УДК 512.542

Some notes on minimal subgroups of finite groups

NANYING YANG, L. A. SHEMETKOV

1. Introduction

All the groups in this paper will be finite.

Let G be a group. A minimal subgroup of G is a subgroup of prime order. For a group of even order, it is also helpful to consider cyclic subgroups of order 4. There has been a considerable interest in studying the group structure under the assumption that minimal subgroups and cyclic subgroups of order 4 are well-situated in G (see [8, p. 435], [3,4,6,9-11,15-18]).

It is natural to limit the hypothesis for fewer minimal subgroups and cyclic subgroups of order 4. In 2001, L. A. Shemetkov (see [12]) introduced concepts of a Q-central element and a $Q\mathfrak{F}$ -central element. Later, O. L. Shemetkova [14] proved that if all elements of prime order and all Q_8 -elements of order 4 are Q-central in G, then G is nilpotent. In this paper we describe the structure of a group assuming that minimal subgroups and Q_8 -elements of order 4 of some normal subgroups are $Q\mathfrak{U}$ -central or Q-central. We will use the following concepts.

Definition 1.1 (see [14]). An element $x \in G$ is called a Q_8 -element if there exists a section A/B of G such that $xB \in A/B$, $A/B = Q_8$ (the quaternion group of order 8) and the order of x is equal to the order of xB in A/B.

Definition 1.2 (see [12]). (1) An element x of a group G is called Q-central if there exists a central chief factor A/B of G such that $x \in A \setminus B$.

(2) An element x of a group G is called $Q\mathfrak{F}$ -central if there exists a \mathfrak{F} -central chief factor A/B of G such that $x \in A \setminus B$.

(3) An element x of a group G is called Qf-central (f is a local satellite) if there exists a f-central chief factor A/B of G such that $x \in A \setminus B$.

By definition, we consider the identity 1 as a Q-central element and $Q\mathfrak{F}$ -central element. We denote by QZ(G) and $QZ_{\mathfrak{F}}(G)$ the set of all Q-central elements and the set of all $Q\mathfrak{F}$ -central elements of G respectively. Obviously, QZ(G) contains the hypercenter $Z_{\infty}(G)$ of G, and $QZ_{\mathfrak{F}}(G)$ contains the \mathfrak{F} -hypercenter $Z_{\infty}^{\mathfrak{F}}(G)$ of G. If $\mathfrak{F} = LF(f)$ is a saturated formation with an local integrated satellite f, we use a denotation $QZ_f(G)$ instead of $QZ_{\mathfrak{F}}(G)$.

Definition 1.3 (see [6]). Let G be a group and \mathfrak{U} be the class of supersoluble groups. We say that a subgroup H of G is \mathfrak{U} -supplemented in G if there exists a subgroup K of G such that G = HK and $(H \cap K)H_G/H_G$ is contained in the \mathfrak{U} -hypercenter $Z^{\mathfrak{U}}_{\infty}(G/H_G)$ of G/H_G .

We say that $x \in G$ is \mathfrak{U} -supplemented in G if $\langle x \rangle$ is \mathfrak{U} -supplemented in G.

It is clear that normal, c-normal, c-supplemented and complemented subgroups are \mathfrak{U} -supplemented, but the converse is not true. For example, Let Z be a group of order 5, and G = [Z]Aut(Z). Then Aut(Z) is a cyclic subgroup of order 2^2 . Let L be a subgroup of order 2 in Aut(Z). Then L is not normal, c-normal, complemented and c-supplemented in G, but it is \mathfrak{U} -supplemented in G, since G is supersoluble.

