В. А. Васильев

(ГГУ им. Ф. Скорины, Гомель)

О р-НИЛЬПОТЕНТНОСТИ ОДНОГО КЛАССА КОНЕЧНЫХ ГРУПП

Рассматриваются только конечные группы. Напомним, что подгруппа M группы G называется модулярной подгруппой в G, если выполняются следующие условия:

- (1) $\langle X, M \cap Z \rangle = \langle X, M \rangle \cap Z$ для всех $X \leq G, Z \leq G$ таких, что $X \leq Z$;
- (2) $\langle M, Y \cap Z \rangle = \langle M, Y \rangle \cap Z$ ДЛЯ всех $Y \leq G, Z \leq G$ таких, что $M \leq Z$.

Отметим, что модулярная подгруппа является модулярным элементом (в смысле Куроша, [1]) решетки всех подгрупп группы. Понятие модулярной подгруппы впервые анализировалось в работе Р. Шмидта [2] и оказалось полезным в вопросах классификации составных групп. В частности, в монографии Р. Шмидта [1] модулярные подгруппы были использованы для получения новых характеризаций различных классов групп. Подгруппа, порожденная двумя модулярными подгруппами, сама является модулярной подгруппой (см. гл. 5, раздел 5.1 в [1]). Таким образом, каждая подгруппа H группы H группы H модулярным ядром подгруппы H . Базируясь на понятии модулярного ядра, введем следующее обобщение понятия модулярной подгруппы.

Легко видеть, что всякая модулярная подгруппа является m-добавляемой и, в то же время, существуют группы, в которых класс m-добавляемых подгрупп шире, чем класс всех её модулярных подгрупп.

Нами была доказана следующая теорема.

Теорема 1.2 Пусть $_G$ — группа и $_P$ — силовская $_p$ -подгруппа группы $_G$, где $_p$ — простой делитель $_{|G|}$. Предположим, что по крайней мере одно из следующих утверждений выполняется:

- $(i)_{(p-1,|G|)=1}$ и каждая максимальная подгруппа из P, не имеющая p-нильпотентного добавления в G, является m-добавляемой в G.
- (ii) $_{(P-1,|G|)=1}$ и каждая циклическая подгруппа из $_P$ простого порядка или порядка 4 (если $_{P=2}$ и $_P$ неабелева), не имеющая $_p$ -нильпотентного добавления в $_G$, является $_m$ -добавляемой в $_G$.

Тогда G является _п-нильпотентной группой.

Литература

- 1. Schmidt, R. Subgroup Lattices of Groups / R. Schmidt. Berlin, New York: Walter de Gruyter, 1994. 572 p.
- 2. Schmidt, R. Modulare Untergruppen endlicher Gruppen / R. Schmidt // J. Ill. Math. 1969. Vol. 13. P. 358–277.