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Abstract. Throughout this paper, all groups are finite and o is some partition of the
set of all primes PP (that is, 0 = {0y | ¢+ € I}, where P = Ujcro; and o; Noj = @ for all
i # j). A subgroup A of a group G is said to be o-subnormal in G if there is a subgroup
chain A = Ag < A; < --- < A, = G such that either A;—1 < A; or A;/(Ai—1)a, is a
oj-group for some j = j(i) for all s =1,...,n.

In this review, we discuss some known results of the theory of o-subnormal sub-
groups and also some open questions in this line research.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group;

*Research was supported by the NNSF of China (No. 11771409.)
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L(G) is the lattice of all subgroups of G. Moreover, P is the set of all primes,
7 CPand #/ = P\ 7w If nis an integer, the symbol w(n) denotes the set of
all primes dividing n; as usual, 7(G) = 7(|G|), the set of all primes dividing the
order of G.

Following Shemetkov [46], we use o to denote some partition of P, that is,
o ={o;|i€ I}, where P=U;cs0; and 0, Noj =0 for all i # j.

The o-property of a group G [49, 50] is any its property which does not
depend on the the choice of the partition of o of P.

Before continuing, we recall some concepts of the papers [49]-[52] which play
a fundamental role in the theory of o-properties of groups.

First of all, recall that a set H of subgroups of G is a complete Hall o-set
of G if every member # 1 of H is a Hall o;-subgroup of G for some o; € o
and H contains exactly one Hall o;-subgroup of G for every o; € o(G) (here
o(G) ={o; | os N 7w(G) # 0}); a complete Hall o-set H of G is a o-basis of G if
every its two members A and B are permutable, that is, AB = BA. The group
G is called o-full if G possesses a complete Hall o-set.

The group G is said to be: o-primary if G is a o;-group for some i = i(G);
o-soluble if every chief factor of G o-primary; o-nilpotent if every chief H/K of
G is o-central in G, that is, (H/K) x (G/Cq(H/K)) is o-primary.

Definition 1.1. [49, 50] A subgroup A of G is said to be o-subnormal in G if there
is a subgroup chain A = Ag < A1 < --- < A, = G such that either A;—1 < A;
or A;[(Ai—1)a, is o-primary for alli=1,... n.

Remark 1.2.

(i) The group G is o-nilpotent if and only if every subgroup of G is o-
subnormal [50].

(ii) Let § be a class of groups. Then a subgroup A of G is said to be F-
subnormal in G in the sense of Kegel [37] or K-F-subnormal in G [12,
6.1.4] if there is a subgroup chain A = Ay < A; <--- < A, = G such that
either A;_1 < A; or A;/(Ai—1)a, € §Fforalli=1,...,n. It is not difficult
to show that A is o-subnormal in G if and only if it is 9,-subnormal in G
in the sense of Kegel, where M, is the class of all o-nilpotent groups.

A subgroup A of G is o-permutable in G [49, 50] if G possesses a complete
Hall o-set H such that AH* = H*A for all H € H and all x € G.

Now we give a classical interpretation for the introduced concepts.

Ezxample 1.3.
(i) In the classical case when o = o! = {{2},{3},...}: G is ol-soluble (re-
spectively o!-nilpotent) if and only if G is soluble (respectively nilpotent);
a subgroup A of G is subnormal in G if and only if it is o'-subnormal in
G. The o'-permutable subgroups are also called S-permutable [11, 21] or
Sylow permutable.
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(ii) In the other classical case when o = 0™ = {m,7’'}: G is o™-soluble (re-
spectively o™-nilpotent) if and only if G is w-separable (respectively -
decomposable, that is, G = O(G) x O (G)); a subgroup A of G is ¢™-
subnormal in G if and only if there is a subgroup chain A = Ay < A; <
-+« < A,, = G such that either 4,1 < A;, or A;/(A;—1)a, is a w-group,
or A;/(A;—1)a, is a w’-group for all i = 1,...,n. A subgroup A of G is
o™-permutable in G if and only if G has a Hall w-subgroup V and a Hall
7’-subgroup W such that AV® = VA and AW?®* = W®A for all z € G.

