А. А. Шамына

(ГГУ им. Ф. Скорины, Гомель)

ГРАНИЧНАЯ ЗАДАЧА О ПРОХОЖДЕНИИ ПЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ЧЕРЕЗ ГРАНИЦУ РАЗДЕЛА ДВУХ БИИЗОТРОПНЫХ СРЕД В СЛУЧАЕ НАКЛОННОГО ПАДЕНИЯ

В течение последних лет активно продолжаются исследования биизотропных сред, их электромагнитные свойства характеризуются материальными уравнениями:

$$\vec{D} = \varepsilon \vec{E} + (\chi + i\alpha)\vec{H}; \vec{B} = (\chi - i\alpha)\vec{E} + \mu \vec{H}.$$

Здесь ε , μ — диэлектрическая и магнитная проницаемости среды, χ — параметр невзаимности, α — параметр гиротропии.

Рассмотрим граничную задачу о прохождении плоской циркулярно поляризованной волны, падающей под углом θ на границу раздела двух биизотропных сред с параметрами ε_1 , μ_1 , χ_1 , α_1 и ε_2 , μ_2 , χ_2 , α_2 . Падающую волну запишем в виде $\vec{E}_{\nu}^{n} = (\vec{m}^{n} + i \vec{u}^{n}) E_{\nu}^{n} e^{-i(\alpha t - \vec{k}^{n} \vec{r})}$; $\vec{H}_{\nu}^{n} = -b_{\nu}^{n} \vec{E}_{\nu}^{n}$. Здесь \vec{E}_{ν}^{n} , \vec{H}_{ν}^{n} — электрическая и магнитная напряжённости соответственно, ν — поляризация волны (ν = +1—право поляризованная, ν = -1 — лево поляризованная), векторы \vec{m}^{n} , \vec{l}^{n} перпендикулярны направлению распространения. Необходимо найти коэффициенты прохождения и отражения $\tau(\theta)$, $\rho(\theta)$.

Требуемые коэффициенты рассчитываются с помощью системы линейных алгебраических уравнений, получаемой из условий непрерывности электрического и магнитного полей на границе раздела двух сред. Наибольший интерес представляет зависимость $\rho(\theta)$ (Puc. 1).