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Abstract

In this paper relativistic-invariant phenomenological Lagrangians of interaction between
spin-1 particles and electromagnetic field were obtained in the Duffin-Kemmer-Petiau for-
malism on the basis of the covariant model that takes into account both spin polarizabilities
and gyrations of the above-mentioned particles. It was shown that in the suggested covariant
model with regard to the crossing symmetry, spatial parity and gauge invariance conservation
laws, definite spin polarizabilities and gyrations of spin-1 particles contribute to the expan-
sion of Compton scattering amplitude, starting from the corresponding orders on energy of
pfotons that is in the agreement with low-energy theorems for that process.

1 Introduction

With the development of the Standard Model of electroweak interaction, new electromagnetic
properties of hadrons have been introduced recently. These properties, by analogy with gyration
[1,2], are connected with parity violation [3,4]. In their turn, such electromagnetic characteris-
tics as polarizabilities and gyrations are directly related to the inner structure of hadrons and
the mechanism of electroweak photon-hadron interactions. For more reliable determination of
polarizabilities and hadron characteristics connected with parity violation, a wide class of elec-
trodynamic processes is used. These processes include real and virtual photons scattering, as
wells as two-photon production in hadron-hadron interactions. In this context, the task of consis-
tent relativistic-invariant determination of the contributions of polarizabilities and electroweak
characteristics of particles to the electrodynamic processes’ amplitudes and cross-sections is of
great relevance.

The solution for this task can be found in the framework of relativistic theoretical and field
approach to the description of interaction between electromagnetic field and hadrons with the
account for polarizabilities (both electromagnetic and electroweak) of the latter. In papers [1, 5-
9] covariant techniques describing the interaction between electromagnetic field and hadrons were
presented. In such techniques the electromagnetic characteristics of particles are fundamental.

Effective covariant Lagrangian of interaction between electromagnetic field and spin-1/2
particles that takes into account the polarizabilities of the latter was introduced in [1, 10] and
has been recently used for fitting the photon-proton scattering experimental data at the energies
close to resonance production ∆(1232) [11]. Characterization of electrodynamic processes on

352



the basis of relativistic theoretical and field approaches, which are focused on the obtaining
of phenomenological Lagrangians, equations that describe interaction of electromagnetic field
with hadrons, as well as the calculation of electrodynamic processes amplitudes consistent with
the Standard Model’s low-energy theorems is one of the most effective methods of interaction
processes investigation.

Currently there is a number of theoretical papers (see [12-16]) devoted to introduction and
calculation of spin polarizabilities of spin-1/2 hadrons that contribute to the series expansion of
Compton scattering amplitude at the energies of photons in the third expansion order. Along
with the investigations of spin-1/2 hadrons polarizabilities, a number of papers present the
results of determination and estimation of spin-1 particles polarizabilities [17-20]. Such particles
are characterized by both dipole, spin and tensor polarizabilities.

Low-energy theorems play an important role in the understanding of interaction between
electromagnetic field and hadrons. It is stipulated by the fact that they are based on the general
concepts of quantum field theory and series expansion of Compton scattering amplitude in powers
of photons energy. Currently, one of the most efficient methods of electrodynamic processes
investigation is the technique that uses phenomenological Lagrangians obtained in the framework
of theoretical and field approaches and consistent with the low-energy theorems that are specified
by the Standard Model of electroweak interactions. Construction of such Lagrangians allows to
obtain physical interpretation of electromagnetic and electroweak characteristics of hadrons.

In paper [19] low-energy theorems for Compton scattering on a spin-1 particle were obtained.
On the basis of these and with the use of techniques for determination of the contribution of
spin-1/2 particles polarizabilities to the amplitudes of electrodynamic processes, one can obtain
relativistic-invariant effective Lagrangians and covariant spin structures of two-photon interac-
tion amplitudes with consideration of polarizabilities and electroweak properties (gyrations) on
spin-1 particles. The present paper is entirely devoted to the above-mentioned task.