(iii) In fact, in the theory of m-soluble groups (m = {p1,...,pn}) we deal with
the partition 0 = '™ = {{p1},...,{pn}, 7'} of P. Hence G is o'™-soluble
(respectively o'™-nilpotent) if and only if G is w-soluble (respectively 7-
special [54, 24], that is, G = O, (G) x - - X Op,, (G) x O/ (G)). A subgroup
A of G is: o'™-subnormal in G if and only if it is F-subnormal in G in the
sense of Kegel, where § is the class of all n’-groups, and a subgroup A is
o'™-permutable in G if and only if A permutes with all Sylow p-subgroups
of G for all p € m and G has a Hall 7’-subgroup W such that AW?* = W* A
for all x € G.

It is necessary to mention that the o-subnormality plays a key role in the
analysis of many questions and, in particular, in the study of o-permutable
subgroups. Many important properties of such subgroups have already been
described in the papers [49, 50] and this made it possible to find new interesting
applications of the theory of o-properties of a group (see, in particular, [3, 4],
[13, 16, 23], [25]-[31], [33]-[35], [39, 40], [47, 48, 53]).

In this review, we discuss some applications of the theories of o-subnormal
and o-permutable subgroups and also some open questions in this line research.

2. o-Subnormal and o-Permutable Subgroups

The theory of Sylow permutable subgroups had been mainly developed in the
papers by Kegel [36] and Deskins [18] and one of the main results of the theory
states that HY/Hg is nilpotent for every Sylow permutable subgroup H of G
and hence every Sylow permutable subgroup of G is subnormal. One of the first
primary applications of the theory of o-subnormal subgroups was found in [50],
where the following generalization of this classical result was proved.

Theorem 2.1. [49, 50] Suppose that G is o-full. Then HY/Hg is o-nilpotent for
every o-permutable subgroup H of G. Hence every o-permutable subgroup of G
is o-subnormal in G.

Among other corollaries of Theorem 2.1 we mention also the following two
its special cases.

Corollary 2.2. Suppose that G possesses a Hall w-subgroup and a Hall 7' -subgroup
(this condition holds, for example, in every m-separable group). If a subgroup H
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of G permutes with all Hall 7-subgroups and all Hall 7'-subgroups of G, then
H%/Hg is n-decomposable. (See Example 1.3(ii)).

Corollary 2.3. Suppose that G possesses a Hall ©'-subgroup. If a subgroup H
of G permutes with all Hall ’'-subgroups and all Sylow p-subgroups of G for all
p €m, then HY/Hg is a m-special group. (See Evample 1.3(iii)).

A subgroup M of G is said to be: quasinormal in G if M permutes with all
subgroups of G; modular in G if M is a modular element (in the sense of Kurosh
[45, p. 43]) of the lattice L(G), that is,

) (X, MNZ)y=(X,M)NnZ for all X < G,Z < G such that X < Z, and
(i) (M,YNZ)=(M,Y)NnZforallY <G, Z < G such that M < Z.
Schmidt proved [45, Theorem 5.1.1] that a subgroup A of G is quasinormal

in G if and only if A is modular and subnormal in G. This elegant observation
is a motivation for the following

Definition 2.4. [29, Definition 1.1] We say that a subgroup A of G is o-
quasinormal in G if A is modular and o-subnormal in G.

The following theorem describes the most important properties of o-quasi-
normal subgroups.

Theorem 2.5. [29, Theorem C] Let A be a o-quasinormal subgroup of G. Then
the following statements hold:

(i) If G possesses a Hall o;-subgroup, then A permutes with each Hall o;-
subgroup of G.
(i) The quotients A% /Ag and G/Cq(A%/Ag) are o-nilpotent.
(iii) Ewvery chief factor of G between A® and Ag is o-central in G.

In the case when o = ¢!

results.

we get from Theorem 2.5 the following well-known

Corollary 2.6. Let A be a quasinormal subgroup of G. Then the following state-
ments hold:

(i) A/Ag is nilpotent (see [32]).
(ii) Every chief factor H/K of G between A® and Ag is central in G, that is,
Ca(H/K) =G (see [41]).