Recall that for a class \mathfrak{F} of groups, a chief factor H/K of a group G is called \mathfrak{F} -central (see [21], p. 127 or [7], Definition 2.4.2) if $[H/K](G/C_G(H/K)) \in \mathfrak{F}$. The symbol $Z^{\mathfrak{F}}_{\infty}(G)$

denotes the \mathfrak{F} -hypercenter of a group G, that is, the product of all normal subgroups H of G whose G-chief factors are \mathfrak{F} -central. A subgroup H of G is said to be \mathfrak{F} -hypercentral in G if $H \leq Z_{\infty}^{\mathfrak{F}}(G)$. A class \mathfrak{F} of groups is called a formation provide that \mathfrak{F} contains all of homomorphic images of its groups and if G/M and G/N are in \mathfrak{F} , then $G/M \cap N$ is in \mathfrak{F} . Obviously, every group G has a smallest normal subgroup N such that G/N is in a non-empty formation \mathfrak{F} . A formation \mathfrak{F} is saturated if $G/\Phi(G) \in \mathfrak{F}$ always implies that G belongs to \mathfrak{F} . A formation \mathfrak{F} is saturated if $G/\Phi(G) \in \mathfrak{F}$ always implies that G belongs to \mathfrak{F} . We use \mathfrak{N} and \mathfrak{U} to denote the formation of all the nilpotent and supersoluble groups, respectively. For the formation \mathfrak{N} of all nilpotent groups, $Z_{\infty}^{\mathfrak{N}}(G)$ is usually denoted by $Z_{\infty}(G)$. A group G is a called a Schmidt group, if $G \notin \mathfrak{N}$ and $M \in \mathfrak{N}$ for any proper subgroup M of G.

Let \mathbb{P} be the set of prime numbers. A local satellite (see [22]) is a function f defined on \mathbb{P} such that f(p) is a (possibly empty) formation. A chief factor H/K of a group G is called f-central in G if $G/C_G(H/K) \in f(p)$ for all primes p dividing |H/K|. A non-empty formation \mathfrak{F} is saturated if and only if there exists a local satellite f such that \mathfrak{F} is the class of all groups with f-central chief factors. We write $\mathfrak{F} = LF(f)$ and say that f is a local satellite of \mathfrak{F} . A local satellite f of a formation $\mathfrak{F} = LF(f)$ is called: 1) semi-integrated if, for each prime p, a formation f(p) either is contained in \mathfrak{F} or coincides with the class \mathfrak{E} of all groups; 2) integrated if f(p) is contained in \mathfrak{F} for each prime p; 3) full if $\mathfrak{N}_p f(p) = f(p)$ for each prime p; 4) semi-canonical if f is full and semi-integrated; 5) canonical if f is full and integrated.

For notations and terminologies not given in this paper, the reader is referred to [5,7,21].

2. Preliminaries

Lemma 2.1 ([14], Lemma 1). Let G be a group and H a normal subgroup of G. If $x \in H$ is Q-central in G, then x is Q-central in H.

Lemma 2.2 ([13], Theorem 3.1). Let p be a prime, and $\mathfrak{F} = LF(f)$ a saturated formation, where f is a semi-canonical local satellite such that $f(q) = \mathfrak{E}$ for every prime $q \neq p$. Let H be a normal subgroup of a group G. Assume that every element of order p and every element of order 4 (if p = 2) is Qf-central in G. Then every G-chief factor of H is f-central in G.

Lemma 2.3 ([7], Corollary 3.2.9). If $\mathfrak{F} \neq \emptyset$ is a saturated formation, then for any group G we have $[G^{\mathfrak{F}}, \mathbb{Z}^{\mathfrak{F}}_{\infty}(G)] = 1$.

Lemma 2.4 ([1], Lemma 3.2). Let G = AB, where B is a maximal subgroup of G and $A = \langle x \rangle$ is a cyclic 2-subgroup of G. Then $x \in QZ(G)$.

Lemma 2.5 ([7], Corollary 3.2.7). Let $\mathfrak{F} \neq \emptyset$ be a saturated formation, and G a group. If H is a \mathfrak{F} -hypercentral normal subgroup of G, then $G/C_G(H) \in \mathfrak{F}$.

Lemma 2.6 ([15], Lemma 2.12). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} , and G a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

We say that a normal subgroup R of G is p-hypercentral in G for a prime p, if every G-chief pd-factor of R is central in G (a chief pd-factor is a chief factor whose the order is divisible by p).