In paper [21] the construction of the effective relativistic-invariant Lagrangian of interaction
between electromagnetic field and particles with constant electric and magnetic dipole moments
was performed with the help of dipole moments’ anti-symmetric tensor that is independent of
electromagnetic field tensor Fµν .

The present article uses quantum-field relativistic-invariant Lagrangian, in which a tensor
of induced dipole moments is introduced. It means that, in contrast to paper [21], this tensor
depends on Fµν [22]. In its turn, polarizabilities tensor [23, 24] is introduced to determine
contributions of polarizabilities and gyrations to the low-energy Compton scattering amplitude
with provision for particles’ spin degrees of freedom. Moreover, we take into account hermiticity
requirements, algebra of spin operators and the behavior of tensor components under space and
time inversion.

Such phenomenological approach allows to determine the effective relativistic-covariant La-
grangian using the relativistic field consideration of the properties of C-, P - and T -transformations,
as wells as the crossing symmetry. It also provides for conformance with the low-energy theorems
for Compton scattering on spin-1 particles.

In the present paper the Lagrangian and the amplitude of Compton scattering on the spin-
1 particles in the Duffin-Kemmer-Petiau formalism with consideration of their polarizabilities
and gyrations were obtained in the framework of covariant theoretical and field approach. The
technique presented in papers [5, 22, 25, 26] was used.
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2 Determination of the spin structure of low-energy amplitude
for spin-1 particle Compton scattering

We will follow the paper [27] in order to determine the contributions of polarizabilities and
gyrations to the low-energy amplitude of electromagnetic field scattering on spin-1 particle.
However, to calculate induced electric

−→
d and magnetic −→m moments in terms of the electric

−→
E

and magnetic
−→
H vectors of electromagnetic field strength, we use the following formulas [2]:

−→
d = 4πα̂

−→
E (1)

−→m = 4πβ̂
−→
H (2)

where α̂ and β̂ are matrices, matrix-elements of which are the tensors of electric and magnetic
polarizabilities. Diagonal elements of these matrices are expressed through scalar electric and
magnetic polarizabilities:

αij = α1δij

βij = β1δij

Low-energy amplitude of electromagnetic field scattering that was obtained using formulas
(1) and (2) can be presented in the following way [26]:

M(n⃗2) = 4πω2{(e⃗(λ2)∗α̂e⃗(λ1)) + (n⃗2e⃗
(λ1))(n⃗1β̂e⃗

(λ2)∗)+ (3)

+(n⃗1e⃗
(λ2)∗)(e⃗(λ1)β̂n⃗2)− (e⃗(λ2)∗ e⃗(λ1))(n⃗1β̂n⃗2)− (n⃗1n⃗2)(e⃗

(λ1)β̂e⃗(λ2)∗)+

+[(n⃗2n⃗1)(e⃗
(λ2)∗ e⃗(λ1))− (n⃗2e⃗

(λ1))(n⃗1e⃗
(λ2)∗)]Sp(β̂)}.

Expression (3) includes the following designations: ω is the incident wave frequency, n⃗1 =
k⃗1
|⃗k1|

, e⃗(λ1) and k⃗1 are correspondingly the polarization and wave vectors of the incident wave.

According to the definitions of d⃗ and m⃗ presented in (1) and (2), it follows that α̂ and β̂
should satisfy the hermiticity requirement. Taking into account this requirement as well as the
algebra of spin-1 operators Ŝi [19] we can obtain the following:

[Ŝi, Ŝj ] = iδijkŜk, (4)

ŜiŜjŜk = iδijk +
1

2
(Ŝiδjk + Ŝkδij) +

i

2
δikl(ŜjŜl + ŜlŜj) (5)

α̂ and β̂ operators can be presented in the following way [26]:

αij = α1δij + iα2δijkŜk + iχEδijk∂k + ¯̄α(ŜiŜj + ŜjŜi), (6)

βij = β1δij + iβ2δijkŜk + iχMδijk∂k +
¯̄β(ŜiŜj + ŜjŜi), (7)

where i,j, k and l can take the value of 1, 2 or 3, while δijk - is the three-dimensional Levi-Civita
tensor.

