А. В. Мельникова

(ГГУ им. Ф.Скорины, Гомель)

ПОСТАНОВКА ЗАДАЧИ ТЕПЛООТДАЧИ В НЕЛИНЕЙНЫХ СИСТЕМАХ ПАРАБОЛИЧЕСКОГО ТИПА

В настоящее время имеется несколько подходов к решению задач управления процессами передачи тепла. При управлении процессов передачи тепла возникает широкий спектр актуальных задач: идентификация коэффициентов, определение внутренних источников, вычисление граничных источников. В данной работе рассматривается задача восстановления коэффициентов теплообмена для процессов, описываемых нестационарными нелинейными уравнениями тепловодности.

Рассмотрим нелинейное уравнение теплопроводности, полагая $C(T) = const, \lambda(t) = const, u_2(t) = const.$

$$C(T(x,t))\frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(\lambda(T(x,t)) \frac{\partial T(x,t)}{\partial x} \right) \tag{1}$$

с граничными и начальными условиями

$$\lambda(T(x,t)) \frac{\partial T(x,t)}{\partial x} \Big|_{x=0} = u_1(t) (T_1^C(t) - T(0,t)), \ t \in [0,t_*],$$

$$\lambda(T(x,t)) \frac{\partial T(x,t)}{\partial x} \Big|_{x=b} = u_2(t) (T_2^C(t) - T(b,t)), \ t \in [0,t_*],$$

$$T(x,0) = T^*(x), \ x \in [0,b].$$
(4)

$$\lambda(T(x,t)) \frac{\partial T(x,t)}{\partial x} \Big|_{x=b} = u_2(t) (T_2^C(t) - T(b,t)), \ t \in [0, t_*], \tag{3}$$

$$T(x, 0) = T^*(x), x \in [0, b].$$
 (4)

Система уравнений (1)-(4) описывает распределенную динамическую систему, для которой $T = T(x,t), x \in [0,b], t \in [0,t_*]$ – температурное поле, функции $u_1(t), u_2(t), t \in [0, t_*]$ – коэффициенты теплообмена на левом и правом концах отрезка[0, b]. C(t) – коэффициент теплоемкости, $T^*(x)$ – начальная температура, $T_1^C(t)$, $T_2^C(t)$ – температура окружающей среды на левом и правом концах отрезка $[0,b],\ \lambda(T)$ – коэффициент теплопроводности. В процессе функционирования системы (1)-(4) измерительное устройство определяет взвешенную сумму температур

$$y(t) = \sum_{p=1}^{s} d_p T(x_p^*, t).$$
 (5)

 $y(t) = \sum_{p=1}^{s} d_p T(x_p^*, t) . \tag{5}$ Здесь x_p^* , $p=1,\dots,s-$ заданные точки из отрезка [0,b]. Коэффициенты $d_p, p-1, \ldots$ характеризуют веса температурного поля в точках $x_p^*, \ p=1,...,s$. При $d_p=1, p-1,...,s$ считается, что устройство измеряет среднюю температуру в точках $x_p^*, p = 1,...,s$, а при $s = 1, d_1 = 1$ – температуру в заданной точке $x = x_1^*$. Требуется по данным измерений $v(t), t \in [0, t_*],$ коэффициент теплообмена восстановить $u_1(t), t \in [0,t_*].$