Lemma 2.7 ([14], Lemma 3). Let G be a group and $R \leq G$. If R is non p-hypercentral in G, then G has a p-closed Schmidt pd-subgroup S such that:

(1) a Sylow p-subgroup S_p of S is contained in R,

(2) $QZ(G) \cap S_p \subseteq \Phi(S_p)$.

Lemma 2.8 ([14], Lemma 4). Let S be a Schmidt group with a normal and nonabelian Sylow 2-subgroup P. Let |Z(P)| = 2. If x is an element of order 4 in S, then $x \in L \leq S$ and $L \simeq Q_8$.

Lemma 2.9 ([10], Lemma 2.3). For any group G we have $C_G(F^*(G)) \leq F^*(G)$. If $F^*(G)$ is soluble, then $F^*(G) = F(G)$.

Lemma 2.10. Let G be a group, and H a normal subgroup of G. Let \mathfrak{F} be a saturated formation. If $F^*(H) \subseteq Z^{\mathfrak{F}}_{\infty}(G)$, then $H \subseteq Z^{\mathfrak{F}}_{\infty}(G)$.

Proof. Let $C = C_G(F^*(H))$, then $G/C \in \mathfrak{F}$ by Lemma 2.5. Since $HC/C \leq G/C \in \mathfrak{F}$, HC/C is \mathfrak{F} -hypercentral in G/C. By the G-isomorphism $HC/C \simeq H/H \cap C$, we have that $H/H \cap C$ is \mathfrak{F} -hypercentral in $G/H \cap C$. By Lemma 2.9, $H \cap C \subseteq F^*(H)$. It follows that $H/F^*(H)$ is \mathfrak{F} -hypercentral in $G/F^*(H)$ and hence $H \subseteq Z^{\mathfrak{F}}_{\infty}(G)$.

Lemma 2.11. Let G be a group, and x its element of order 2^n . Then $x \in QZ(G)$ if and only if $x \in QZ_{\mathfrak{U}}(G)$.

Proof. We need only to consider the case $x \in QZ_{\mathfrak{U}}(G)$. Then there exists a G-chief factor H/K such that |H/K| = p and $x \in H \setminus K$. So p = 2. It follows that $H/K \subseteq Z(G/K)$ and consequently $x \in QZ(G)$.

Lemma 2.12. Let G be a group of odd order, and x its element of order p. If x is \mathfrak{U} -supplemented in G, then $x \in QZ_{\mathfrak{U}}(G)$.

Proof. By hypothesis, there exists a subgroup T in G such that $\langle x \rangle T = G$ and $(\langle x \rangle \cap T) \langle x \rangle_G / \langle x \rangle_G \subseteq Z^{\mathfrak{U}}_{\infty}(G/\langle x \rangle_G)$.

If $\langle x \rangle_G = \langle x \rangle$. Then $x \in QZ_{\mathfrak{U}}(G)$. Assume that $\langle x \rangle_G = 1$. Then $\langle x \rangle \cap T \subseteq Z_{\infty}^{\mathfrak{U}}(G)$. If T = G, then $x \in Z_{\infty}^{\mathfrak{U}}(G) \subseteq QZ_{\mathfrak{U}}(G)$. If $T \neq G$, then |G:T| = p.

Lemma 2.13. Let G be a group, and x its 2-element. If x is \mathfrak{U} -supplemented in G, then $x \in QZ(G)$.

Proof. By hypothesis, there exists a subgroup T in G such that $\langle x \rangle T = G$ and $(\langle x \rangle \cap T) \langle x \rangle_G / \langle x \rangle_G \subseteq Z^{\mathfrak{U}}_{\infty}(G/\langle x \rangle_G)$.

If $T \neq G$, then $x \in QZ(G)$ by Lemma 2.4. If T = G, then $\langle x \rangle / \langle x \rangle_G \subseteq Z^{\mathfrak{U}}_{\infty}(G/\langle x \rangle_G)$. From Lemma 2.11, we have $\langle x \rangle / \langle x \rangle_G \subseteq QZ(G/\langle x \rangle_G)$. It follows that $x \in QZ(G)$.