The classical Wielandt’s result [57] states that the set L, (G), of all subnor-
mal subgroups of G, forms a sublattice of the lattice £(G) (that is, ANB, (A4, B) €
L (Q) for all A, B € L, (G)). The most applications of o-subnormal subgroups
are based on the following generalization of this result.
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Theorem 2.7. [49, 50] For any partition o of the set of all primes P, the set
L, (G), of all o-subnormal subgroups of G, forms a sublattice in L(G).

Initially, this theorem was proved in the work [50] on the basis of the methods
of the formation theory. Another proof of this result, based on a more detailed
study of the o-subnormal subgroups, was found in [3].

From Theorem 2.7 it follows that the intersection of any set of o-subnormal
subgroups of G is also g-subnormal in G. In particular, the intersection of all
o-subnormal subgroups of G containing a subgroup H of G is o-subnormal in G
and such the intersection is called the o-subnormal closure of H in G.

Among the most interesting open problems concerning o-subnormal sub-
groups, the problem of describing the o-subnormal closure of a subgroup is still
remained open.

Al-Shomrani, Heliel and Ballester-Bolinches [4] provide a solution to this
problem in an important for applications case where the group G is o-soluble.

Recall that G is said to be: a D,-group if G possesses a Hall w-subgroup F
and every m-subgroup of G is contained in some conjugate of F; a o-full group
of Sylow type [50] if every subgroup E of G is a D,,-group for every i.

It is well known that the set of all qusinormal subgroups in the general case
does not form a sublattice in the lattice £(G) and that the set of all Sylow
permutable subgroups of G is a sublattice in £(G) (see [36]). Theorem 2.7
allows to prove the following generalization of this Kegel’s result.

Theorem 2.8. [50, Theorem C| Let G be a o-full group of Sylow type. Then
the set of all o-permutable subgroups of G forms a sublattice of the lattice of all
o-subnormal subgroups of G.

Note, in passing, that Theorem 2.8 not only generalizes the above mentioned
Kegel’s result on the lattice of the Sylow permutable subgroups but also gives a
new proof of it.

Theorems 2.7 and 2.8 make it possible to successfully solve the problem of
describing groups with various given systems of o-subnormal and o-permutable
subgroups. In this regard, we mention first of all the fundamental work of W.
Guo and A.N. Skiba [23] devoted to the development of the well-known papers
by Mann [42] and Spencer [55].

In the paper [28] it is proved the following result in this line research which
gives the answer to Question 7.7 in [52].

Theorem 2.9. [31, Theorem C| Every subgroup of G is either o-subnormal or
o-abnormal in G if and only if G is a group of one of the following two types:
(i) G is o-nilpotent;
(i) G =D x P, where
(a) D =G =G is a o-nilpotent o-Hall subgroup of G;
(b) P = Ng(P) is a cyclic Sylow subgroup of G;
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(¢) Z(G) is the unique maximal subgroup of P.

In this theorem, G™» denotes the o-nilpotent residual of G, that is, the
intersection of all normal subgroups N of G with o-nilpotent quotient G/N.
Among questions related to this direction, we mention the following two.

Problem 2.10. [50, Question 4.7] Describe groups in which every Schmidt sub-
group is o-subnormal.
In the case when o = o! the solution to this problem is known (see [56]).

Problem 2.11. [43, Question 19.85] Suppose that every Schmidt subgroup of G
is o-subnormal in G. Is it true that then there is a normal o-nilpotent subgroup
N such that G/N is cyclic?

On the base of Theorem 2.7, Problem 2.10 is partially solved in the papers [3,
30]. The complete positive answer to this problem was given by S.F. Kamornikov
and X. Yi in [35]. But Problem 2.11 is still open.

It is quite natural and important to find characterizations and criteria for
o-subnormality and o-permutability of subgroups.

First mention that as another application of Theorem 2.1, the following fact
was proved in [50].

Theorem 2.12. [50, Theorem 4.1] Let G be a o-full group of Sylow type. Then a
subgroup A of G is o-permutable in G if and only if A is o-subnormal in G and
A is o-permutable in (A, x) for all x € G.

Since a subgroup A of G is subnormal in G if and only if A is subnormal
in (A, z) for all x € G [19, A, 14.10], we get from Theorem 2.12 the following
known result.

