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Abstract. The aim of this note is to give the boundedness conditions for
Hausdorff operators on Hardy spaces H1 with the norm defined via (1, q)
atoms over homogeneous spaces of Lie groups with doubling property and to
apply results we obtain to generalized Delsarte operators and to Hausdorff
operators over multidimensional spheres.
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1 Introduction

One-dimensional Hausdorff operators were introduced by Hardy [1, Section
11.18] as a transformations of functions of a continuous variable analogous
to the regular Hausdorff transformations for sequences and series. Although
occasionally one-dimensional Hausdorff operators appeared before 2000 (see
[2] and [3]), the modern development of this theory begins with the work of
Liflyand and Móricz [4] where Hausdorff operators on one-dimensional Hardy
space were considered. The multidimensional case was studied in [5]. For
more details of the development of the theory of Hausdorff operators up to
2014 see [6], and [7].

Hausdorff operators on the Hardy space H1 over homogeneous spaces of
locally compact groups were first introduced by the author in [8] for the case
of doubling measures, and in [9] for the case of locally doubling measures.
The case of locally compact groups was considered earlier in [10]. The aim
of this note is to improve and generalize results from [8] to the case of Hardy
spaces H1(G/K) with the norm defined via (1, q) atoms when G is a Lie
group and to apply results we obtain to generalized Delsarte operators and
to Hausdorff operators over multidimensional spheres.
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2 The main result

Let G be a locally compact metrizable group with left invariant metric ρ and
left Haar measure ν. We assume that the following doubling condition in a
sense of [11] holds:

there exists a constant C such that

ν(B(x, 2r)) ≤ Cν(B(x, r))

for each x ∈ G and r > 0; here B(x, r) denotes the ball of radius r around x.
The doubling constant is the smallest constant C ≥ 1 for which the last

inequality is valid. We denote this constant by Cν . Then for each x ∈ G, k ≥ 1
and r > 0

ν(B(x, kr)) ≤ Cνk
dν(B(x, r)), (D)

where d = log2Cν (see, e.g., [12, p. 76]). The number d takes the role of a
”dimension” for a doubling metric measure space G.

Homogeneous group in a sense of Folland and Stein [13] (i.e., a connected
simply connected Lie group G whose Lie algebra is equipped with dilations)
enjoys the doubling condition and Cν = 2Q, where Q stands for the homoge-
neous dimension of G [14, Lemma 3.2.12]. A complete Riemannian manifold,
with Ricci curvature nonnegative outside a compact subset of the manifold,
satisfies the doubling condition, as demonstrated in [15, Lemma 1.3]. Com-
pact Lie groups endowed with Riemann metric and Haar measure satisfy the
doubling condition, too [11, p. 588, Example (7)]. For complete noncompact
manifolds with nonnegative Ricci curvature, the doubling property for the
volume measure follows from the volume comparison inequality of Bishop
and Gromov [16, Theorem 10.6.6].

We denote by Aut(G) the space of all topological automorphisms of G
endowed with its natural topology Tβ [17, Ch. X, §3, n 5], L(Y ) denotes the
space of linear bounded operators on a normed space Y .

Let K be a compact subgroup of G with normalized Haar measure β.
Consider the quotient space G/K of left cosets ẋ := xK = πK(x) (x ∈ G)
where πK : G → G/K stands for a natural projection. We shall assume that
the measure ν is normalized in such a way that (generalized) Weil’s formula

∫

G

g(x)dx =

∫

G/K

(∫

K

g(xk)dk

)
dλ(ẋ) (1)

holds for all g ∈ L1(G), where λ denotes some left-G-invariant measure on
G/K (see [18, Chapter VII, §2, No. 5, Theorem 2 ] and especially remark
c) after this theorem or [19, Proposition 10.4.12]). Here G-left invariance of
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λ means that λ(xE) = λ(E) for every Borel subset E of G/K and for every
x ∈ G. This measure is unique up to constant multiplier.

Henceforth we write dx instead of dν(x) and dk instead of dβ(k). We
shall write also dẋ instead of dλ(ẋ).