3. Main Results

Lemma 3.1. Let G be a group, and H a normal subgroup of G. If all elements of order 2 in H and all Q_8 -elements of order 4 in H are Q-central in G, then H is 2-hypercertral in G.

Proof. Suppose that H is non 2-hypercentral in G. By Lemma 2.7, G has a 2-closed Schmidt 2d-subgroup $S = [S_2]S_q$ such that: (1) S_2 is a Sylow 2-subgroup of S and $S_2 \subseteq H$, (2) $QZ(G) \cap S_2 \subseteq \Phi(S_2)$.

If S_2 is abelian, then S_2 is an elementary abelian 2-group. So $S_2 = S_2 \cap QZ(G) \subseteq \Phi(S_2) = 1$, a contradiction.

If S_2 is non-abelian, then $\Phi(S_2) = Z(S_2)$ is an elementary abelian 2-group. Let Z_0 be a subgroup of index 2 in $Z(S_2)$, and xZ_0 be an element of order 4 in S_2/Z_0 . By Lemma 2.8, xZ_0 is contained in a subgroup which is isomorphic to Q_8 . Since x is of order 4, x is a Q_8 -element. By the hypothesis, x is Q-central in G, therefore $x \in \Phi(S_2)$, a contradiction. \Box

Theorem 3.2. Let G be a finite group, and H a normal subgroup of G. If all elements of prime order in H and all Q_8 -elements of order 4 in H are $Q\mathfrak{U}$ -central in G, then $H \subseteq Z^{\mathfrak{U}}_{\infty}(G)$.

Proof. From Lemma 2.11 and Lemma 3.1 we have that H is 2-hypercentral in G. Therefore H is 2-nilpotent. Let H_0 be a normal 2-complement of H. Then $H_0 \leq G$ and $H/H_0 \subseteq Z_{\infty}(G/H_0) \subseteq Z_{\infty}^{\mathfrak{U}}(G/H_0)$. From Lemma 2.2 we have $H_0 \subseteq Z_{\infty}^{\mathfrak{U}}(G)$. Thus $H \subseteq Z_{\infty}^{\mathfrak{U}}(G)$.

Using Lemma 3.1, Lemma 2.12 and Lemma 2.13 we obtain the following.

Corollary 3.2.1. Let G be a finite group, and H a normal subgroup of G. If all elements of prime order in H and all Q_8 -elements of order 4 in H are \mathfrak{U} -supplemented in G, then $H \subseteq Z^{\mathfrak{U}}_{\infty}(G)$.

Corollary 3.2.2. Let \mathfrak{F} be a saturated formation containing \mathfrak{U} . If $G \notin \mathfrak{F}$, then there exists an element $x \in G^{\mathfrak{F}}$ such that x is not $Q\mathfrak{U}$ -central in G and either $|\langle x \rangle|$ is a prime or x is a Q_8 -element of order 4.

Proof. Apply Theorem 3.2 and Lemma 2.6.

Corollary 3.2.3 (see [6]). Let \mathfrak{F} be a S-closed saturated formation containing all supersoluble groups. Suppose that G is a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If all cyclic subgroups of E of prime order and order 4 are \mathfrak{U} -supplemented in G, then $G \in \mathfrak{F}$.

Corollary 3.2.4 (see [2]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and G be a group. If all minimal subgroups and all cyclic subgroups of order 4 of $G^{\mathfrak{F}}$ are c-normal in G, then $G \in \mathfrak{F}$.

Corollary 3.2.5 (see [16]). If all cyclic subgroups of a group G with prime order and order 4 are c-normal in G, then G is supersoluble.

Corollary 3.2.6 (see [3]). Let G be a group with a normal subgroup N such that G/N is supersoluble. If every element of prime order and order 4 of N is c-supplemented in G, then G is supersoluble.

Corollary 3.2.7 (see [19]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} . Assume that G is a group with a normal subgroup N such that $G/N \in \mathfrak{F}$. If every element of prime order and order 4 of N is c-supplemented in G, then $G \in \mathfrak{F}$.

