С. Н. Войтович, О. А. Козлов, В. М. Селькин (ГГУ им. Ф. Скорины, Гомель)

О МИНИМАЛЬНЫХ НАСЛЕДСТВЕННЫХ ω -ЛОКАЛЬНЫХ НЕ p-НИЛЬПОТЕНТНЫХ ФОРМАЦИЙ

Пусть Θ – некоторая непустая совокупность формаций. Формации принадлежащие Θ называются Θ -формациями. Θ -формация F назы-Н_⊙-критической формацией [1], или минимальной H_{Θ} -формацией [2], если $\mathsf{F}_{\not\sqsubseteq}\mathsf{H}$, но в классе групп H содержится всякая собственная Θ -подформация из F. Если Θ -формации F и H такие, что F⊈H, тогда, в большинстве случаев, можно показать, что F содержит, по крайней мере, одну Но-критическую подформацию. Этот факт указывает на важность изучения критических формаций. Общая проблема Н_О-критических формаций впервые была поставлена Л.А. Шеметковым в работе [2]. В случае когда $\Theta = l$ является классом всех локальных формаций, данная проблема была решена А.Н. Скибой в [3]. Описание H_{Θ} -критических формаций, в случае когда Θ является классом наследственных локальных формаций, представлено в [4]. Основные результаты исследований, проводимых в данном направлении, представлены в книгах Л.А. Шеметкова и А.Н. Скибы [5, 6], Венбин Го [7]. Существенный вклад в теорию критических формаций внесли К.П. Шам и Венбин Го, где были описаны минимальные тотально локальные ненильпотентные формации. После выхода работы Л.А. Шеметкова и А.Н. Скибы начались изучения минимальных ω -локальных не H-формаций.

Пусть ω – произвольное непустое множество простых чисел. Всякая функция вида

$$f:\omega\cup\{\omega'\}\mapsto\{$$
 формации групп $\}$

называется ω -локальным спутником. Если все значения ω -локального спутника f являются наследственными формациями, то f называется наследственным ω -локальным спутником. Символом $LF_{\omega} < f >$ обозначим класс групп

$$(G|G/O_{\omega}(G) \in f(\omega')$$
 и $G/F_p(G) \in f(p)$ для всех $p \in \omega \cap \pi(G)$, для любого произвольного ω -локального спутника f . Пусть $\mathsf{F} = LF_{\omega} < f >$, то говорим, что $f - \omega$ -локальный V -спутник формации F . В этом случае, мы называем F ω -локальной формацией. Если при этом все значения f лежат в F , то f будем называть внутренним ω -локальным V -спутником формации F .

Теорема. Тогда и только тогда формация F является минимальной наследственной ω -насыщенной не p-нильпотентной формацией, когда $\mathsf{F} \! = \! \mathsf{s}^{\omega} \mathsf{form}(G)$, где G – такая минимальная не $(\mathsf{G}_{p'}\mathsf{N}_p)$ -группа с нефрат-

тиниевым монолитом $P\!=\!G^{\mathsf{G}_p,\mathsf{N}_p}$, что p делит |P| и либо P — неабелева группа, и при $p\!\in\!\pi\!=\!\pi(P)\!\cap\!\omega$, G — минимальная не M -группа, причем $P\!=\!G^{\mathsf{N}_p}$, либо $G\!=\![P]H$, где $P\!=\!C_G(P)$ — абелева p-группа, и при $p\!\in\!\omega$ H — такая монолитическая минимальная не (N_p) -группа с монолитом $Q\!=\!H^{\mathsf{N}_p}$, что $Q\!\not\subseteq\!\Phi(H)$ и p не делит |Q|.

Материалы XX Республиканской научной конференции студентов и аспирантов «Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях», Гомель, 20–22 марта 2017 г.

Литература

- 1 Скиба, А. Н. О критических формациях / А. Н. Скиба // Доклады АН БССР. 1983. Т.27, № 9. С. 780–782.
- 2 Шеметков, Л. А. Экраны ступенчатых формаций / Л. А. Шеметков // Труды VI Всесоюзного симпозиума по теории групп. Киев, 1980.-C.37-50.
- 3 Скиба, А. Н. О критических формациях / А. Н. Скиба // Бесконечные группы и примыкающие алгебраические структуры. Киев, 1993. С. 258–268.
- 4 Селькин, В. М. О наследственных критических формациях/В. М. Селькин, А. Н. Скиба. Сибирский мат. журнал, 1996. Т.37, N = 5. С. 1145–1153.
- 5 Шеметков, Л. А. Формации алгебраических систем Л. А. Шеметков, А. Н. Скиба. Москва: Наука, 1989. 253 с.
- 6 Скиба, А. Н. Алгебра формаций / А. Н. Скиба. Минск : Беларуская навука, 1997. 240 с.
- 7 Wenbin, G. The Theory of Classes of Groups / Wenbin Guo // Beijing-New York-Dordrecht-Boston-London: Science Press-Kluwer Academic Publishers, 2000. 275 p.