания начальных условий (БНУ) в базах данных ОБ $Д_1$  и ОБ $Д_2$ ;
  - оперативный блок создания программы множеств {СТЭЛ<sub>і</sub>}(БЛОПСТЭЛ);
  - блока окончания имитации (БОКИ);
  - подпрограмм вторичной обработки статистики имитации (ПП ВТОР. ОБРАБ СТАТИМ);
- блок сбора статистик (БССТ<sub>1</sub>), формируемой самими СТЭ $\Pi_j$  и ДЭ $\Pi_{ij}$  в каждой реализации процедур Монте-Карло;
  - поле сбора статистики имитации (ПСТАТ);
- общей базы данных (ОБД<sub>1</sub>), в которой хранятся информационные части СТЭЛ<sub>j</sub> (для каждого типа СТЭЛ $_i$  выделяется своя область 1-6);
- общей базы данных (ОБД<sub>2</sub>), в которой хранятся информационные части ДЭЛ $_{ij}$  (для каждого типа ДЭЛ $_{ii}$  выделяется своя область 1÷6);
  - управляющей программы моделирования (УПМ).

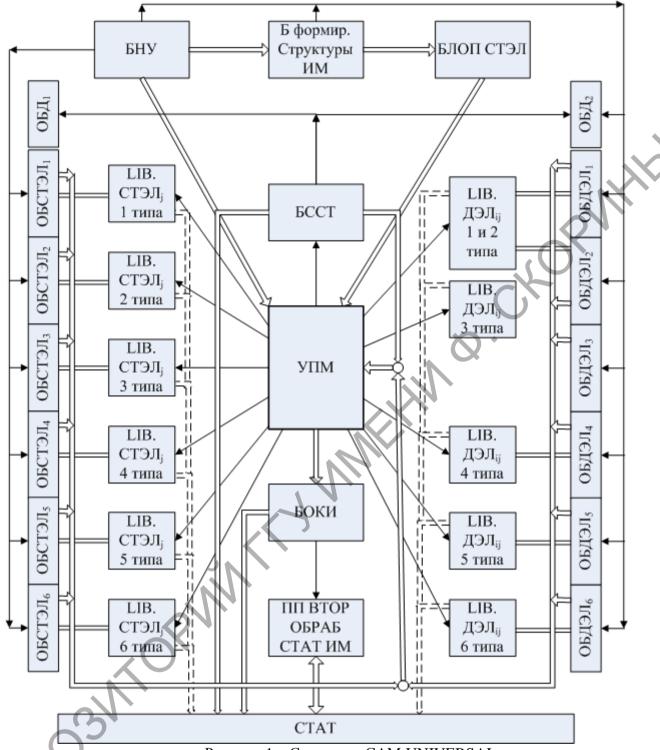



Рисунок 1 – Структура CAM UNIVERSAL

Каждая библиотека программы  $CTЭЛ_j$  любого типа разработана по одной технологии, используя принцип реентерабельности выполнения программы и ее информационной части в соответствующей области  $OБД_1$ . Одна программа  $CTЭЛ_j$  любого типа может использовать одновременно в модельном времени столько информационных частей, сколько имеется в ИМ СС копий  $CTЭЛ_j$  данного типа. В любой момент времени модельного времени  $t_0$  выполняется на процессоре ЭВМ только одна активность  $AKT_{kj}$  (здесь k-номера активности в программе  $CTЭЛ_j$ ). Эти активности квазипараллельно обслуживаются УПМ в порядке их приоритета. Выбрав k-й номер  $AKT_{kj}$ , УПМ активизирует алгоритм этой активности, имитируя выполнения алгоритма той компоненты CC, которой соответствует  $CTЭЛ_j$ . Алгоритм  $AKT_{kj}$  в соответствии и его способом формализации компонент CC меняет переменные, расходует

ресурсы ИМ СС, формирует статистику использования ресурсов, статистику использования СТЭ $\Pi_j$  в ОБ $\Pi_i$  и статистику обслуживания ДЭ $\Pi_{ij}$  в ОБ $\Pi_i$ . В конце концов по завершении АК- $\Pi_{kj}$  управление возвращается на УПМ. Далее согласно своему алгоритму все обслуживания СТЭ $\Pi_j$  и ДЭ $\Pi_{ij}$  и в соответствии с приоритетами  $\Pi_{2j}$  динамических и статических элементов УПМ активизирует другую активность СТЭ $\Pi_j$  или ДЭ $\Pi_{ij}$  (иногда даже той же самой программы, если число копий СТЭ $\Pi_j$  и ДЭ $\Pi_{ij}$  в ОБ $\Pi_i$  и ОБ $\Pi_i$  большое). Связь СТЭ $\Pi_j$  с другими СТЭ $\Pi_j$  осуществляет только через УПМ. Для каждого типа СТЭ $\Pi_j$  имеется свое подмножество ДЭ $\Pi_{ij}$  соответствующего типа.

