И. В. Слисова, Т. В. Цеховая

(БГУ, Минск)

ПОСТРОЕНИЕ БАТИМЕТРИЧЕСКОЙ КАРТЫ ОЗЕРА

С ИСПОЛЬЗОВАНИЕМ ПАКЕТА SURFER

Современные геоинформационные технологии значительно уменьшают затраты для проведения батиметрических исследований. Геоинформационная система Golden Software Surfer позволяет строить цифровую модель поверхности, визуализировать поверхность в двухмерном или трехмерном изображении, вычислить площадь поверхности и объем трехмерного изображения, предоставляет пользователю точные и сглаживающие методы интерполяции, а также возможность оценить полученные результаты с помощью кросс-валидации.

Из батиметрической базы данных озер http://www.mapgraphica.com/kartyglubin/ получена информация об озере Вьюново (Россия). Это озеро находится в 11,25 километрах к северо-востоку от города Володарск. Площадь озера составляет 16,5 гектара. Максимальное значение глубины — 15 метров.

Путем оцифровки карты озера Вьюново построена сетка наблюдений с шагом, равным 18 м по горизонтали и 4,84 м по вертикали. Получена цифровая модель данных. Проведен первичный статистический анализ исходных данных.

Для прогнозирования значений глубин озера в ненаблюдаемых точках применены детерминированный интерполяционный метод Степень обратных расстояний и недетерминированный метод Кригинг.

Проведен поиск оптимальных значений параметров Power и Smoothing для исходных данных с последующей оценкой результатов. Оценка степени соответствия прогноза глубин реальным данным проведена на основе процедуры кросс-валидации (CrossValidate) пакета Surfer. По результатам кросс-валидации вычислены и проанализированы глобальные характеристики: коэффициент корреляции между исходными и оцененными данными, сдвиг среднего значения, сумма квадратов невязок, средняя квадратичная ошибка, коэффициент эффективности. Оптимальные значения параметров в рассмотренном примере следует считать Power = 4 и Smoothing = 6.

По исходным наблюдениям построена экспериментальная вариограмма. Осуществлен подбор модели вариограммы, которая, в свою очередь, представима суммой линейной модели и эффекта самородка. Найдено оптимальное значение параметра Max Lag Distance (Max Lag Distance = 200) метода Кригинг. Подбор параметра осуществлен аналогично подбору параметров Power и Smoothing метода Степень обратных расстояний. Применен интерполяционный метод Кригинг.

Сделан сравнительный анализ результатов обоих методов. Сравнение эффективности интерполяции осуществлялось по характеристикам качества оценки кросс-валидации. Результаты представлены в таблице 1. Чем ближе коэффициент корреляции к 1 и чем ближе значения остальных характеристик к 0, тем выше точность используемого метода. Отмечена высокая эффективность метода Кригинг.

Построены батиметрическая карта чаши озера и ее трехмерная поверхность (рис. 1).

Таблица 1 – Характеристики качества оценки кросс-валидации

	Кригинг	Степень обратных
	Кригинг	расстояний
коэффициент корреляции	0,994768	0,99385
сдвиг среднего значения	0,000907	0,005091
сумма квадратов невязок	411,3993	490,3799
среднеквадратическая ошибка	0,009659	0,233403
коэффициент эффективности	0,010645	0,012948

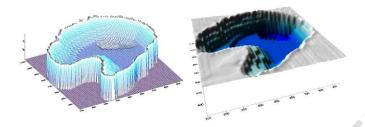


Рисунок 1 – Трехмерное изображение озера Вьюново

Исследована эффективность работы методов в областях с низкой, средней и высокой обеспеченностью исходными данными. Различные наборы данных были получены при оцифровке карты озера Вьюново равномерными и неравномерными сетками с использованием различного шага сетки.

Вычислены площадь поверхности и объем озера Вьюново. Оценена погрешность вычислений.