Southeast Asian Bulletin of Mathematics © SEAMS. 2021

On σ -Subnormal Subgroups of Finite Groups^{*}

Wenbin Guo

School of Science, Hainan University, Haikou, Hainan, 570228, China Email: wbguo@ustc.edu.cn

Inna N. Safonova Department of Applied Mathematics and Computer Science, Belarusian State University, Minsk 220030, Belarus Email: safonova@bsu.by

Alexander N. Skiba Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel 246019, Belarus Email: alexander.skiba49@gmail.com

Received 5 June 2021 Accepted 26 September 2021

Communicated by Xiuyun Guo

Dedicated to the memory of Professor Yuqi Guo (1940-2019)

AMS Mathematics Subject Classification(2000): 20D10, 20D15, 20D30, 20D35, 20E15

Abstract. Throughout this paper, all groups are finite and σ is some partition of the set of all primes \mathbb{P} (that is, $\sigma = \{\sigma_i \mid i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$). A subgroup A of a group G is said to be σ -subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is a σ_j -group for some j = j(i) for all $i = 1, \ldots, n$.

In this review, we discuss some known results of the theory of σ -subnormal subgroups and also some open questions in this line research.

Keywords: Finite group; σ -soluble group; σ -nilpotent group; $P\sigma T$ -group; σ -subnormal subgroup.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group;

^{*}Research was supported by the NNSF of China (No. 11771409.)

 $\mathcal{L}(G)$ is the lattice of all subgroups of G. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

Following Shemetkov [46], we use σ to denote some partition of \mathbb{P} , that is, $\sigma = \{\sigma_i \mid i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

The σ -property of a group G [49, 50] is any its property which does not depend on the choice of the partition of σ of \mathbb{P} .

Before continuing, we recall some concepts of the papers [49]–[52] which play a fundamental role in the theory of σ -properties of groups.

First of all, recall that a set \mathcal{H} of subgroups of G is a *complete Hall* σ -set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$ (here $\sigma(G) = \{\sigma_i \mid \sigma_i \cap \pi(G) \neq \emptyset\}$); a complete Hall σ -set \mathcal{H} of G is a σ -basis of G if every its two members A and B are permutable, that is, AB = BA. The group G is called σ -full if G possesses a complete Hall σ -set.

The group G is said to be: σ -primary if G is a σ_i -group for some i = i(G); σ -soluble if every chief factor of G σ -primary; σ -nilpotent if every chief H/K of G is σ -central in G, that is, $(H/K) \rtimes (G/C_G(H/K))$ is σ -primary.

Definition 1.1. [49, 50] A subgroup A of G is said to be σ -subnormal in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, n$.

Remark 1.2.

- (i) The group G is σ -nilpotent if and only if every subgroup of G is σ -subnormal [50].
- (ii) Let \mathfrak{F} be a class of groups. Then a subgroup A of G is said to be \mathfrak{F} subnormal in G in the sense of Kegel [37] or K- \mathfrak{F} -subnormal in G [12, 6.1.4] if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i} \in \mathfrak{F}$ for all $i = 1, \ldots, n$. It is not difficult to show that A is σ -subnormal in G if and only if it is \mathfrak{N}_{σ} -subnormal in Gin the sense of Kegel, where \mathfrak{N}_{σ} is the class of all σ -nilpotent groups.

A subgroup A of G is σ -permutable in G [49, 50] if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^x A$ for all $H \in \mathcal{H}$ and all $x \in G$.

Now we give a classical interpretation for the introduced concepts.

Example 1.3.

(i) In the classical case when σ = σ¹ = {{2}, {3},...}: G is σ¹-soluble (respectively σ¹-nilpotent) if and only if G is soluble (respectively nilpotent); a subgroup A of G is subnormal in G if and only if it is σ¹-subnormal in G. The σ¹-permutable subgroups are also called S-permutable [11, 21] or Sylow permutable.

