А. Ю. Кисель

(УО «БГУ», Минск)

СЛУЧАЙНЫЙ ПРОЦЕСС С СЕМИВАРИОГРАММОЙ ГНЕЗДОВОЙ СТРУКТУРЫ

В настоящее время для решения многих прикладных задач прогнозирования актуально применение геостатистических методов, в частности, кригинга. В основе кригинга лежит семивариограмма.

Рассмотрим случайный процесс:

$$Z(t) = \sum_{j=0}^{q} \beta_j Y_j(t), \qquad (1)$$

где $t\in R, q\in N, \ \beta_j$ — постоянные, удовлетворяющие условию $\sum\limits_{j=0}^q \beta_j^{\ 2} <\infty$, а $Y_j(t)$ — гауссовские центрированные стационарные в широком смысле случайные процессы с ковариационными функциями $R_j(t)=De^{-w_j/t/},\ t\in R,\ w_j>0,\ 0< D<\infty$, а также взаимными ковариационными функциями

$$R_{jp}(t,s) = M(Y_j(t)Y_p(s)) = 0, p \neq j, p, j = 0,...,q \ t, s \in R.$$

Доказаны следующие результаты.

Теорема 1. Случайный процесс Z(t), $t \in R$, вида (1) является стационарным в широком смысле.

Доказательство вытекает из определения стационарности в широком смысле случайного процесса [1].

Аналитические и численные методы исследования в математике Теория вероятностей и математическая статистика, теория массового обслуживания

Теорема 2. Семивариограмма случайного процесса Z(t), $t \in R$, имеет вид:

вид:
$$\gamma_z(t) = \sum_{j=0}^q \beta_j^2 (1 - R_j(t)) = \sum_{j=0}^q \beta_j^2 (1 - De^{-w_j/t/}), \ t \in R.$$

Доказательство следует из утверждения теоремы 1 и соотношения, связывающего ковариационную функцию и семивариограмму стационарного в широком смысле случайного процесса [1].

Литература

1 Труш, Н. Н. Случайные процессы и их основные характеристики / Н. Н. Труш, Т. В. Цеховая. – Минск : БГУ, 2016. – 67 с.