Corollary 2.13. (see [9] or [11, Theorem 1.2.13]) A subgroup A of G is Sylow
permutable in G if and only if A is Sylow permutable in (A,x) for all x € G.

The following problem was posed by Skiba first in ” Advances of Group The-
ory and Applications” (2016, 1, p. 159]) and some later in [43, Question 19.86].

The generalized Wielandt-Kegel problem:

Problem 2.14. Let A be a subgroup of a o-full group G. Is it true then that A
is o-subnormal in G if and only if H N A is a Hall o;-subgroup of A for all ¢ and
every Hall o;-subgroup H of G?

Note that in the cases when o = 0! (Kleidman [38]) or when o = {{p}, {p}'}
(see [33]) the answer to this question is positive.
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We also know some other special conditions under which the problem has a
positive solution. For example, the problem has a positive solution in the class
of all o-soluble groups [51] and in the class of all 3’-groups [34].

Wielandt’s classical results on subnormal subgroups motivated also the fol-
lowing two questions.

Problem 2.15. [50, Question 4.10] Let for each element z € G the subgroup H
of G o-subnormal in (H,xz). Is it true that the subgroup H o-subnormal in G?

Problem 2.16. (see [43, Question 19.86] or [52, Question 7.5]) Is it true that a
subgroup H is o-subnormal in G if H is o-subnormal in (H, H”) for any element
z e G?

A positive solution to Problem 2.15 was found by A. Ballester-Bolinches,
S.F. Kamornikov, M.C. Pedraza-Aguilera and V. Perez-Calabuig in [13]. A
counterexample to Problem 2.16 was found in [14].

3. PoT-groups and QoT-groups

Many parers are related to the study of T-groups and various their generaliza-
tions, in particular, of PT-groups and PST-groups.

Recall that a group G is a T-group if normality is a transitive relation in G,
that is, if K is a normal subgroup of H and H is a normal subgroup of GG, then
K is a normal subgroup of G. It is rather clear that the T-groups are exactly
the groups G in which every subnormal subgroup is normal in G.

A group G is called a PT-group (respectively, a PST-group) [11] if per-
mutability (respectively, Sylow permutability) is a transitive relation in G. Since
every Sylow permutable subgroup is subnormal in the group, G is a PST-group if
and only if every subnormal subgroup is Sylow permutable in G; G is PT-group
if and only if every its subnormal subgroup is modular (and so quasinormal) in
G.

The group G is called a PoT-group [50] (respectively, a QoT'-group) if o-
permutability (respectively, o-quasinormality) is a transitive relation in G, that
is, if K is a o-permutable (respectively, o-quasinormal) subgroup of H and H
is a o-permutable (respectively, o-quasinormal) subgroup of G, then K is a
o-permutable (respectively, o-quasinormal) subgroup of G.

In view of Theorem 2.1, G is a PoT-group if and only if every o-subnormal
subgroup of G is o-permutable in G; G is a QoT-group if and only if every
o-subnormal subgroup of G is modular in G. Therefore G is a PT-group (re-
spectively, a PST-group) if and only if G is a QoT-group (respectively, a PoT-

group), where o = ol.

The description of PST-groups was first obtained by Agrawal [1], for the
soluble case, and by Robinson in [44], for the general case. In the further pub-
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lications, authors (see, for example, the recent papers [2], [5]-[8], [10, 15, 17,
58]) have found out and described many other interesting characterizations of
soluble PST-groups. A significant place to the theory of PST-groups is given
in the nice book [11].

A new approach to the study of PST-groups and PT-groups was also pro-
posed in the recent publication [20].

Let § be a class of groups. We call, following Guo, Shum and Skiba [22], a
set X of subgroups of G a G-covering subgroup system for the class § if G € §
whenever ¥ C §.

In [20], the following two results are proved.

Theorem 3.1. [20, Theorem B] Suppose that a set of subgroups ¥ contains at
least one supplement to each mazximal subgroup of every Sylow subgroup of G.
Then G is a soluble PT-group (respectively, a soluble T-group) if and only if
every subgroup in X is a soluble PT-group (respectively, a soluble T-group) and
at least one of the non-identity Sylow subgroups of G is an Iwasawa (respectively,
a Dedekind) group.