- (ii) In the other classical case when $\sigma = \sigma^{\pi} = \{\pi, \pi'\}$: *G* is σ^{π} -soluble (respectively σ^{π} -nilpotent) if and only if *G* is π -separable (respectively π -decomposable, that is, $G = O_{\pi}(G) \times O_{\pi'}(G)$); a subgroup *A* of *G* is σ^{π} -subnormal in *G* if and only if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_n = G$ such that either $A_{i-1} \leq A_i$, or $A_i/(A_{i-1})_{A_i}$ is a π -group, or $A_i/(A_{i-1})_{A_i}$ is a π' -group for all $i = 1, \ldots, n$. A subgroup *A* of *G* is σ^{π} -permutable in *G* if and only if *G* has a Hall π -subgroup *V* and a Hall π' -subgroup *W* such that $AV^x = V^x A$ and $AW^x = W^x A$ for all $x \in G$.
- (iii) In fact, in the theory of π -soluble groups $(\pi = \{p_1, \ldots, p_n\})$ we deal with the partition $\sigma = \sigma^{1\pi} = \{\{p_1\}, \ldots, \{p_n\}, \pi'\}$ of \mathbb{P} . Hence G is $\sigma^{1\pi}$ -soluble (respectively $\sigma^{1\pi}$ -nilpotent) if and only if G is π -soluble (respectively π special [54, 24], that is, $G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$). A subgroup A of G is: $\sigma^{1\pi}$ -subnormal in G if and only if it is \mathfrak{F} -subnormal in G in the sense of Kegel, where \mathfrak{F} is the class of all π' -groups, and a subgroup A is $\sigma^{1\pi}$ -permutable in G if and only if A permutes with all Sylow p-subgroups of G for all $p \in \pi$ and G has a Hall π' -subgroup W such that $AW^x = W^x A$ for all $x \in G$.

It is necessary to mention that the σ -subnormality plays a key role in the analysis of many questions and, in particular, in the study of σ -permutable subgroups. Many important properties of such subgroups have already been described in the papers [49, 50] and this made it possible to find new interesting applications of the theory of σ -properties of a group (see, in particular, [3, 4], [13, 16, 23], [25]–[31], [33]–[35], [39, 40], [47, 48, 53]).

In this review, we discuss some applications of the theories of σ -subnormal and σ -permutable subgroups and also some open questions in this line research.

2. σ -Subnormal and σ -Permutable Subgroups

The theory of Sylow permutable subgroups had been mainly developed in the papers by Kegel [36] and Deskins [18] and one of the main results of the theory states that H^G/H_G is nilpotent for every Sylow permutable subgroup H of G and hence every Sylow permutable subgroup of G is subnormal. One of the first primary applications of the theory of σ -subnormal subgroups was found in [50], where the following generalization of this classical result was proved.

Theorem 2.1. [49, 50] Suppose that G is σ -full. Then H^G/H_G is σ -nilpotent for every σ -permutable subgroup H of G. Hence every σ -permutable subgroup of G is σ -subnormal in G.

Among other corollaries of Theorem 2.1 we mention also the following two its special cases.

Corollary 2.2. Suppose that G possesses a Hall π -subgroup and a Hall π' -subgroup (this condition holds, for example, in every π -separable group). If a subgroup H

of G permutes with all Hall π -subgroups and all Hall π' -subgroups of G, then H^G/H_G is π -decomposable. (See Example 1.3(ii)).

Corollary 2.3. Suppose that G possesses a Hall π' -subgroup. If a subgroup H of G permutes with all Hall π' -subgroups and all Sylow p-subgroups of G for all $p \in \pi$, then H^G/H_G is a π -special group. (See Example 1.3(iii)).

A subgroup M of G is said to be: *quasinormal* in G if M permutes with all subgroups of G; *modular* in G if M is a modular element (in the sense of Kurosh [45, p. 43]) of the lattice $\mathcal{L}(G)$, that is,

(i) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ for all $X \leq G, Z \leq G$ such that $X \leq Z$, and

(ii) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ for all $Y \leq G, Z \leq G$ such that $M \leq Z$.

