В. П. Боровик, С. В. Кухта

(ПГУ, Новополоцк)

НЕЧЕТКАЯ ОПТИМИЗАЦИЯ ПРОЦЕССА КОМБИНИРОВАННОЙ ОБРАБОТКИ ДЕТАЛЕЙ МАШИН

Для изучения путей управления технологическим процессом рассматривался комбинированный метод обработки, электромагнитная наплавка с поверхностным пластическим деформированием, обеспечивающая формирование поверхности детали с улучшенными геометрическими параметрами и упрочнение поверхностного слоя, повышение его физико-механических характеристик [1]. На основе статистических методов исследовались зависимости регламентируемых параметров обработки — эксплуатационного: относительной износостойкости Y_1 ; физико-механического: твердости Y_2 ; геометрического: шероховатости Y_3 ; производительности обработки Y_4 от основных технологических факторов: усилия деформирования X_1 , подачи инструмента X_2 , силы разрядного тока X_3 , скорости вращения детали X_4 и магнитной индукции в рабочем зазоре X_5 . Для комплексного управления параметрами качества на основании нечеткой оптимизации [2] комбинированного технологического процесса использовалась диаграмма "причины-результат".

На диаграмме в качестве причин указаны параметры $\gamma_1,...,\gamma_4$, которые в свою очередь обусловлены факторами $\chi_1,...,\chi_5$. На основании всех перечисленных параметров, которые оказывают влияние на процесс, необходимо выявить самые значимые, оказывающие основное влияние на стабильность построения функции и шкал желательности для каждого из факторов. Это позволило сформулировать критерии и ограничения задачи нечеткой оптимизации процесса комбинированной обработки деталей, позволяющей достичь оптимального качества изделия с учетом ограничений на требуемые ресурсы. В нашем случае определено, что значимыми параметрами, влияющими на протекающий процесс, являются производительность обработки, твердость и шероховатость (последние два определяют износостойкость).

Литература

- 1. Ящерицын П.И., Деев Г.А., Кожуро Л.М., Хейфец М.Л. Комбинированный метод электромагнитной наплавки с поверхностным пластическим деформированием // Доклады АН Беларуси. 1993. Т.37. № 4. С.114-117.
- 2. Дилигенский Н.В., Дымова Л.Г., Севастьянов П.В. Нечеткое моделирование и многокритериальная оптимизация производственных систем в условиях неопределенности: технология, экономика, экология // М.: «Издательство Машиностроение-1», 2004.