А. С. Устинович

(УО «БрГУ им. А. С. Пушкина», Брест)

СЛУЧАЙ НЕЕДИНСТВЕННОГО РЕШЕНИЯ НЕКОРРЕКТНОЙ ЗАДАЧИ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

В действительном гильбертовом пространстве H решается уравнение первого рода

$$Ax = y, (1)$$

где A — ограниченный положительный самосопряженный оператор, для которого нуль является собственным значением. Следовательно, задача некорректна, так как имеет неединственное решение.

Материалы XXII Республиканской научной конференции студентов и аспирантов «Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях», Гомель, 25-27 марта 2019 г.

Для решения уравнения (1) применим регуляризующий алгоритм в виде явного итерационного процесса с попеременно чередующимся шагом:

$$x_{n+1} = x_n - \alpha_{n+1} (Ax_n - y), \quad x_0 = 0,$$

$$\alpha_{2n+1} = \alpha, \quad n = 0, 1, 2, ..., \alpha_{2n+2} = \beta, \quad n = 0, 1, 2,$$
(2)

Обозначим через $N(A) = \{x \in H \mid Ax = 0\}$, а M(A) — ортогональное дополнение ядра N(A) до H. Пусть P(A)x — проекция $x \in H$ на N(A), а $\Pi(A)x$ — проекция $x \in H$ на M(A). Справедлива [1]

Теорема. Пусть $A \ge 0$, $y \in H$, $0 < \alpha < 2$, $(\alpha + \beta)^2 < 8\alpha\beta$, $\alpha\beta < \alpha + \beta$. Тогда для явного итерационного метода (2) верны следующие утверждения:

a)
$$Ax_n \to \Pi(A)y$$
, $||Ax_n - y|| \to I(A, y) = \inf_{x \in H} ||Ax - y||$;

б) итерационный метод (2) сходится тогда и только тогда, когда уравнение $Ax = \Pi(A)y$ разрешимо. В последнем случае $x_n \to P(A)x_0 + x^*$, где x^* – минимальное решение.

Замечание. Так как $x_0 = 0$, то $x_n \to x^*$, т. е. итерационный процесс (2) сходится к нормальному решению, т. е. к решению с минимальной нормой.

Литература

1 Bialy, H. Iterative Behandlung Linearer Funktionsgleichungen / H. Bialy // Arch. Ration. Mech. and Anal. – 1959. – Vol. 4, № 2. – P. 166-176.