Schmidt proved [45, Theorem 5.1.1] that a subgroup A of G is quasinormal in G if and only if A is modular and subnormal in G. This elegant observation is a motivation for the following

Definition 2.4. [29, Definition 1.1] We say that a subgroup A of G is σ -quasinormal in G if A is modular and σ -subnormal in G.

The following theorem describes the most important properties of σ -quasinormal subgroups.

Theorem 2.5. [29, Theorem C] Let A be a σ -quasinormal subgroup of G. Then the following statements hold:

- (i) If G possesses a Hall σ_i -subgroup, then A permutes with each Hall σ_i -subgroup of G.
- (ii) The quotients A^G/A_G and $G/C_G(A^G/A_G)$ are σ -nilpotent.
- (iii) Every chief factor of G between A^G and A_G is σ -central in G.

In the case when $\sigma = \sigma^1$ we get from Theorem 2.5 the following well-known results.

Corollary 2.6. Let A be a quasinormal subgroup of G. Then the following statements hold:

- (i) A/A_G is nilpotent (see [32]).
- (ii) Every chief factor H/K of G between A^G and A_G is central in G, that is, $C_G(H/K) = G$ (see [41]).

The classical Wielandt's result [57] states that the set $\mathcal{L}_{sn}(G)$, of all subnormal subgroups of G, forms a sublattice of the lattice $\mathcal{L}(G)$ (that is, $A \cap B$, $\langle A, B \rangle \in \mathcal{L}_{sn}(G)$) for all $A, B \in \mathcal{L}_{sn}(G)$). The most applications of σ -subnormal subgroups are based on the following generalization of this result. **Theorem 2.7.** [49, 50] For any partition σ of the set of all primes \mathbb{P} , the set $\mathcal{L}_{\sigma}(G)$, of all σ -subnormal subgroups of G, forms a sublattice in $\mathcal{L}(G)$.

Initially, this theorem was proved in the work [50] on the basis of the methods of the formation theory. Another proof of this result, based on a more detailed study of the σ -subnormal subgroups, was found in [3].

From Theorem 2.7 it follows that the intersection of any set of σ -subnormal subgroups of G is also σ -subnormal in G. In particular, the intersection of all σ -subnormal subgroups of G containing a subgroup H of G is σ -subnormal in G and such the intersection is called the σ -subnormal closure of H in G.

Among the most interesting open problems concerning σ -subnormal subgroups, the problem of describing the σ -subnormal closure of a subgroup is still remained open.

Al-Shomrani, Heliel and Ballester-Bolinches [4] provide a solution to this problem in an important for applications case where the group G is σ -soluble.

Recall that G is said to be: a D_{π} -group if G possesses a Hall π -subgroup E and every π -subgroup of G is contained in some conjugate of E; a σ -full group of Sylow type [50] if every subgroup E of G is a D_{σ_i} -group for every *i*.

It is well known that the set of all quainormal subgroups in the general case does not form a sublattice in the lattice $\mathcal{L}(G)$ and that the set of all Sylow permutable subgroups of G is a sublattice in $\mathcal{L}(G)$ (see [36]). Theorem 2.7 allows to prove the following generalization of this Kegel's result.

Theorem 2.8. [50, Theorem C] Let G be a σ -full group of Sylow type. Then the set of all σ -permutable subgroups of G forms a sublattice of the lattice of all σ -subnormal subgroups of G.

Note, in passing, that Theorem 2.8 not only generalizes the above mentioned Kegel's result on the lattice of the Sylow permutable subgroups but also gives a new proof of it.

Theorems 2.7 and 2.8 make it possible to successfully solve the problem of describing groups with various given systems of σ -subnormal and σ -permutable subgroups. In this regard, we mention first of all the fundamental work of W. Guo and A.N. Skiba [23] devoted to the development of the well-known papers by Mann [42] and Spencer [55].

In the paper [28] it is proved the following result in this line research which gives the answer to Question 7.7 in [52].