Corollary 3.2.8. Let \mathfrak{F} be a saturated formation containing \mathfrak{U} , and G a group. Then $G \in \mathfrak{F}$ if and only if there exists a normal soluble subgroup H in G such that $G/H \in \mathfrak{F}$ and all cyclic subgroups of F(H) of prime order and order 4 are $Q\mathfrak{U}$ -central in G.

Proof. If $G \in \mathfrak{F}$, then the hypotheses is true with H = 1.

For the sufficiency part, applying Theorem 3.2, Lemma 2.5 and Lemma 2.6, Corollary holds. $\hfill \Box$

Remark 1. Corollary 3.2.8 is not true if we omit the solubility of H. Set $G = H \times K$, where H = SL(2,5) and $K \in \mathfrak{U}$. Then |F(H)| = 2 and $G/H \simeq K \in \mathfrak{U}$. $F(H) \subseteq QZ_{\mathfrak{U}}(G)$, but $G \notin \mathfrak{U}$.

Corollary 3.2.9 (see [9]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} , and let G be a group. Then $G \in \mathfrak{F}$ if and only if there exists a normal soluble subgroup H in G such that $G/H \in \mathfrak{F}$ and all cyclic subgroups of F(H) of prime order and order 4 are c-normal in G.

Corollary 3.2.10. Let \mathfrak{F} be a saturated formation containing \mathfrak{U} . Assume G is a group with a normal subgroup N such that $G/N \in \mathfrak{F}$. If every element of prime order and Q_8 -element order 4 of $F^*(N)$ is $Q\mathfrak{U}$ -central in G, then $G \in \mathfrak{F}$.

Proof. By Theorem 3.2, $F^*(N) \subseteq Z^{\mathfrak{U}}_{\infty}(G) \subseteq Z^{\mathfrak{F}}_{\infty}(G)$. Then apply Lemma 2.10. **Corollary 3.2.11** (see [19]). Suppose G is a group with a normal subgroup N such that G/N is supersoluble. If every element of prime order and order 4 of $F^*(N)$ is c-supplemented in G, then G is supersoluble.

Corollary 3.2.12 (see [20]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} . Assume G is a group with a normal subgroup N such that $G/N \in \mathfrak{F}$. If every element of prime order and order 4 of $F^*(N)$ is c-supplemented in G, then $G \in \mathfrak{F}$.

Theorem 3.3. Let G be a finite group, and H be a normal subgroup of G. If all elements of prime order in H and all Q_8 -elements of order 4 in H are Q-central in G, then $H \subseteq Z_{\infty}(G)$.

Proof. From Lemma 3.1 we have that H is 2-hypercentral in G. So H is 2-nilpotent. Let H_0 be a normal 2-complement of H. Then $H_0 \leq G$ and $H/H_0 \leq Z_{\infty}(G/H_0)$. By Lemma 2.2, $H_0 \leq Z_{\infty}(G)$, therefore $H \leq Z_{\infty}(G)$.

Corollary 3.3.1. Let G be a group with a normal subgroup N such that $G/N \in \mathfrak{N}$. If every element of prime order and every Q_8 -element of order 4 in $F^*(N)$ is Q-central in G, then $G \in \mathfrak{N}$.

Proof. By Theorem 3.3, $F^*(N) \subseteq Z_{\infty}(G)$. By Lemma 2.10, $N \leq Z_{\infty}(G)$. Consequently $G \in \mathfrak{N}$.

Corollary 3.3.2 (see [18]). Suppose that N is a normal subgroup of a group G such that G/N is nilpotent. Suppose that every element of order 4 of $F^*(N)$ is c-normal in G. Then G is nilpotent if and only if every element of prime order of $F^*(N)$ is contained in the hypercenter $Z_{\infty}(G)$ of G.

Corollary 3.3.3 (see [19]). Suppose that N is a normal subgroup of a group G such that G/N is nilpotent. Suppose every element of order 4 of $F^*(N)$ is c-supplemented in G. Then G is nilpotent if and only if every element of prime order of $F^*(N)$ is contained in the hypercenter $Z_{\infty}(G)$ of G.