In formulas (6) and (7) α1 and β1 are scalar dipole electric and magnetic polarizabilities
correspondingly, ¯̄α and ¯̄β are tensor polarizabilities, α2 and β2 are spin dipole polarizabilities,
while χE and χM are correspondingly electric and magnetic gyrations. As a consequence of
crossing symmetry, α2, β2 and χE , χM have non-zero contribution to the amplitude of Compton
scattering in the third expansion order of the photons energy.

354



As it was shown in [26], by substituting formulas (6) and (7) into (3) and taking into account
the contributions of α, β, ¯̄α and ¯̄β polarizabilities, one can obtain the scattering amplitude in
the second expansion order of the photons energy. It coincides with beyond the Born part of
the amplitude and is due to the low-energy theorem [19].

Let’s determine relativistic-invariant spin structures of the effective Lagrangian and the
amplitudes of Compton scattering on spin-1 particles with the help of covariant representation
of (6) and (7) in the Duffin-Kemmer-Petiau (DKP) formalism following paper [26].

The DKP equations for an unbounded spin-1 particle have the following form [28]:

(βµ∂⃗µ +m)ψ(x) = 0, (8)

ψ̄(x)(βµ∂⃗µ −m) = 0, (9)

where ψ(x) and ψ̄(x) = ψ+(x)η are ten-dimensional functions of particles, η = 2(β
(10)
4 )2 − I,

vectors over derivatives ∂µ show the direction of their action, while four-dimensional vector is
defined as aµ{a⃗, ia0}. In formulas (8) and (9) βµ are ten-dimensional DKP matrices that satisfy
the following commutation rules:

βµβνβρ + βρβνβµ = δµνβρ + δρνβµ.

In the framework of theoretical and field covariant approach the effective Lagrangian of
interaction between electromagnetic field and spin-1 particle with provision for polarizabilities
has the form [5, 8, 26]:

L = − π

2m
ψ̄[βνL̂νσ

↔
∂σ

+ L̂νσβν
↔
∂σ

]ψ (10)

where
↔
∂σ

=
−→
∂ σ −

←−
∂ σ.

The formula (10) for the Lagrangian includes tensor L̂νσ, which is expressed in terms of
polarizabilities and gyrations as:

L̂νσ(α, χE) = L̂νσ(α1) + L̂νσ(¯̄α) + L̂νσ(α2) + L̂νσ(χE), (11)

L̂νσ(β, χM ) = L̂νσ(β1) + L̂νσ(
¯̄β) + L̂νσ(β2) + L̂νσ(χM ), (12)

In order to determine the influence of crossing symmetry on the contributions of spin polar-
izabilities and gyrations to the Compton scattering amplitude in dipole representation we will
transform tensors (11) as (see [22]):

L̂νσ(α1) + L̂νσ(¯̄α) = Fνµα̂
µρ(α1)Fρσ + Fνµα̂

µρ(¯̄α)Fρσ, (13)

L̂νσ(α2) + L̂νσ(χE) = Fνµ
↔
∂λ

Fρσk̂µρλ(α2) + Fνµ
↔
∂λ

Fρσk̂µρλ(χE). (14)

Derivatives in equation (14) operate only on the tensors of electromagnetic field

Fµν = ∂µAν − ∂νAµ.