Theorem 2.9. [31, Theorem C] Every subgroup of G is either σ -subnormal or σ -abnormal in G if and only if G is a group of one of the following two types:

- (i) G is σ -nilpotent;
- (ii) $G = D \rtimes P$, where
 - (a) $D = G^{\mathfrak{N}_{\sigma}} = G'$ is a σ -nilpotent σ -Hall subgroup of G;
 - (b) $P = N_G(P)$ is a cyclic Sylow subgroup of G;

(c) Z(G) is the unique maximal subgroup of P.

In this theorem, $G^{\mathfrak{N}_{\sigma}}$ denotes the σ -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N.

Among questions related to this direction, we mention the following two.

Problem 2.10. [50, Question 4.7] Describe groups in which every Schmidt subgroup is σ -subnormal.

In the case when $\sigma = \sigma^1$ the solution to this problem is known (see [56]).

Problem 2.11. [43, Question 19.85] Suppose that every Schmidt subgroup of G is σ -subnormal in G. Is it true that then there is a normal σ -nilpotent subgroup N such that G/N is cyclic?

On the base of Theorem 2.7, Problem 2.10 is partially solved in the papers [3, 30]. The complete positive answer to this problem was given by S.F. Kamornikov and X. Yi in [35]. But Problem 2.11 is still open.

It is quite natural and important to find characterizations and criteria for σ -subnormality and σ -permutability of subgroups.

First mention that as another application of Theorem 2.1, the following fact was proved in [50].

Theorem 2.12. [50, Theorem 4.1] Let G be a σ -full group of Sylow type. Then a subgroup A of G is σ -permutable in G if and only if A is σ -subnormal in G and A is σ -permutable in $\langle A, x \rangle$ for all $x \in G$.

Since a subgroup A of G is subnormal in G if and only if A is subnormal in $\langle A, x \rangle$ for all $x \in G$ [19, A, 14.10], we get from Theorem 2.12 the following known result.

Corollary 2.13. (see [9] or [11, Theorem 1.2.13]) A subgroup A of G is Sylow permutable in G if and only if A is Sylow permutable in $\langle A, x \rangle$ for all $x \in G$.

The following problem was posed by Skiba first in "Advances of Group Theory and Applications" (2016, 1, p. 159]) and some later in [43, Question 19.86]. The generalized Wielandt-Kegel problem:

Problem 2.14. Let A be a subgroup of a σ -full group G. Is it true then that A is σ -subnormal in G if and only if $H \cap A$ is a Hall σ_i -subgroup of A for all i and every Hall σ_i -subgroup H of G?

Note that in the cases when $\sigma = \sigma^1$ (Kleidman [38]) or when $\sigma = \{\{p\}, \{p\}'\}$ (see [33]) the answer to this question is positive.

We also know some other special conditions under which the problem has a positive solution. For example, the problem has a positive solution in the class of all σ -soluble groups [51] and in the class of all 3'-groups [34].

Wielandt's classical results on subnormal subgroups motivated also the following two questions.

Problem 2.15. [50, Question 4.10] Let for each element $x \in G$ the subgroup H of G σ -subnormal in $\langle H, x \rangle$. Is it true that the subgroup H σ -subnormal in G?

Problem 2.16. (see [43, Question 19.86] or [52, Question 7.5]) Is it true that a subgroup H is σ -subnormal in G if H is σ -subnormal in $\langle H, H^x \rangle$ for any element $x \in G$?

A positive solution to Problem 2.15 was found by A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera and V. Perez-Calabuig in [13]. A counterexample to Problem 2.16 was found in [14].

3. $P\sigma T$ -groups and $Q\sigma T$ -groups

Many parers are related to the study of T-groups and various their generalizations, in particular, of PT-groups and PST-groups.

Recall that a group G is a T-group if normality is a transitive relation in G, that is, if K is a normal subgroup of H and H is a normal subgroup of G, then K is a normal subgroup of G. It is rather clear that the T-groups are exactly the groups G in which every subnormal subgroup is normal in G.

