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INTRODUCTION

The present paper is a continuation of [1]. Here we restrict ourselves to two-dimensional time-
periodic linear differential systems. To draw the reader’s attention to the fact that the basic ideas
of the paper can be applied to nonlinear systems, we also consider the Riccati equation.

In what follows, we use the notion of Poincaré period map [2, p. 209; 3, p. 216].
Let us first recall some information from the theory of the reflecting function [4–11], which is

necessary for understanding this paper.
Let n ∈ N be fixed, and let D be an open domain in Rn. Consider the differential system

dx

dt
= X(t, x), t ∈ R, x ∈ D, (1)

for which the Cauchy problem has a unique solution for any point (t0, x0) ∈ R × D. Let x =
φ(t; t0, x0) be the general solution of this system in the Cauchy form. The reflecting function F (t, x)
of system (1) is determined by the formula F (t, x) = φ(−t; t, x). It is obvious that F (0, x) ≡ x,
x ∈ D. For x ∈ D, by Ix = (−αx, αx) we denote the maximum existence interval symmetric about
zero for the solution φ(t; 0, x). The graphs of the solutions φ(t; 0, x), t ∈ Ix, fill some open domain,
which is the domain of the reflecting function F (t, x).

The main property of the reflecting function is that the identity F (t, x(t)) ≡ x(−t), t ∈ Ix(0),
holds for each solution x(t) of system (1). In other words, the reflecting function takes each future
state x(t) of the real system modeled by the differential system (1) to its previous state x(−t) at
the time symmetric about the current time t = 0. This implies the following assertions (see [5, 6]):

1. If system (1) is 2ω-periodic in t and F (t, x) is its reflecting function, then the Poincaré map
on the interval [−ω, ω] for this system is defined by the rule x 7→ F (−ω, x).

2. If F (t, x) is the reflecting function of a 2ω-periodic system (1), then a solution x(t) =
φ(t;−ω, x0) extendible to [−ω, ω] is 2ω-periodic if and only if F (−ω, x0) = x0. The kind
of stability of this solution coincides with the kind of stability of the fixed point x0 of the
Poincaré map x 7→ F (−ω, x).

3. A differentiable function F (t, x) defined in some neighborhood of the hyperplane t = 0 of the
space (t, x) is the reflecting function of system (1) if and only if it is the solution of the Cauchy
problem

∂F

∂t
+
∂F

∂x
X(t, x) +X(−t, F ) = 0, F (0, x) = x.

4. For the linear system
dx

dt
= P (t)x, t ∈ R, x ∈ Rn, (2)

the reflecting function is linear and has the form x̄ = F (t)x, where the matrix F (t) can be
expressed via the Cauchy matrix Φ(t) of system (2) by the formula F (t) = Φ(−t)Φ−1(t). This
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matrix is called the reflecting matrix and is the solution of the following Cauchy problem for
a linear matrix differential equation:

dF

dt
+ FP (t) + P (−t)F = 0, F (0) = E, (3)

where E is the identity matrix.
5. If system (2) has been obtained by a change of variables x = S(t)y from a system
dy/dt = Q(t)y that has a reflecting function ȳ = F (t)y, then the reflecting function of
system (2) is given by the formula x̄ = S(−t)F (t)S−1(t)x.

1. REFLECTING FUNCTION AND PERIODIC SOLUTIONS OF LINEAR
TWO-DIMENSIONAL SYSTEMS

Each linear system (2) with continuous coefficient matrix can be written in the form

dx

dt
= Pev(t)x+ Pod(t)x, t ∈ R, x ∈ Rn, (4)

where Pev(t) = (P (t) + P (−t))/2 and Pod(t) = (P (t) − P (−t))/2 are, respectively, even and odd
continuous matrices. Making the change of variables

y = x exp

− 1

n

t∫
0

trPev(τ) dτ


in system (4), where tr is the trace of a matrix, we obtain a system of the form (4) in which the
matrix Pev(t) of the even part has identically zero trace. Therefore, in what follows, considering the
two-dimensional system (4), without loss of generality, we assume that it has the form

dx

dt
=

(
p1(t) p2(t)

p3(t) −p1(t)

)
x+

(
α(t) β(t)

γ(t) δ(t)

)
x, t ∈ R, x ∈ R2; (5)

here

Pev(t) :=

(
p1(t) p2(t)

p3(t) −p1(t)

)
and Pod(t) :=

(
α(t) β(t)

γ(t) δ(t)

)
are even and odd continuous matrices.