Tensors α̂µρ(α1) and α̂
µρ(¯̄α), as well as k̂µρλ(α2) and k̂µρλ(χE) are the covariant generalization

of tensors that appear in the right part of formula (6). They have the following form:

α̂µρ = α1δµρ + ¯̄α(ŴµŴρ + ŴρŴµ), (15)
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k̂µρλ =
iα2

2m
δµρλkŴk +

iχE

2m
δµρλk

↔
∂k

(16)

In equations (15) and (16) the definition of covariant spin vector is used. This vector can be
expressed in terms of βν matrices (see [28]):

Wµ = − i

4m
δµχδηĴ

[δη] ↔
∂χ,

where Ĵ [δη] = βδβη − βηβδ. All derivatives found in (15) and (16) operate on wave functions ψ
and ψ̄.

Tensor (12) is defined in a similar way. One just needs to introduce constants β1, β2,
¯̄β and

χM , in formulas (13)-(14) and make a replacement

Fνµ → F̃νµ,

where

F̃µν =
i

2
δµνρσFρσ.

Let’s now determine the spin structures of the amplitude of Compton scattering on spin-1 particle
with provision for polarizabilities and gyrations. We will take Lagrangian (10) as a basis and
follow the procedure presented in paper [28]:

< k2, p2|Ŝ|k1, p1 >=
imδ(k1 + p1 − k2 − p2)
(2π)2

√
4ω1ω2E1E2

M, (17)

here M is the Compton scattering amplitude that represents the sum of polarizabilities and
gyrations contributions according to formulas (11) and (12).

As it was shown in [26], the contribution of α, β and ¯̄α, ¯̄β is expressed as a sum of amplitudes

M1 =M1(α, β) +M1(¯̄α,
¯̄β). (18)

Spin structure M(α, β) in equation (18) has the following form:

M1(α, β) =

(
− 2πi

m

){
α[F (2)

νµ F
(1)
µσ + F (1)

νµ F
(2)
µσ ]+ (19)

+β[F̃ (2)
νµ F̃

(1)
µσ + F̃ (1)

νµ F̃
(2)
µσ ]

}
Pσψ̄

(r2)(p2)βνψ
(r1)(p1).

In its turn, structure M(¯̄α, ¯̄β) is determined as:

M1(¯̄α,
¯̄β) =

(
− πi

m

){
¯̄α[F (2)

νµ F
(1)
µσ + F (1)

νµ F
(2)
µσ ]+ (20)

+¯̄β[F̃ (2)
νµ F̃

(1)
µσ + F̃ (1)

νµ F̃
(2)
µσ ]

}
Pσψ̄

(r2)(p2)[βν{Ŵµ, Ŵρ}+ {Ŵµ, Ŵρ}βν ]ψ(r1)(p1).

Equations (19) and (20) include the following designations:

F (2)
νµ = k2νe

(λ2)∗
µ − k2µe(λ2)∗

ν ,

F (1)
µσ = k1µe

(λ1)
σ − k1σe(λ1)

µ ,

where F̃
(2)
νµ = i

2δνµχδF
(2)
χδ , Pσ = 1

2(p1+p2)σ, p1 and p2 are the momenta of initial and final spin-1
particles correspondingly.
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Ten-dimensional wave functions in the DKP formalism are introduced using complete matrix
algebra elements εAB [28]

ψ(r)(p) = ψ(r)
µ (p)εµ1 +

1

2
ψ
(r)
[µν](p)ε

[µν]1.

In this formula

ψ(r)
µ (p) =

i√
2
λ(r)µ ,

ψ
(r)
[µν](p) == − 1√

2m

(
pµλ

(r)
ν − λ(r)µ pν

)
,

λ
(r)
µ are the components of polarization vectors of spin-1 particle, while εAB are the elements of

complete matrix algebra [28]:

(εAB)CD = δACδBD, εABεCD = δBCε
AD,

where for spin-1 particle indices A, B,C, D = µ, [ρσ], while square brackets stand for the
anti-symmetry with respect to indices ρ and σ.

Wave functions ψ̄(r)(p) that are conjugate with respect to ψ(r)(p) are expressed in the fol-
lowing way (taking into account η matrix):

ψ̄(r)(p) = ψ+(p)η =

(
− i√

2

)
[λ̇(r)µ ε1µ +

i

2m
ε1[µν](pµλ̇

(r)
ν − pν λ̇(r)µ )],

where λ̇
(r)
µ

{
λ
(r)∗

i , λ
(r)
4

}
.