A group G is called a PT-group (respectively, a PST-group) [11] if permutability (respectively, Sylow permutability) is a transitive relation in G. Since every Sylow permutable subgroup is subnormal in the group, G is a PST-group if and only if every subnormal subgroup is Sylow permutable in G; G is PT-group if and only if every its subnormal subgroup is modular (and so quasinormal) in G.

The group G is called a $P\sigma T$ -group [50] (respectively, a $Q\sigma T$ -group) if σ permutability (respectively, σ -quasinormality) is a transitive relation in G, that is, if K is a σ -permutable (respectively, σ -quasinormal) subgroup of H and H is a σ -permutable (respectively, σ -quasinormal) subgroup of G, then K is a σ -permutable (respectively, σ -quasinormal) subgroup of G.

In view of Theorem 2.1, G is a $P\sigma T$ -group if and only if every σ -subnormal subgroup of G is σ -permutable in G; G is a $Q\sigma T$ -group if and only if every σ -subnormal subgroup of G is modular in G. Therefore G is a PT-group (respectively, a PST-group) if and only if G is a $Q\sigma T$ -group (respectively, a $P\sigma T$ -group), where $\sigma = \sigma^1$.

The description of PST-groups was first obtained by Agrawal [1], for the soluble case, and by Robinson in [44], for the general case. In the further pub-

lications, authors (see, for example, the recent papers [2], [5]–[8], [10, 15, 17, 58]) have found out and described many other interesting characterizations of soluble PST-groups. A significant place to the theory of PST-groups is given in the nice book [11].

A new approach to the study of PST-groups and PT-groups was also proposed in the recent publication [20].

Let \mathfrak{F} be a class of groups. We call, following Guo, Shum and Skiba [22], a set Σ of subgroups of G a G-covering subgroup system for the class \mathfrak{F} if $G \in \mathfrak{F}$ whenever $\Sigma \subseteq \mathfrak{F}$.

In [20], the following two results are proved.

Theorem 3.1. [20, Theorem B] Suppose that a set of subgroups Σ contains at least one supplement to each maximal subgroup of every Sylow subgroup of G. Then G is a soluble PT-group (respectively, a soluble T-group) if and only if every subgroup in Σ is a soluble PT-group (respectively, a soluble T-group) and at least one of the non-identity Sylow subgroups of G is an Iwasawa (respectively, a Dedekind) group.

The example of extraspecial 3-group of order p^3 shows that the set Σ in Theorem 3.1 is not a *G*-covering subgroup system for the classes of all soluble *PT*-groups and all soluble *T*-groups.

Now we indicate a system of subgroups that is a G-covering subgroup system simultaneously for classes of all soluble PST-, PT-, and T-groups.

Theorem 3.2. [20, Theorem C] Let Σ be the set of all two-generated subgroups of G. Then Σ is a G-covering subgroup system for any class \mathfrak{F} in the following list:

- (i) \mathfrak{F} is the class of all soluble *PST*-groups.
- (ii) \mathfrak{F} is the class of all soluble *PT*-groups.
- (iii) \mathfrak{F} is the class of all soluble T-groups.

Theorem 3.2 partially answers the following open question.

Problem 3.3. Let Σ be the set of all two-generated subgroups of G. Is it true then that Σ is a G-covering subgroup system simultaneously for the classes of all PST-groups, all PT-groups, and all T-groups?

In the most general case (i.e., without of any restriction on σ), the following theorem is true, which in fact is the main result of the observations found in [50, 54].

Problem 3.4. [54, Theorem B]) If G is a σ -soluble $P\sigma T$ -group and $D = G^{\mathfrak{N}_{\sigma}}$, then the following conditions hold:

- (i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order, M is σ -nilpotent and every element of G induces a power automorphism in D;
- (ii) $O_{\sigma_i}(D)$ has a normal complement in a Hall σ_i -subgroup of G for all i. Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of

G, then G is a $P\sigma T$ -group.