The example of extraspecial 3-group of order p? shows that the set ¥ in
Theorem 3.1 is not a G-covering subgroup system for the classes of all soluble
PT-groups and all soluble T-groups.

Now we indicate a system of subgroups that is a G-covering subgroup system
simultaneously for classes of all soluble PST-, PT-, and T-groups.

Theorem 3.2. [20, Theorem C] Let ¥ be the set of all two-generated subgroups
of G. Then X is a G-covering subgroup system for any class § in the following
list:

(i) § is the class of all soluble PST-groups.

(ii) § is the class of all soluble PT-groups.

(i) § is the class of all soluble T-groups.

Theorem 3.2 partially answers the following open question.

Problem 3.3. Let X be the set of all two-generated subgroups of G. Is it true
then that ¥ is a G-covering subgroup system simultaneously for the classes of
all PST-groups, all PT-groups, and all T-groups?

In the most general case (i.e., without of any restriction on o), the following
theorem is true, which in fact is the main result of the observations found in
[50, 54].

Problem 3.4. [54, Theorem B]) If G is a o-soluble PoT-group and D = G™7,
then the following conditions hold:
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(i) G =D x M, where D is an abelian Hall subgroup of G of odd order, M is
o-nilpotent and every element of G induces a power automorphism in D;
(ii) Og, (D) has a normal complement in a Hall o;-subgroup of G for all 1.

Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of
G, then G is a PoT-group.

1 we get from Theorem 3.4 the following

In the case when o = o
Corollary 3.5. [1, Theorem 2.3] Let D = G™ be the nilpotent residual of G. If

G is a soluble PST-group, then D is an abelian Hall subgroup of G of odd order
and every element of G induces a power automorphism in D.

In the case when o = ¢ we get from Theorem 3.4 the following corollary.

Corollary 3.6. G is a m-separable Po™T-group if and only if the following con-
ditions hold:

(i) G =D x M, where D is an abelian Hall subgroup of G of odd order, M is

w-decomposable and every element of G induces a power automorphism in

D;

(ii) Ox(D) has a normal complement in a Hall w-subgroup of G;
(iii) On/ (D) has a normal complement in a Hall 7' -subgroup of G.

1w

In the case when o = 0™ we get from Theorem 3.4 the following

Corollary 3.7. G is a w-soluble Po'™T-group if and only if the following condi-
tions hold:

(i) G = D x M, where D is an abelian Hall subgroup of G of odd order,
M =0, (M) x - xOp, (M) x Oz (M) and every element of G induces
a power automorphism in D;

(ii) Ox (D) has a normal complement in a Hall ©’-subgroup of G.

Theorem 3.4 gives a solution to the following problem in the class of all
o-soluble groups.

Problem 3.8. (see Question in [50]) Let G be a o-full group. What is the struc-
ture of G provided that every o-subnormal subgroup of G is o-permutable ?

In [28], Theorem 3.4 was used to obtain the description of o-soluble QoT-
groups.

Theorem 3.9. [28, Theorem C] If G is a o-soluble QoT-group and D = G™v,
then the following conditions hold:
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(i) G =D x M, where D is an abelian Hall subgroup of G of odd order and
M is a o-nilpotent group with modular lattice L(M);

(ii) every element of G induces a power automorphism in D,
(iii) Oy, (D) has a normal complement in a Hall o;-subgroup of G for all i.

Conversely, if Conditions (i), (ii) and (i) hold for some subgroups D and
M of G, then G is a QoT-group.

Note that, in view of [45, 2.3.2, 2.4.4], if G is a nilpotent group with modular
lattice £(G), then G is an Twasawa group [11, 1.4.2], that is, every subgroup of G
is quasinormal in G. Therefore in the case where o = o', we get from Theorem
3.9 the following well-known result.

Corollary 3.10. [59] A group G is a soluble PT-group if and only if the following
conditions hold:

(i) the nilpotent residual D = G™ of G is an abelian Hall subgroup of odd
order;
(ii) every element of G induces a power automorphism in D,
(i) G/D is an Iwasawa group.
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