The function g : G → C is called right-K-invariant if g(xk) = g(x) for
all x ∈ G, k ∈ K. For such a function we put ġ(ẋ) := g(x). This definition
is correct and for g ∈ L1(G) formula (1) implies that

∫

G

g(x)dx =

∫

G/K

ġ(ẋ)dẋ (2)

(recall that
∫
K
dk = 1).

The map g 7→ ġ is a bijection between the set of all right-K-invariant
functions on G (all right-K-invariant functions from L1(G)) and the set of
all functions on G/K (respectively functions from L1(G/K, λ)).

Let an automorphism A ∈ Aut(G) maps K onto itself. Since

A(ẋ) := A(xK) = {A(x)A(k) : k ∈ K} = A(x)K = πK(A(x))

we get a homeomorphism Ȧ : G/K → G/K, Ȧ(ẋ) := πK(A(x)). Then for
every right-K-invariant function g on G we have ġ(Ȧ(ẋ)) = g(A(x)).

We put
AutK(G) := {Ȧ : A ∈ Aut(G), A(K) = K}.

A ν-measurable function a on G is called an (1, q)-atom (q ∈ (1,∞]) if
(i) the support of a is contained in a ball B(x, r);
(ii) ‖a‖∞ ≤ 1

ν(B(x,r))
if q = ∞, and

‖a‖q ≤ ν(B(x, r))
1

q
−1 if q ∈ (1,∞)1;

(iii)
∫
G
a(x)dν(x) = 0.

In case ν(G) < ∞ we shall assume ν(G) = 1; in this case the constant
function having value 1 is also considered to be an atom.

Hereafter by atom we mean an (1, q)-atom on G.
Definition 1. [8], [9]. We define theHardy space H1(G/K) = H1,q(G/K)2

as a space of such functions f on G/K that admit an atomic decomposition
of the form

f =
∞∑

j=1

λjȧj

1As usual, ‖ · ‖q denotes the Lq norm.
2It is known that H1,q(G/K) does not depend on q ∈ (1,∞] [11, Theorem A, p. 592].

We write H1,q(G/K) instead of H1(G/K) in order to stress the fact that we use the norm
‖ · ‖H1,q(G/K) described below.
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where aj are right-K-invariant (1, q)-atoms on G and
∑∞

j=1 |λj| < ∞. In this
case,

‖f‖H1,q(G/K) := inf

∞∑

j=1

|λj |,

and infimum is taken over all decompositions above of f .
In other words, f = ġ where g =

∑∞
j=1 λjaj , aj are right-K-invariant

(1, q)-atoms on G, and
∑∞

j=1 |λj | < ∞. Moreover, ‖f‖H1,q(G/K) = ‖g‖H1,q(G).
Remark 1. Real Hardy spaces over compact connected (not necessary

quasi-metric) Abelian groups were defined in [20].
Proposition 1. [9]. Let G 6= K. Then the space H1,q(G/K) is nontrivial

and Banach.
Definition 2. [8]. Let (Ω, µ) be a measure space, (Ȧ(u))u∈Ω ⊂ AutK(G)

a family of homeomorphisms of G/K, and Φ a measurable function on (Ω, µ).
For a Borel measurable function f on G/K we define a Hausdorff operator
on G/K as follows

(HΦ,Ȧf)(ẋ) :=

∫

Ω

Φ(u)f(Ȧ(u)(ẋ))dµ(u).

For the proof of our main result the next two lemmas are crucial.
Lemma 1. [10]. Let (Ω, µ) be σ-compact quasi-metric space with positive

Radon measure µ, (X,m) be a measure space and F(X) be some Banach
space of m-measurable functions on X. Assume that the convergence of a
sequence strongly in F(X) yields the convergence of some subsequence to the
same function for m-almost all x ∈ X. Let F (u, x) be a function such that
F (u, ·) ∈ F(X) for µ-almost all u ∈ Ω and the map u 7→ F (u, ·) : Ω → F(X)
is Bochner integrable with respect to µ. Then for m-almost all x ∈ X

(
(B)

∫

Ω

F (u, ·)dµ(u)

)
(x) =

∫

Ω

F (u, x)dµ(u).