Theorem 3.4. Let \mathfrak{F} be a saturated formation containing \mathfrak{N} . Suppose that every Q_8 element of order 4 in $F^*(G^{\mathfrak{F}})$ is Q-central in G. If $G \notin \mathfrak{F}$, then there exists an element of prime order in $F^*(G^{\mathfrak{F}}) \setminus Z^{\mathfrak{F}}_{\infty}(G)$.

Proof. Suppose that the set of elements of prime order in $F^*(G^{\mathfrak{F}}) \setminus Z^{\mathfrak{F}}_{\infty}(G)$ is empty. Let x be an arbitrary element of prime order of $F^*(G^{\mathfrak{F}})$. Then, by Lemma 2.3, $x \in Z^{\mathfrak{F}}_{\infty}(G) \cap G^{\mathfrak{F}} \leq Z(G^{\mathfrak{F}}) \leq Z_{\infty}(G^{\mathfrak{F}})$. Since every $Q_{\mathfrak{F}}$ -element of order 4 of $F^*(G^{\mathfrak{F}})$ is Q-central in G, it is Q-central in $G^{\mathfrak{F}}$ by Lemma 2.1. Applying Corollary 3.3.1 for $G^{\mathfrak{F}}$, we have $G^{\mathfrak{F}} \in \mathfrak{N}$. So $F^*(G^{\mathfrak{F}}) = F(G^{\mathfrak{F}}) = G^{\mathfrak{F}}$. In particular, $G^{\mathfrak{F}}$ has a normal Hall 2'-subgroup $G^{\mathfrak{F}}_{2'}$. Using Lemma 2.2, we have $G^{\mathfrak{F}}_{\mathfrak{I}} \leq Z^{mathfrakF}_{\mathfrak{I}}(G^{\mathfrak{F}})$.

Suppose that $G^{\mathfrak{F}}$ is non 2-hypercentral in G. By Lemma 2.7, G has a 2-closed Schmidt 2*d*-subgroup $S = [S_2]S_q$ (q is a prime) such that: (1) S_2 is a Sylow 2-subgroup of S and $S_2 \subseteq G^{\mathfrak{F}}$, (2) $QZ(G) \cap S_2 \subseteq \Phi(S_2)$. Clearly, S_2 is non-abelian. Then $\Phi(S_2) = Z(S_2)$ is an elementary abelian 2-group. Let Z_0 be a subgroup of index 2 in $Z(S_2)$ and xZ_0 be an element of order 4 in S_2/Z_0 . By Lemma 2.8, xZ_0 is contained in a subgroup which is isomorphic to Q_8 . Since x is order of 4, x is a Q_8 -element. Sinse x is Q-central in G, we have $x \in \Phi(S_2)$, a contradiction.

Corollary 3.4.1 ([19]). Let \mathfrak{F} be a saturated formation containing \mathfrak{N} . Suppose that G is a group such that every element of order 4 of $G^{\mathfrak{F}}$ is c-supplemented in G. Then $G \in \mathfrak{F}$ if and only if every element of prime order of $G^{\mathfrak{F}}$ lies in $Z^{\mathfrak{F}}_{\infty}(G)$.

Corollary 3.4.2 (see [20]). Let \mathfrak{F} be a saturated formation containing \mathfrak{N} . Suppose that G is a group such that every element of order 4 of $F^*(G^{\mathfrak{F}})$ is c-supplemented in G. Then $G \in \mathfrak{F}$ if and only if every element of prime order of $F^*(G^{\mathfrak{F}})$ lies in $\mathbb{Z}^{\mathfrak{F}}_{\infty}(G)$.

Abstract. In this paper we describe the structure of a finite group assuming that minimal subgroups and Q_8 -elements of order 4 of some normal subgroups are $Q\mathfrak{U}$ -central or Q-central.

References

1. Al-Sharo Kh. A. Factorizable Groups and Formations / Kh. A. Al-Sharo, E. A. Molokova and L. A. Shemetkov.— Acta Applicandae Mathematicae.— 2005.— 85.— P. 3–10.