In the case when $\sigma = \sigma^1$, we get from Theorem 3.4 the following

Corollary 3.5. [1, Theorem 2.3] Let $D = G^{\mathfrak{N}}$ be the nilpotent residual of G. If G is a soluble PST-group, then D is an abelian Hall subgroup of G of odd order and every element of G induces a power automorphism in D.

In the case when $\sigma = \sigma^{\pi}$ we get from Theorem 3.4 the following corollary.

Corollary 3.6. *G* is a π -separable $P\sigma^{\pi}T$ -group if and only if the following conditions hold:

- (i) G = D ⋊ M, where D is an abelian Hall subgroup of G of odd order, M is π-decomposable and every element of G induces a power automorphism in D;
- (ii) $O_{\pi}(D)$ has a normal complement in a Hall π -subgroup of G;
- (iii) $O_{\pi'}(D)$ has a normal complement in a Hall π' -subgroup of G.

In the case when $\sigma = \sigma^{1\pi}$ we get from Theorem 3.4 the following

Corollary 3.7. G is a π -soluble $P\sigma^{1\pi}T$ -group if and only if the following conditions hold:

- (i) G = D ⋊ M, where D is an abelian Hall subgroup of G of odd order, M = O_{p1}(M) × ··· × O_{pn}(M) × O_{π'}(M) and every element of G induces a power automorphism in D;
- (ii) $O_{\pi'}(D)$ has a normal complement in a Hall π' -subgroup of G.

Theorem 3.4 gives a solution to the following problem in the class of all σ -soluble groups.

Problem 3.8. (see Question in [50]) Let G be a σ -full group. What is the structure of G provided that every σ -subnormal subgroup of G is σ -permutable ?

In [28], Theorem 3.4 was used to obtain the description of σ -soluble $Q\sigma T$ -groups.

Theorem 3.9. [28, Theorem C] If G is a σ -soluble $Q\sigma T$ -group and $D = G^{\mathfrak{N}_{\sigma}}$, then the following conditions hold:

- (i) G = D ⋊ M, where D is an abelian Hall subgroup of G of odd order and M is a σ-nilpotent group with modular lattice L(M);
- (ii) every element of G induces a power automorphism in D,
- (iii) $O_{\sigma_i}(D)$ has a normal complement in a Hall σ_i -subgroup of G for all i.

Conversely, if Conditions (i), (ii) and (iii) hold for some subgroups D and M of G, then G is a $Q\sigma T$ -group.

Note that, in view of [45, 2.3.2, 2.4.4], if G is a nilpotent group with modular lattice $\mathcal{L}(G)$, then G is an *Iwasawa group* [11, 1.4.2], that is, every subgroup of G is quasinormal in G. Therefore in the case where $\sigma = \sigma^1$, we get from Theorem 3.9 the following well-known result.

Corollary 3.10. [59] A group G is a soluble PT-group if and only if the following conditions hold:

- (i) the nilpotent residual $D = G^{\mathfrak{N}}$ of G is an abelian Hall subgroup of odd order;
- (ii) every element of G induces a power automorphism in D,
- (iii) G/D is an Iwasawa group.

References

- R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1975) 77–83.
- [2] K.A. Al-Sharo, J.C. Beidleman, H. Heineken, M.F. Ragland, Some characterizations of finite groups in which semipermutability is a transitive relation, *Forum Math.* 22 (2010) 855–862.
- [3] K.A. Al-Sharo, A.N. Skiba, On finite groups with σ -subnormal Schmidt subgroups, Comm. Algebra 45 (2017) 4158–4165.
- [4] M.M. Al-Shomrani, A.A. Heliel, A. Ballester-Bolinches, On σ-subnormal closure, Comm. in Algebra 48 (8) (2020) 3624–3627. doi: 10.1080/00927872.2020.1742348
- [5] M. Asaad, Finite groups in which normality or quasinormality is transitive, Arch. Math. 83 (4) (2004) 289–296.
- [6] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, A local approach to certain classes of finite groups, *Comm. Algebra* **31** (2003) 5931–5942. doi:10.1081/AGB-120024860.
- [7] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, Groups in which Sylow subgroups and subnormal subgroups permute, *Illinois J. Math.* **47** (1-2) (2003) 63–69.
- [8] A. Ballester-Bolinches, J. Cossey, Totally permutable products of finite groups satisfying SC or PST, Monatsh. Math. 145 (2005) 89–93.
- [9] A. Ballester-Bolinches, R. Esteban-Romero, On finite soluble groups in which Sylow permutability is a transitive relation, Acta Math. Hungar. 101 (2003) 193– 202.
- [10] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutable subnormal subgroups, J. Algebra 251 (2002) 727–738.
- [11] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin-New York, 2010.