Lemma 2. Let G be a (finite dimensional real or complex) connected
Lie group with left invariant Riemann metric ρ. Then every automorphism
ϕ ∈ Aut(G) is Lipschitz with Lipschitz constant ‖(dϕ)e‖.

Proof. Let Ta(G) denotes the tangent space for G at the point a ∈ G. Let
La : x 7→ ax be the left translation in G. Then the tangent map la := (dLa)e :
Te(G) → Ta(G) is a bijection. We fix the Euclidean norm ‖ · ‖ in Te(G) and
introduce the norm in Ta(G) by the rule ‖Xa‖ := ‖Xe‖ if Xa = la(Xe),
Xe ∈ Te(G), a ∈ G.

As is well known, for every p, q ∈ G

ρ(p, q) = inf
α

∫ 1

0

‖α′(t)‖ dt
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where infimum is taken over all piecewise smooth curves α from [0, 1] to G
with α(0) = p, α(1) = q (α′(t) stands, as usual, for the tangent vector to α
at the point α(t)). Since ϕ ∈ Aut(G), the formula β = ϕ◦α gives the general
form of all piecewise smooth curves in G with β(0) = ϕ(p) and β(1) = ϕ(q).
Thus, by the chain rule

ρ(ϕ(p), ϕ(q)) = inf
α

∫ 1

0

‖(ϕ ◦ α)′(t)‖ dt

= inf
α

∫ 1

0

∥∥(dϕ)α(t)α′(t)
∥∥ dt ≤ inf

α

∫ 1

0

∥∥(dϕ)α(t)‖‖α′(t)
∥∥ dt.

It is known (see, e.g., [21]) that for every left invariant vector field X on G
(this means that Xa = la(Xe) for all a ∈ G) the vector field (dϕ)(X)3 is
left invariant, too. In other wards, (dϕ)a(Xa) = la(dϕ)e(Xe), i.e., (dϕ)a =
la((dϕ)e)l

−1
a and therefore ‖(dϕ)a‖ = ‖(dϕ)e‖ for all a ∈ G. The result

follows.
Now we are in a position to prove the next
Theorem 1. Let G be a (finite dimensional real or complex) connected

Lie group with left invariant Riemann metric ρ and left Haar measure ν such
that the space (G, ρ, ν) is doubling. Let (Ω, µ) be σ-compact quasi-metric
space with positive Radon measure µ, and let q ∈ (1,∞]. If

‖Φ‖A,q :=

∫

Ω

|Φ(u)|(modA(u))−
1

q k(u)(1−
1

q
)ddµ(u) < ∞

where k(u) := ‖(d(A(u)−1))e‖, then the operator HΦ,Ȧ is bounded on the
space H1,q(G/K) and

‖HΦ,Ȧ‖L(H1,q(G/K)) ≤ C
1− 1

q

ν ‖Φ‖A,q.

Proof. If we set X = G/K and m = λ the pair (X,m) satisfies the
conditions of Lemma 1 with H1,q(G/K) in place of F(X). Indeed, let fn =
ġn ∈ H1,q(G/K), f = ġ ∈ H1,q(G/K), and ‖fn − f‖H1,q(G/K) → 0 (n → ∞).
Since

‖fn − f‖L1(G/K) =

∫

G/K

|πK(gn − g)|dλ

=

∫

G

|gn(x)− g(x)|dx ≤ ‖gn − g‖H1,q(G) = ‖fn − f‖H1,q(G/K) → 0

(by Hölder inequality ‖a‖1 ≤ 1 for each atom a), there is a subsequence of
fn that converges to f λ-a.e.

3In [21] the map dϕ is denoted by L(ϕ)
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Then Definition 2 and Lemma 1 imply for f ∈ H1,q(G/K) that

HΦ,Ȧf =

∫

Ω

Φ(u)f ◦ Ȧ(u)dµ(u),

the Bochner integral (recall that H1,q(G/K) is a subspace of L1(G/K, λ) [11,
p. 592], and thus we identify functions that equal λ-a.e.).