It is this system that we will consider in what follows unless stated otherwise.

Theorem 1. Let the matrix Pev(t) be continuously differentiable in system (5) for all t ∈ R, and
let the matrix Pod(t) be continuous. Assume also that the following conditions are satisfied:

1. The inequality −detPev(t) ≡ p21(t) + p2(t)p3(t) > 0 holds for all t ∈ R.
2. The functions

m(t) :=
−p1(t)√

p21(t) + p2(t)p3(t)
, n(t) :=

−p2(t)√
p21(t) + p2(t)p3(t)

, r(t) :=
−p3(t)√

p21(t) + p2(t)p3(t)

satisfy the relations

dm

dt
+ nγ − βr = 0,

dn

dt
+ n(δ − α) + 2mβ = 0,

dr

dt
+ r(α− δ)− 2mγ = 0. (6)

Then the reflecting matrix of system (5) is given by the formula

F (t) = E coshφ(t) +M(t) sinhφ(t),
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where

M(t) =

(
m(t) n(t)

r(t) −m(t)

)
and φ(t) = 2

t∫
0

√
p21(τ) + p2(τ)p3(τ) dτ.

Proof. To prove the theorem, it suffices to verify the main relation (3) for the reflecting matrix,
whose differential equation in our case acquires the form

dF

dt
+ F (Pev + Pod) + (Pev − Pod)F

=
d

dt
(E coshφ+M sinhφ) + (E coshφ+M sinhφ)(Pev + Pod)

+ (Pev − Pod)(E coshφ+M sinhφ)

= E sinhφ
dφ

dt
+
dM

dt
sinhφ+M

dφ

dt
coshφ+ 2Pev coshφ

+ (MPev + PevM) sinhφ+ (MPod − P odM) sinhφ

=

(
M
dφ

dt
+ 2Pev

)
coshφ+

(
E
dφ

dt
+MPev + PevM

)
sinhφ

+

(
dM

dt
+MPod − PodM

)
sinhφ = 0.

Indeed, here each of the expressions in parentheses vanishes. This can readily be verified if we take
into account the fact that condition 2 implies the identity

Pev = −M
√
p21 + p2p3 = −1

2
M
dφ

dt
.

The condition F (0) = E is obviously satisfied. The proof of the theorem is complete.

Remark 1. In accordance with the general proposition of the theory of reflecting functions, the
Poincaré map of the 2ω-periodic system (5) on the interval [−ω, ω] is given by the formula

F (−ω, x) =

(
coshφ(ω)−m(ω) sinhφ(ω) −n(ω) sinhφ(ω)

−r(ω) sinhφ(ω) coshφ(ω) +m(ω) sinhφ(ω)

)
x.

Theorem 2. Let the matrix Pev(t) in system (5) be continuously differentiable for all t ∈ R, and
let the matrix Pod(t) be continuous. Assume also that the following conditions are satisfied:

1. The inequality −detPev(t) ≡ p21 + p2(t)p3(t) < 0 holds for all t ∈ R.
2. The functions

m(t) :=
−p1(t)√

−p21(t)− p2(t)p3(t)
, n(t) :=

−p2(t)√
−p21(t)− p2(t)p3(t)

, r(t) :=
−p3(t)√

−p21(t)− p2(t)p3(t)

satisfy relations (6).
Then the reflecting matrix of system (5) is given by the formula

F (t) = E cosφ(t) +M(t) sinφ(t),

where

M(t) =

(
m(t) n(t)

r(t) −m(t)

)
and φ(t) = 2

t∫
0

√
−p21(τ)− p2(τ)p3(τ) dτ.
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Proof. Let us reduce the proof of Theorem 2 to proving Theorem 1 by using the statement
of the latter. Here we assume that this formulation uses the notation φ1, m1, n1, and r1 instead
of φ, m, n, and r, respectively. Then

φ1(t) = 2

t∫
0

√
p21(τ) + p2(τ)p3(τ) dτ = 2i

t∫
0

√
−p21(τ)− p2(τ)p3(τ) dτ = −iφ(t),

m1(t) =
m(t)

i
, n1(t) =

n(t)

i
, r1(t) =

r(t)

i
, i2 = −1.

