

P44. Structural Properties of Sol-Gel BiFeO₃- Films

S.A. Khakhomov¹, V.E. Gaishun¹, D.L. Kovalenko¹, A.V. Semchenko^{1*},

V.V. Sidsky¹, O.I. Tyelenkova¹, W. Strek², D. Hreniak²,

A.L. Kholkin³, S. Kopyl³, I. Bdikin³

¹F. Skorina Gomel State University, Sovetskaya 104, Gomel, 246019, Belarus

²Institute of Low Temperature and Structures Research PAN, Okolna st. 2, Wroclaw, Poland

³University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal

* tel/fax +375 (232) 57-63-57, semchenko@gsu.by

The main purpose is to synthesize BiFeO₃ films by sol-gel method, characterization of sample structure on their composition and annealing temperature. The initials for the sol-gel synthesis were salts of metals; ethylene glycol; zitric acid; ethylenediamine. Then the samples BiFeO₃ sol-gel materials were annealed at the different temperatures for 20 minutes. X-ray thin-film measurement technique was used to determine the structure.

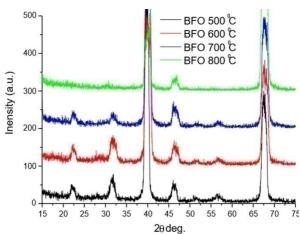


Figure 1- XRD of BiFeO₃ sol-gel films

XRD data for BiFeO₃ samples annealed at

different temperatures were analyzed. It was established that BiFeO₃ samples have the different behavior compared to powders [1]. The formation of required with high content phase begins at the temperature of 500 ° C.

This work was funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No 778070.

References

[1]S. Khakhomov, V. Gaishun, D. Kovalenko, A. Semchenko et. al., Recent Advances in Technology Research and Education: Proceedings of the 17th International Conference on Global Research and Education Inter-Academia–2018, 53, 43-48 (2018)