Therefore (below f = ġ)

‖HΦ,Ȧf‖H1,q(G/K) ≤

∫

Ω

|Φ(u)|‖f ◦ Ȧ(u)‖H1,q(G/K)dµ(u)

=

∫

Ω

|Φ(u)|‖g ◦ A(u)‖H1,q(G)dµ(u).

If g =
∑∞

j=1 λjaj then

g ◦ A(u) =

∞∑

j=1

λjaj ◦ A(u). (3)

We claim that

bj,u := C
1

q
−1

ν (mod(A(u))
1

q k(u)(
1

q
−1)saj ◦ A(u)

is an atom, too. Indeed, Lemma 2 implies that

A(u)−1(B(x, r)) ⊆ B(x′, k(u)r),

where x′ = A(u)−1(x). If aj is supported in B(xj , rj) then bj,u is supported
in B(x′

j , k(u)rj). So the condition (i) holds for bj,u.
Next, by the property (D) we have

ν(B(xj , k(u)rj)) ≤ Cνk(u)
dν(B(xj , rj)).

This estimate yields in view of (ii) and the left invariance of ρ and ν that

‖aj ◦ A(u)‖q =

(∫

G

|aj ◦ A(u)|dν

)1

q

= (mod(A(u))−
1

q ‖aj‖q

≤ (mod(A(u))−
1

q (ν(B(xj , rj)))
1

q
−1 ≤ (mod(A(u))−

1

q

(
ν(B(xj , k(u)rj))

Cνk(u)d

) 1

q
−1

=

(
C

1

q
−1

ν (mod(A(u))
1

q k(u)(
1

q
−1)d

)−1

(ν(B(x′
j , k(u)rj)))

1

q
−1.
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Thus, condition (ii) holds for bj,u, too. Finally, the validity of (iii) follows
from [18, VII.1.4, formula (31)].

Since formula (3) can be rewritten in the form

g ◦ A(u) =

∞∑

j=1

(
λjC

1− 1

q

ν (mod(A(u))−
1

q k(u)(1−
1

q
)d

)
bj,u,

we have

‖g ◦ A(u)‖H1,q(G) ≤ C
1− 1

q

ν (mod(A(u))−
1

q k(u)(1−
1

q
)d

∞∑

j=1

|λj|.

It follows that (recall that f = ġ)

‖g ◦ A(u)‖H1,q(G) ≤ C
1− 1

q

ν (mod(A(u))−
1

q k(u)(1−
1

q
)d‖g‖H1,q(G)

= C
1− 1

q

ν (mod(A(u))−
1

q k(u)(1−
1

q
)d‖f‖H1,q(G/K).

Therefore

‖HΦ,Ȧ‖L(H1,q(G/K)) ≤ C
1− 1

q

ν

∫

Ω

|Φ(u)|(modA(u))−
1

q k(u)d(1−
1

q
)dµ(u)

and the proof is complete.
Setting in Theorem 1 Ω = Z+ with counting measure µ we have the next

result for discrete Hausdorff operators.
Corollary 1. Let (G, ρ, ν) and K be as in the Theorem 1, (Ȧ(n))n∈Z+

⊂
AutK(G), and q ∈ (1,∞]. If Φ : Z+ → C be such that

‖Φ‖A,q :=
∞∑

n=0

|Φ(n)|(modA(n))−
1

q k(n)(1−
1

q
)d < ∞,

then the discrete Hausdorff operator

HΦ,Ȧf(ẋ) :=
∞∑

n=0

Φ(n)f(Ȧ(n)(ẋ))

is bounded on the space H1,q(G/K) and

‖HΦ,Ȧ‖L(H1,q(G/K)) ≤ C
1− 1

q

ν ‖Φ‖A,q.

As a special case of Theorem 1 for K = {e} (e denotes the unit of G) one
has the

7
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Corollary 2. Let Let (G, ρ, ν) and (Ω, µ) be as in the Theorem 1,
(A(u))u∈Ω ⊂ Aut(G), and q ∈ (1,∞]. If ‖Φ‖A,q < ∞ then the operator HΦ,A

is bounded on H1,q(G) and

‖HΦ,A‖L(H1,q(G)) ≤ C
1− 1

q

ν ‖Φ‖A,q.