Therefore, for the reflecting matrix of the system in question we obtain the relation

F (t) = E cosh(iφ(t)) +M(t)
sh(iφ(t))

i
= E cosφ(t) +M(t) sinφ(t).

This implies the assertion in Theorem 2.
The proof can also be conducted directly by verifying relation (3).

Corollary 1. Let all conditions in Theorem 2 be satisfied for the 2ω-periodic system (5), and let

ω∫
0

√
−p21(τ)− p2(τ)p3(τ) dτ = π

q

p
,

where p, q ∈ N and q/p is an irreducible fraction.
Then all solutions of this system are 2ωp-periodic.
Proof. Since the function φ(t) in the statement of Theorem 2 is, according to its definition, odd,

we see that the function φ̇(t) is even and, by virtue of the assumptions in the corollary, 2ω-periodic.
It is well known that for each 2ω-periodic even function φ̇(t) there exists a 2ω-periodic function ψ(t)
and a constant c = 1

2ω

∫ ω

−ω
φ̇(τ) dτ = 1

ω

∫ ω

0
φ̇(τ) dτ such that

∫ t

0
φ̇(τ) dτ = ct+ ψ(t).

Therefore, the function

cosφ(t) = cos
(
ct+ ψ(t)

)
= cos

(
t
π

ω

q

p
+ ψ(t)

)
is 2pω-periodic. It follows that the Poincar’e map F (−ω)x = Ex is an identity on the inter-
val [−ωp, ωp]. The proof of Corollary 1 is complete.

Corollary 2. Let all assumptions in Theorem 2 be satisfied. Then all solutions of the 2ω-periodic
system (5) are bounded on R, and it is stable nonasymptotically.

The proof readily follows from Theorem 1 in [11, p. 81].

Remark 2. We will consider the three differential relations which must be satisfied by the
functions m(t), n(t), and r(t) according to the second condition in Theorem 2 as a system of
differential equations for these functions. It can readily be verified that such a system has the first
integral m2 + rn = const, which is in agreement with the formulas defining these functions. It
follows from these formulas that m2 + rn = 1. Thus, instead of the three differential relations (6),
it suffices to require the validity of only the following two differential relations

dn

dt
+ n(δ − α) + 2β

√
1− rn = 0,

dr

dt
+ r(α− δ)− 2γ

√
1− rn = 0.

By way of example, consider the system

dx

dt
=

(
0 k(t)

p2(t)k(t) 0

)
x+

(
α(t) β(t)

γ(t) δ(t)

)
x, (7)
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where k(t) is an even continuous function, p(t) is an even continuously differentiable function as-
suming only positive values, and the functions α(t), β(t), γ(t), and δ(t) are continuous and odd.

For the system under consideration, we find dφ(t)/dt = 2
√
p21 + p3p4 = 2p(t)k(t) and

m(t) ≡ 0, n(t) ≡ −p2
φ̇

≡ −k
2pk

≡ −1

2p(t)
, r(t) ≡ −p3

φ̇
≡ −p(t)

2
; M(t) =

1

2

(
0 1/p(t)

p(t) 0

)
.

As calculations show, conditions (6) are reduced to the following two:

γ(t) = β(t)p2(t) and
dp(t)

dt
= p(t)

(
δ(t)− α(t)

)
. (8)

Therefore, Theorem 1 implies the following corollary.

Corollary 3. Let the following conditions be satisfied for system (7):
1. p(t) is an even differentiable function on R assuming only positive values.
2. k(t) is an even function continuous on R.
3. Identities (8) hold.
Then the reflecting matrix of the system in question is given by the formula

F (t) = E coshφ(t) +M(t) sinhφ(t),

where
dφ(t)

dt
= 2

t∫
0

p(τ)k(τ) dτ, M(t) =
1

2

(
0 1/p(t)

p(t) 0

)
.

In conclusion, let us make the following remark, which is important for the practical use of the
results obtained.

Remark 3. Consider the two-dimensional differential system

dx

dt
= a(t)x+ b(t)y + P (t, x, y),

dy

dt
= c(t)x+ d(t)y +Q(t, x, y), (9)

where P (t, x, y) and Q(t, x, y) are series (or polynomials) in powers of x and y with coefficients
depending on time t.