Let’s now determine the spin structures of the amplitudes with provision for the contributions
of spin polarizabilities α2, β2 and gyrations χE , χM , i.e.

M2 =M2(α, β) +M2(χE , χM ).

Using the summands L̂νσ(α2), L̂νσ(χE), L̂νσ(β2) (11) and L̂νσ(χM ) (12), of the Lagrangian, as
well as the previous technique for determination of polarizations contributions to the Compton
scattering amplitude, one can find:

M2(α2, β2) =
π

m
(k1 + k2)λδµρλk

{
α2[F

(2)
νµ F

(1)
ρσ − F (1)

νµ F
(2)
ρσ ]+ (21)

+β2[F̃
(2)
νµ F̃

(1)
ρσ − F̃ (1)

νµ F̃
(2)
ρσ ]

}
ψ̄(r2)(p2)[βνŴk + Ŵkβν ]Pσψ

(r1)(p1).

Amplitude (21) in the target’s rest frame and with the neglect of the target particle’s recoil can
be expressed as:

M2(α2, β2) = 4iπ(ω1 + ω2)ω1ω2λ⃗
(r2)∗

{
α2(S⃗[e⃗

(λ2)∗ e⃗(λ1)])+ (22)

+β2S⃗[n⃗2e⃗
(λ2)∗ ][n⃗1e⃗

(λ1)]
}
λ⃗(r1).

Formulas (21) and (22) imply that dipole spin polarizabilities α2 and β2 contribute to the
amplitude of Compton scattering on spin-1 particle in the third expansion order (series expansion
in the energy of photons), while the crossing symmetry requirements and parity conservation
(with respect to space inversion) rules are satisfied.
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Using the above-introduced technique for constructing covariant blocks of the effective La-
grangian with provision for the crossing symmetry and parity violation, we can obtain the second
summand of the amplitude that depends on the contributions of electric and magnetic gyrations:

M2(χE , χM ) =
2iπ

m2
(k1 + k2)λδµρλk

{
χE [F

(2)
νµ F

(1)
ρσ − F (1)

νµ F
(2)
ρσ ]+ (23)

+χM [F̃ (2)
νµ F̃

(1)
ρσ − F̃ (1)

νµ F̃
(2)
ρσ ]

}
PkPσψ̄

(r2)(p2)βνψ
(r1)(p1).

If we use approximation P⃗ = 0, in equation (23), i.e. we consider the particle to be at rest and
neglect its recoil momentum, the formula (23) can be rewritten in the following way:

M2(χE , χM ) = 4πω1ω2(λ⃗
(r2)∗ λ⃗(r1))

{
χE(k⃗1 + k⃗2)[e⃗

(λ2)∗ e⃗(λ1)])+ (24)

+χM (k⃗1 + k⃗2)[Σ⃗2Σ⃗1]
}
,

where Σ⃗2 = [n⃗2e⃗
(λ2)∗ ], Σ⃗1 = [n⃗1e⃗

(λ1)].

3 Conclusion

Hence, we determined the contributions of polarizabilities to the low-energy Compton scatter-
ing amplitude with provision for the spin degrees of freedom of particles by transforming the
polarizabilities tensor that satisfies both hermiticity requirement and spin algebra. This tensor
is also invariant with respect to space inversion transformations.

The relativistic-covariant form of contributions of spin and tensor polarizabilities, as well as
gyrations to the Compton scattering amplitude in the DKP formalism was found.

The effective Lagrangian that takes into account the changes of spin structures during space
inversion transformations and considers the crossing symmetry of Compton scattering amplitude
on spin-1 particle was obtained in the DKP formalism using theoretical and field relativistic
generalization. The coordination of this amplitude with the low-energy theorems was performed
as well.
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