- [12] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006.
- [13] A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, V. Perez-Calabuig, On σ-subnormality criteria in finite σ-soluble groups, *Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas* 114 (2) (2020), doi.org/10.1007/s13398-020-00824-4.
- [14] A. Ballester-Bolinches, S.F. Kamornikov, X. Yi, On σ -subnormality criteria in finite groups, J. Pure Appl. Algebra (to appear)
- [15] J.C. Beidleman, M.F. Ragland, Subnormal, permutable, and embedded subgroups in finite groups, *Central Eur. J. Math.* 9 (4) (2011) 915–921.
- [16] J.C. Beidleman, A.N. Skiba, On τ_{σ} -quasinormal subgroups of finite groups, J. Group Theory **20** (5) (2017) 955–964.
- [17] Z. Chi, A.N. Skiba, On a lattice characterisation of finite soluble *PST*-group, *Bull. Austral. Math. Soc.* 101 (2020) 113–120.
- [18] W.E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963) 125–132.
- [19] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.
- [20] J. Guo, W. Guo, I.N. Safonova, A.N. Skiba, G-covering subgroup systems for the classes of finite soluble PST-groups, Comm. in Algebra 49 (9) (2021) 1–12. doi: 10.1080/00927872.2021.1909057.
- [21] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg-New York-Dordrecht-London, 2015.
- [22] W. Guo, K.P. Shum, A.N. Skiba, G-covering subgroup systems for the classes of supersoluble and nilpotent groups, Israel J. Math. 138 (2003) 125–138.
- [23] W. Guo, A.N. Skiba, Finite groups whose n-maximal subgroups are σ-subnormal, Science China. Math. 62 (7) (2019) 1355–1372.
- [24] W. Guo, A.N. Skiba, On σ -supersoluble groups and one generalization of *CLT*-groups, *J. Algebra* **512** (2018) 92–108.
- [25] W. Guo, A.N. Skiba, On the lattice of Π_{3} -subnormal subgroups of a finite group, Bull. Austral. Math. Soc. 96 (2) (2017) 233–244.
- [26] W. Guo, C. Zhang, A.N. Skiba, D.A. Sinitsa, On H_{σ} -permutable embedded subgroups of finite groups, *Rend. Sem. Math. Univ. Padova* **102** (2018) 143–158.
- [27] A.A. Heliel, M. Al-Shomrani, A. Ballester-Bolinches, On the σ -length of maximal subgroups of finite σ -soluble groups *Mathematics* 8 (12) (2020) 2165–2169. https://doi.org/10.3390/math8122165.
- [28] B. Hu, J. Huang, A.N. Skiba, Groups with only σ-semipermutable and σ-abnormal subgroups, Acta Math. Hung. 153 (1) (2017) 236–248.
- [29] B. Hu, J. Huang, A.N. Skiba, On σ-quasinormal subgroups of finite groups, Bull. Austral. Math. Soc. 99 (3) (2019) 413–420.
- [30] B. Hu, J. Huang, A.N. Skiba, On finite groups with generalized σ -subnormal Schmidt subgroups, Comm. Algebra **46** (2) (2017) 1–8. doi:org/10.1080/00927872.2017.1404091.
- [31] J. Huang, B. Hu, X. Wu, Finite groups all of whose subgroups are σ -subnormal or σ -abnormal, Comm. Algebra 45 (1) (2017) 4542–4549. doi:10.1080/00927872.2016.1270956
- [32] N. Ito, J. Szép, Uber die Quasinormalteiler von endlichen Gruppen, Act. Sci. Math. 23 (1962) 168–170.
- [33] S.F. Kamornikov, V.N. Tyutyanov, On σ -subnormal subgroups of finite groups, Siberian Math. Z. **61** (2) (2020) 337–343.
- [34] S.F. Kamornikov, V.N. Tyutyanov, On σ-subnormal subgroups of finite 3 -groups, Ukranian Math. J. 72 (6) (2020) 806–811.