Remark 2. The condition ‖Φ‖A,q < ∞ is not necessary for boundedness
of HΦ,A in Hardy space as the following simple example shows4. Consider
the Hausdorff operator

(H1f)(x) :=

∫

Ω

f(u1x1, . . . , unxn)du

in H1(Rn). Here G = Rn, Ω = {u ∈ Rn : uj 6= 0 for j = 1, . . . , n}, µ and ν
are Lebesgue measures on Ω and R

n respectively, K = {0}, A(u)(x) = Aux,
where Au = diag{u1, . . . , un} (x ∈ Rn a column vector, u ∈ Ω), Φ = 1, d = n.
The necessary moment condition

∫
Rn

f(u)du = 0 for functions from H1(Rn)
yields that H1f = 0 for all f ∈ H1(Rn). On the other hand, here modA(u) =
| detAu| = |u1 . . . un| [23, Subsection VII.1.10, Corollary 1], (dA(u)−1)0X =
A−1

u X (X ∈ R
n), k(u) = ‖A−1

u ‖ = (
∑n

j=1 u
−2
j )1/2 ≥ n1/2|u1 . . . un|

−1/n. Then

‖Φ‖A,q =

∫

Ω

(modA(u))−
1

q k(u)(1−
1

q
)ddu ≥ n

1

2
(1− 1

q
)n

∫

Ω

du

|u1 . . . un|
= ∞.

3 Examples

3.1 Generalized shift operator of Delsarte

Let G be as above and A a compact subgroup of Aut(G) with normalized
Haar measure m. Recall that the generalized shift operator of Delsarte [24],
[25, Ch. I, §2] (also the terms “generalized translation operator of Delsarte”,
or “generalized displacement operator of Delsarte” are used) is defined to be

T xf(h) =

∫

A

f(ha(x))dm(a) (x, h ∈ G).

Since the group G acts on G/K, one can define a generalization of this
operator to G/K as follows. Let Ω := {u ∈ A : u(K) = K}. Then Ω is a

4The sufficient boundedness conditions from [5] and [22] are also not met in this exam-
ple.
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compact subgroup of A. We denote by µ the normalized Haar measure of Ω
and put for a Borel measurable function f on G/K

T ẋf(h) :=

∫

Ω

f(hu̇(ẋ))dµ(u) (ẋ ∈ G/K, h ∈ G).

Let h be fixed and Lhf(ẋ) := T ẋf(h). Then Lh = H1τh, where

H1f(ẋ) :=

∫

Ω

f(u̇(ẋ))dµ(u)

is a Hausdorff operator on G/K with Φ(u) = 1 and A(u) = u, and τhf(ẋ) :=
f(hẋ). Note that mod is a continuous homomorphism from Aut(G) to the
multiplicative group (0,∞). Since Ω is a compact group, it follows that
mod(Ω) = {1}. Assume that the doubling conditions for the Lie group G
holds and Ω is quasi-metric. Then the operator H1 is bounded on H1,q(G/K)
by Theorem 1 and

‖H1‖ ≤ C
1− 1

q

ν

∫

Ω

k(u)(1−
1

q
)sdµ(u)

where k(u) = ‖(d(u−1))e‖. Since τh is an isometry ofH1,q(G/K), we conclude
that the operator Lh is bounded on H1,q(G/K) and

‖Lh‖ ≤ C
1− 1

q

ν

∫

Ω

k(u)(1−
1

q
)ddµ(u).

3.2 Hausdorff operators on the unit sphere in Rn

Consider the unit sphere Sn−1 ⊂ Rn (the case n = 3 was considered in [9]).
The compact group G = SO(n) acts on Sn−1 transitively by restriction of

the natural action of GL(n,R) on Rn. It is known that the isotropy subgroup
K of the point en := (0, . . . , 1) ∈ Sn−1 consists of all elements in SO(n) of
the form

ã :=

(
a 0⊤

0 1

)
,

where 0 = (0, . . . , 0) ∈ R
n−1, a ∈ SO(n−1). Hence we identify S

n−1 with the
homogeneous space SO(n)/K. Let s ∈ Sn−1. If a matrix x(s) ∈ SO(n− 1)
satisfies s = x(s)e⊤n we can identify the point s with the coset ẋ(s) := x(s)K.