2. Ballester-Bolinches A. Finite groups with *c*-normal minimal subgroups /A. Ballester-Bolinches, Y. Wang.— J. Pure Appl. Algebra.— 2000.— 153.— P. 121–127 (2000).

3. Ballester-Bolinches A. c-Supplemented subgroups of finite groups /A. Ballester-Bolinches, Y. Wang, X. Guo.— Glasgow Math. J. — 2000.— 42.— P. 383–389.

4. Buckley J. Finite groups whose minimal subgroups are normal /J. Buckley. – Math Z.– 197. – 116. – P. 15–17.

5. Doerk K. Finite Soluble Groups /K. Doerk and T. O. Hawkes .— Berlin: De Gruyter, 1992.

6. W. Guo W. On $\mathfrak{F} ext{-supplemented}$ subgroups of finite groups, Manuscripta Math.-2008.-127(2).- P. 139-150.

7. Guo W. The Theory of Classes of Groups / W. Guo.— Beijing–New York–Dordrecht–Boston–London: Science Press–Kluwer Academic Publishers, 2000.

8. Huppert B. Endliche Gruppen I /B. Huppert.— Berlin: Springer-Verlag, 1968.

9. Li Y. Some notes on the minimal subgroups of Fitting subgroups of finite groups /Y. Li.- J. Pure Appl. Algebra.- 2002.- 171.- P. 289-294.

10. Li Y. The influence of minimal subgroups on the structure of a finite group /Y. Li and Y. Wang.— Proc. Amer. Math. Soc.—2003.— 131(2).— P. 337–341.

11. Shaalan A. The influence of π -quasinormality of some subgroups /A. Shaalan.—Acta Math Hungar.— 1990.— 56.— P. 287–293.

12. Shemetkov L.A. A new concept of a generalized central element /L. A. Shemetkov.— Abstracts of International Algebra Conference dedicated to 100th birthday of S. A. Chunikhin, F.Scorina Gomel University, Gomel, 2005, p. 22–23.

13. Shemetkova O.L Finite groups with a system of generalized central elements/O. L. Shemetkova.— Algebra and Discrete Mathematics.— 2004.— No. 4.— P. 59–71.

14. Shemetkova O.L. On finite groups with *Q*-central elements of prime order /O. L. Shemetkova.— Proc. of the Institute of Mathematics, Minsk, Republic of Belarus (in Russion).— 2008.— V. 16, No. 1.— P. 97–99.

15. Skiba A.N. Finite Groups with c-Quasinormal Subgroups/ A. N. Skiba and Titov O. V.- Siberian Math. Journal.-2007.- V. 48, No. 3.- P. 544-554.

16. Wang Y. *c*-normality of groups and its properties /Y. Wang.— J. Algebra.— 1996.— **180**.— P. 954–965.

17. Wang Y. Finite groups with some subgroups of Sylow subgroups *c*-supplemented /Y. Wang.— J. Algebra.—2000.— 224.— P. 467–478.

18. Wang Y. The Influence of Minimal Subgroups on the Structure of Finite Groups /Y. Wang.— Acta Mathematica Sinica, English Series.— 2000.— V.16, No. 1.— P. 63–70.

19. Wang Y. Finite Groups with c-Supplemented Minimal Subgroup /Y. Wang, Y. Li, J. Wang, — Algebra Colloquium.—2003.— 10:3.— P. 413–425.

20. Wei H. /H. Wei, Y. Wang, Y. Li, Proceedings of The American Mathematical Society, Volume 132, Number 8, Pages 2197–2204, S 0002-9939(04)07296-X Article electronically published on March 24, 2004.

21. Shemetkov L.A. Formation of algebraic systems /L.A. Shemetkov and A.N. Skiba.-- Moscow: Nauka, 1989.

22. Shemetkov L.A. On partially saturated formations and residuals of finite groups /L.A. Shemetkov. - Comm. Algebra. - 2001. - 29(9). - P. 4125-4137.

Francisk Scorina Gomel University

Поступило 10.01.09