If (
F1(t, x, y)

F2(t, x, y)

)
=

(
f1(t) f2(t)

f3(t) f4(t)

)(
x

y

)
is the reflecting function of the linear approximation system

dx

dt
= a(t)x+ b(t)y,

dy

dt
= c(t)x+ d(t)y,

then this reflecting function quite often is also the reflecting function of the entire system (9). This
occurs if and only if the relations

f1(t)P (t, x, y) + f2(t)Q(t, x, y) + P (−t, f1(t)x+ f2(t)y, f3(t)x+ f4(t)y) ≡ 0,

f3(t)P (t, x, y) + f4(t)Q(t, x, y) +Q(−t, f1(t)x+ f2(t)y, f3(t)x+ f4(t)y) ≡ 0

hold true. These relations can be verified for known fk(t), k = 1, . . . , 4, by simple albeit (for large
powers of P and Q) cumbersome calculations. Here the calculations for polynomials Ps(t, x, y)
and Qs(t, x, y) homogeneous of degree s with respect to x and y for which

P (t, x, y) =

n∑
s=2

Ps(t, x, y), Q(t, x, y) =

n∑
s=2

Qs(t, x, y)

are made for each s separately.
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2. REFLECTING FUNCTION OF THE RICCATI EQUATION

Consider the differential Riccati equation

dx

dt
= a(t) + b(t)x+ c(t)x2 (10)

with differentiable coefficients a(t), b(t), and c(t) in the form

dx

dt
=
(
aev(t) + bev(t)x+ cev(t)x

2
)
+
(
aod(t) + bod(t)x+ cod(t)x

2
)
,

where the expression in the first parentheses is the sum of t-even terms and the expression in the
second parentheses is the sum of t-odd terms.

Theorem 3. Let b2ev(t)− 4aev(t)cev(t) > 0 for all t ∈ R, and let the functions

r(t) :=
−2aev√

b2ev − 4aevcev
, s(t) :=

2cev√
b2ev − 4aevcev

, n(t) :=
−bev√

b2ev − 4aevcev

satisfy the system of relations

dr

dt
= bod(t)r − 2aod(t)n,

ds

dt
= −bod(t)s− 2cod(t)n,

dn

dt
= cod(t)r + aod(t)s. (11)

Then the reflecting function of Eq. (10) is given by the formula

F (t, x) =

(
coshφ(t) + n(t) sinhφ(t)

)
x+ r(t) sinhφ(t)

xs(t) sinhφ(t) + coshφ(t)− n(t) sinhφ(t)
,

where φ(t) :=
∫ t

0

√
b2ev − 4aev(τ)cev(τ) dτ .

The proof of this theorem can be conducted by verifying the main relation for the reflecting
function in property 3.

Corollary 4. Under the assumptions of Theorem 3, a solution x(t;ω, x(ω)) of Eq. (10) extendible
to the interval [−ω, ω] is a solution of the boundary value problem

G(x(ω), x(−ω)) = 0

if and only if
G
(
x(ω), F

(
ω, x(ω)

))
= 0.

This assertion follows from the main property F (t, x(t)) ≡ x(−t) of the reflecting function.
In the case of b2ev(t)− 4aev(t)cev(t) < 0, for all t ∈ R we have

φ(t) = i

t∫
0

√
4aevcev − b2ev =: ψ(t)i,

and the reflecting function of Eq. (10) acquires the form

F (t, x) =

(
cosφ(t) + n(t) sinφ(t)

)
x+ r(t) sinφ(t)

xs(t) sinφ(t) + cosφ(t)− n(t) sinφ(t)
,

where
r(t) :=

−2aev√
4aevcev − b2ev

, s(t) :=
−2cev√

4aevcev − b2ev
, n(t) :=

−bev√
4aevcev − b2ev

. (12)
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In this case, if the coefficients of Eq. (10) are 2ω-periodic, we have

t∫
0

√
4aevcev − b2ev dτ = c0t+ θ(t),

where the constant c0 = ω−1
ω∫
0

√
4aevcev − b2ev dτ and θ(t) is a 2ω-periodic function.

Hence we arrive at the following assertion.

Theorem 4. Let all continuously differentiable coefficients of the Riccati equation (10) be
2ω-periodic, and let 4aev(t)cev(t) − b2ev(t) < 0 for all t ∈ R. Further, let the functions (12) sat-
isfy relations (11).

Then all solutions of Eq. (10) extendible to the interval [−ω, ω] are 2ωp-periodic if

ω∫
0

√
4aevcev − b2ev dτ = π

q

p
,

where p, q ∈ N and q/p is an irreducible fraction.
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