- [35] S.F. Kamornikov, X. Yi, Finite groups with σ -subnormal Schmidt subgroups, Journal of Algebra **560**(15) (2020) 181–191.
- [36] O.H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962) 205–221.
- [37] O.H. Kegel, Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten, Arch. Math. 30 (3) (1978) 225–228.
- [38] P.B. Kleidman, A proof of the Kegel–Wielandt conjecture on subnormal subgroups, Ann. Math. 133 (1977) 369–428.
- [39] V.A. Kovaleva, A criterion for a finite group to be σ-soluble, Comm. Algebra 46 (12) (2019) 5410–5415. doi:10.1080/00927872.2018.1468907
- [40] A.M. Liu, W. Guo, I.N. Safonova, A.N. Skiba, G-covering subgroup systems for some classes of σ-soluble groups, J. Algebra 585 (2021) 280–293. doi: 10.1016/j.jalgebra.2021.06.010
- [41] R. Maier, P. Schmid, The embedding of permutable subgroups in finite groups, Math. Z. 131 (1973) 269–272.
- [42] A. Mann, Finite groups whose n-maximal subgroups are subnormal, Trans Amer. Math. Soc. 132 (1968) 395–409.
- [43] V.D. Mazurov, E.I. Khukhro, *The Kourovka Notebook: Unsolved Problems in Group Theory*, Russ. Acad. of Sciences, Siberian Div., Sobolev Institute of Mathematics 19, 2018.
- [44] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, J. Austral. Math. Soc. 70 (2001) 143–159.
- [45] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994.
- [46] L.A. Shemetkov, Formations of Finite Groups, Moscow, Nauka, Main Editorial Board for Physical and Mathematical Literature, 1978.
- [47] D.A. Sinitsa, Finite groups with H_{σ} -permutable embedded subgroups, Advances in Group Theory and Applications 4 (2017) 29–40.
- [48] A.N. Skiba, On some classes of sublattices of the subgroup lattice, J. Belarusian State Univ. Math. Informatics 3 (2019) 35–47.
- [49] A.N. Skiba, On σ-properties of finite groups I, Problems of Physics, Mathematics and Technics 4 (2014) 89–96.
- [50] A.N. Skiba, On σ -subnormal and σ -permutable subgroups of finite groups, J. Algebra **436** (2015) 1–16.
- [51] A.N. Skiba, A generalization of a Hall theorem, J. Algebra Appl. 15 (4) (2015) 21–36.
- [52] A.N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat. 4 (2016) 281–309.
- [53] A.N. Skiba, On sublattices of the subgroup lattice defined by formation fitting sets, J. Algebra 550 (2020) 69–85.
- [54] A.N. Skiba, Some characterizations of finite σ -soluble $P\sigma T$ -groups, J. Algebra 495 (2018) 114–129.
- [55] A.E. Spencer, Maximal nonnormal chains in finite groups, Pacific J Math. 27 (1968) 167–173.
- [56] V.A. Vedernikov, Finite groups with subnormal Schmidt subgroups, Algebra and Logica 46 (6) (2007) 669–687.
- [57] H. Wielandt, Eine Verallgemenerung der invarianten Untergruppen, Math. Z. 45 (1939) 200–244.
- [58] X. Yi, A.N. Skiba, Some new characterizations of PST-groups, J. Algebra 399 (2014) 39–54.
- [59] G. Zacher, I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normaly, Atti Accad, Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur. 37 (8) (1964) 150–154.