Очевидно, что в ОБД $_2$  имеется своя область для каждого типа ДЭЛ $_{ij}$ . Таким образом за счет реентерабельности ДЭЛ $_{ij}$  одна и та же программа ДЭЛ $_{ij}$  из соответствующей библиотеки может обслуживать множество копий информационных частей. При этом одновременно в каждой из областей ОБД $_2$  может использоваться часть программы ДЭЛ $_{ij}$ , формироваться статистика использования копий ДЭЛ $_{ij}$ , накапливаются и изменяются локальные переменные ДЭЛ $_{ij}$ . Как видим, одна программа каждого типа СТЭЛ $_j$  обслуживает множества активностей АКТ $_{ki}$  и одна программа каждого типа ДЭЛ $_{ij}$  также обслуживает соответствующие ей множество информационных частей транзактов. Принцип реентерабельности СТЭЛ $_j$  и ДЭЛ $_{ij}$  существенно сокращает размеры ИМ СС и, кроме того, позволяет их разработать навсегда на языке программирования СИ разработчиками САМ UNIVERSAL, являющимися специалистами по системному программированию и прикладной математике. Поэтому после отладки программ СТЭЛ $_j$  и ДЭЛ $_{ij}$  они каталогизируются в соответствующие библиотеки (См. на Рис. 1 LIB СТЭЛ $_i$  типа 1÷6 и LIB ДЭЛ $_{ij}$  типа 1÷6).

Блок формирования структуры ИМ СС по исходной информации о составе и структуре компонентов ИМ СС, используя таблицы коммутации СТЭ $\Pi_j$  друг с другом, формирует структуру баз данных ОБ $\Pi_1$  и ОБ $\Pi_2$ . Кроме того, по таблице исходного состава ресурсов в варианте ИМ СС, таблица коммутации составляет блок операционных программ (БЛОП) множества {СТЭ $\Pi_i$ }, который входит в ИМ по одной программе для каждого типа СТЭ $\Pi_i$ 

Блок БНУ обеспечивает заполнение в ОБД $_1$  таблиц заказов ресурсов ИМ СС исходной информацией, указывая при этом необходимо число детерминированных ресурсов ( $n_1$ – $n_6$ ) и запись функций распределения вероятностей расхода ресурсов ( $F_{1j}(\tau)$ ÷ $F_{4kj}(ko)$ ) для каждого СТЭЛ $_j$ . Другой функцией БНУ является задание начальной структуры информационной части ДЭЛ $_{ij}$  в ОБД $_2$ .

Блок окончания имитации инициируется УПМ при выполнении условий завершения варианта имитации СС и выполняет функции деформирования статистики имитации из буферных зон статистики использования  $\{CTЭЛ_j\}$  в ОБД<sub>1</sub> и статистики использования  $\{ДЭЛ_{ij}\}$  в ОБД<sub>2</sub>. Кроме того, стандартная статистика имитации, формируемая блоком БССТ<sub>2</sub>, записывается после статистик также блоком имитации (БОКИ).

Состав стандартной статистики фиксирован и блок сбора статистика БССТ, взаимодействуя конкретно с УПМ, формирует обычный набор статистик использования  $\{CTЭЛ_j\}$   $\{ДЭЛ_{ij}\}$  за время имитации одной реализации процедуры Монте-карло, записывая ее в поле статистики (ПСТАТ).