Consider the set of automorphisms of G = SO(n) of the form

A(u)(x) = ũ−1xũ, u ∈ O(n− 1).

9
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Since every mapping x 7→ u−1xu with u ∈ O(n − 1) maps SO(n − 1) onto
itself (being a connected component of unit in O(n−1) the group SO(n−1) is
a normal subgroup of O(n− 1)), we have in our case that all automorphisms
A(u) where u ∈ O(n− 1) map K onto K. Then by definition the coset

Ȧ(u)(ẋ(s)) = πK(ũ
−1x(s)ũ)

can be identified with the point

ũ−1x(s)ũe⊤n = ũ−1x(s)e⊤n = ũ−1s = (u−1s′, sn)

(s′ := (s1, . . . , sn−1)) of S
n−1.

Thus, Definition 2 takes the form (we put x = x(s) in this definition and
identify the coset ẋ(s) with a column vector s ∈ S

n−1)

(HΦ,µf)(s) =

∫

O(n−1)

Φ(u)f(u−1s′, sn)dµ(u) (4)

where µ stands for a (regular Borel) measure on O(n − 1) and f is a Borel
measurable function on Sn−1.

Note that the point (u−1s′, sn) runs over the cross-section of Sn−1 by
the hyperplane {x = sn} ⊂ Rn (which contains s) orthogonal to the last
coordinate axis when u runs over O(n − 1). So (4) looks as a ”horizontal
slice transform” on Sn−1 and the function HΦ,µf depends on sn ∈ [−1, 1]
only.

To apply Theorem 1 first we shaw that k(u) = 1 for u ∈ O(n−1). Indeed,
k(u) = ‖d(A(u−1))1n‖ (here 1n stands for the unit n× n matrix). It is easy
to verify that for every X ∈ so(n), the Lie algebra of SO(n)

d(A(u−1))1nX = ũXũ−1.

On the other hand, ũ ∈ O(n) for u ∈ O(n− 1). Thus,

‖d(A(u−1))1n‖ = max
‖X‖=1,‖Y ‖=1

|〈d(A(u−1))1nX, d(A(u−1))1nY 〉| =

max
‖X‖=1,‖Y ‖=1

|〈ũXũ−1, ũY ũ−1〉| = max
‖X‖=1,‖Y ‖=1

|〈X, Y 〉| = 1

(here 〈·, ·〉 stands for the Euclidean inner product). Since SO(n) is compact,
it is doubling [11]. Next, since SO(n) is unimodular, we get that modA = 1
for all A ∈ Aut(SO(n)). So if Φ ∈ L1(O(n−1), µ) [8, Theorem 1] yields that
the operator (4) is bounded on Lp(Sn−1) and ‖HΦ,µ‖L(Lp(Sn−1) ≤ ‖Φ‖L1(µ).
Moreover, Theorem 1 yields that

‖HΦ,µ‖L(H1,q(Sn−1)) ≤ C
1− 1

q

ν ‖Φ‖L1(µ)
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where Cν is the doubling constant for SO(n).
In closing let us consider the following special case. Let Φ = 1 and m be a

Haar measure of the (compact) group O(n−1). Then for every f ∈ H1(Sn−1)
the function

(H1,mf)(s) =

∫

O(n−1)

f(u−1s′, sn)dm(u)

belongs to H1(Sn−1). On the other hand, this function depends on sn only.
Indeed, (s′, sn) ∈ Sn−1 if and only if s′ belongs to the sphere Sn−2

r centered
at 0 ∈ Rn−1 of radius r =

√
1− s2n. Fix s′0 ∈ Sn−2

r . Since SO(n − 1) acts
transitively on Sn−2

r , for every s′ ∈ Sn−2
r there is such v ∈ SO(n − 1) that

vs′0 = s′. Taking into account that O(n− 1) is unimodular, we get

(H1,mf)(s) =

∫

O(n−1)

f(uvs′0, sn)dm(u) =

∫

O(n−1)

f(us′0, sn)dm(u)

which completes the proof.
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