УПМ является координатором взаимодействий {CTЭ $\Pi_j$ }друг с другом и использования ими {ДЭ $\Pi_{ij}$ }. Каждые ДЭ $\Pi_{ij}$  и СТЭ $\Pi_j$  взаимодействуют с УПМ с помощью своего набора операторов моделирования. Каждая активность АКТ $_{kj}$  СТЭ $\Pi_j$  завершается каким-либо оператором взаимодействия с УПМ. Из-за необходимости обеспечить одновременно квазипараллелизм обслуживания УПМ этих операторов и использования принципа реентерабельности программ СТЭ $\Pi_j$  и программ ДЭ $\Pi_{ij}$  в каждом операторе указывается следующая информация: номера j для СТЭ $\Pi_j$  или ij для ДЭ $\Pi_{ij}$ , номера (k) активностей АКТ $_{kj}$  адреса  $\beta_i$  информационной части СТА $\Pi_j$  в ОБД $_1$ , адреса  $\alpha_i$  информационной части ДЭ $\Pi_{ij}$  в ОБД $_2$ , адрес возврата A на программу СТЭ $\Pi_j$ , адреса  $\Lambda_i$  на ту часть УПМ, которая обслуживает данную активность или программу ДЭ $\Pi_{ij}$ , заказы которых необходимо выполнить. Наконец, в операторах обращения указывается: время имитации АКТ $_{kj}$  ( $\tau_{kj}$ ) или время имитации выполнения ДЭ $\Pi_{ij}$  ( $\tau_{ij}$ ), адрес условия выполнения для завершения оператора (АУ $_k$ ), где k—номер процедуры пользователя в поле заказа на имитации, хранящемся в ОБ $\Pi_i$ . Столь сложный алгоритм обращения АКТ $_{ki}$  и

 $ДЭЛ_{ij}$  к УПМ необходим для обеспечения квазипараллелизма по событийному способу имитации и для организации реентерабельности программ каждого типа СТЭ $Л_i$  и  $ДЭЛ_{ii}$ .

**Заключение.** Реализуемая CAM UNIVERSAL существенно расширяет возможности имитации ДСС за счет совмещения в «теле» одной программы ИМ ДСС нескольких способов формализации ее компонентов. Возможно сочетание двух подмоделей, основанных на разных принципах имитации: агрегатно-процессного способа имитации; транзактно-процессного способа имитации. Кроме того, использования принципа реентерабельности программ СТЭ $\Pi_j$  и программ ДЭ $\Pi_{ij}$ , позволяет существенно сократить объем оперативной памяти ЭВМ, занимаемой множеством элементов ИМ ДСС. Тот факт, что увеличивается само время имитации на ЭВМ не имеет существенного значения из-за возросшей производительности современных компьютеров. С нашей точки зрения, это допустимая плата расхода дополнительных ресурсов ЭВМ за существенное сокращение размеров программ.

Весьма важное достоинство данной САМ состоит в том, что программы СТЭ $\Pi_j$  и программа ДЭ $\Pi_j$  разработаны на языке навсегда специалистом по системному программированию и имитации и поэтому необходимо исследователю согласно инструкции составить граф GR ДСС, заменив при этом узлы на соответствующие типы СТЭ $\Pi_j$  и выбрав типы ДЭ $\Pi_{ij}$  для каждой ветви этого графа. В таблице заказа расхода ресурсов каждым СТЭ $\Pi_j$  указывается требуемое количество детерминированных ресурсов ( $n_1-n_6$ ) и функций распределения вероятностей значений расхода вероятностных ресурсов ( $F_{1j}(\tau) \div F_{4kj}(k_0)$ ). Никакого программирования специалистам предметной области не требуется. Необходимо только правильно указать таблицу коммутации СТЭ $\Pi_j$  и ДЭ $\Pi_{ij}$  и задать начальное значение 10 типов ресурсов ИМ ДСС.

**Резюме.** Рассматриваются особенности построения системы автоматизации моделирования для дискретных сложных систем. На этапе создания имитационных моделей предложено развивать использование комбинации агрегатно-процессного способа имитации вероятностных технологических процессов на основе формализации объектов исследования с помощью аппарата сетевого планирования.

**Abstract.** Features of modeling automation system construction for discrete complex systems are considered. At the stage of imitating model creation it is offered to develop the use of a combination of an aggregate-process way of likelihood technological process imitation on the basis of research object formalization by means of the network planning device.

## Литература

- 1 Максимей, И.В. Имитационное моделирование на ЭВМ / И.В. Максимей. Москва: М. Радио и связь, 1988. 232с.
- 2 Левчук, В.Д., Максимей, И.В. Программно-технологические комплексы имитации сложных дискретных систем / В.Д. Левчук, И.В. Максимей. Гомель: ГГУ им. Ф. Скорины, 2006.–263с.
- 3 Смородин, В.С., Максимей, И.В. Методы и средства имитационного моделирования технологических процессов производства/ В.С. Смородин, И.В. Максимей; М-во образования РБ Гомель: ГГУ им. Ф. Скорины, 2007. 369с.

Гомельский государственный университет им. Ф. Скорины

Поступило 10.04.10