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Пусть R  – подгруппа группы G.  Подгруппу H  группы G  назовём R -сопряжённо-перестановочной, если 

r rHH H H=  для любого r R∈ .  В работе изучаются свойства и влияние R -сопряжённо-перестановочных подгрупп 
(максимальных, силовских, циклических примарных) на строение конечных групп. В качестве R  рассматриваются 
подгруппа Фиттинга ( )F G ,  квазинильпотентный радикал ( )F G∗  и обобщённая подгруппа Фиттинга ( )F G ,  введенная 
П. Шмидом. В частности, было показано, что группа G  нильпотентна тогда и только тогда, когда все её максималь-
ные подгруппы ( )F G -сопряжённо-перестановочны. 
 
Ключевые слова: конечная группа, нильпотентная группа, сопряжённо-перестановочная подгруппа, R -сопряжённо-
перестановочная подгруппа, подгруппа Фиттинга. 
 
Let R  be a subgroup of a group G.  We shall call a subgroup H  of G  the R -conjugate-permutable subgroup if 

r rHH H H=  for all r R∈ .  In this work the properties and the influence of R -conjugate-permutable subgroups (maximal, Sy-
low, cyclic primary) on the structure of finite groups are studied. As R  we consider the Fitting subgroup ( )F G ,  quasinilpotent 

radical ( )F G∗  and the generalized Fitting subgroup ( )F G  that was introduced by P. Shmid. In particular, it was shown that 

group G  is nilpotent iff all its maximal subgroups are ( )F G -conjugate-permutable. 
 
Keywords: finite group, nilpotent group, R -conjugate-permutable subgroup, conjugate-permutable subgroup, the Fitting sub-
group. 

 
 

Introduction 
All groups considered here are finite. Recall [1] 

that subgroups H  and K  of a group G  are said to 
permute if HK KH= ,  which is equivalent to that 
the set HK  is a subgroup of G.   

The classic area of group theory is the study of 
subgroups of a group G  which permute with every 
subgroup of a dedicated system of subgroups of G.  
This trend goes back to O. Ore [2] who introduced 
the concept of quasinormal (permutable) subgroup 
in 1939. Recall that subgroup H  of a group G  is 
called quasinormal if it permutes with every sub-
group of G.  Every normal subgroup is quasinormal. 
It is known that every quasinormal subgroup is sub-
normal. There are examples showing that the con-
verse is false.  

Another important type of subgroups’ permu-
tability was proposed by O. Kegel [3] in 1962. 
A subgroup H  of a group G  is called S -permu-
table ( S -quasinormal, π -quasinormal) subgroup of 
G,  if H  permutes with every Sylow subgroup of 
G.  Note that every S -permutable subgroup is sub-
normal. The converse need not hold. Currently, the 

concept of quasinormal and S -permutable sub-
groups and their generalizations have been studied 
intensively by many authors (see monograph [4]).  

In 1997 T. Foguel [5] noted in the proof that a 
quasinormal subgroup is subnormal, one only needs 
to show that it is permutable with all of its conju-
gates. This led him to the following concept of sub-
groups’ permutability.  

Definition 0.1 [5]. A subgroup H  of a group 
G  is called the conjugate-permutable subgroup of 
G,  if x xHH H H=  for all x G∈ .  Denoted by 

C PH G−< .  
Clearly, every quasinormal subgroup is conju-

gate-permutable. In [5] there is an example showing 
that the converse is not true. On the other hand, 
every 2-subnormal subgroup (i. e. subgroup is a nor-
mal subgroup of some normal subgroup of the 
group) is a conjugate-permutable.  

Analyzing the proofs of some results of that 
works (for example see [5]) we have seen that we 
can replace conjugate-permutability by permutabil-
ity with a smaller number of conjugates for proving 
that results. This observation led us to the following 
definition.  
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Definition 0.2. Let R  be a subgroup of a 
group G.  We shall call a subgroup H  of G  the 
R -conjugate-permutable subgroup of G,  if 

x xHH H H=  for all x R∈ .   
The goal of this paper is to study the influence 

and the properties of R -conjugate-permutable sub-
groups on the structure of finite groups.  
 

1 Preliminaries 
We use standard notation and terminology, 

which if necessary can be found in [1], [4], [6] and 
except through E  we denote the unit group.  

We recall the following well-known definitions 
and results (see [1], [6], [7]).  

The Fitting subgroup ( )F G  is the maximal 
normal nilpotent subgroup of a group G.   

Definition 1.1. A subgroup ( )F G∗  of a group 
G  is defined by  

( ) ( ) ( ( ( )) ( ) ( ))GF G F G Soc C F G F G F G∗ / = / .  
Lemma 1.2. Let G  be a group. Then:  
(1) ( )F G∗  is the maximal normal quasinilpo-

tent subgroup of ;G   
(2) ( ( )) ( );GC F G F G∗ ⊆  
(3) ( ) ( ).F G F G∗⊆   
Definition 1.3 (see [6] or [8]). A subgroup 

( )F G  of a group G  is defined by  

1) ( ) ( );G F GΦ ⊆   

2) ( ) ( ) ( ( ))F G G Soc G G/ Φ = / Φ .   
Lemma 1.4. Let G  be a group. Then:   
(1) ( ( )) ( ) ( );F G G F G G/ Φ = / Φ   

(2) ( ( )) ( )GC F G F G⊆ .   
Lemma 1.5. Let G  be a solvable group. Then:  
(1) ( ) ( );G F GΦ ⊂   
(2) ( ( )) ( );GC F G F G⊆   

(3) ( ) ( ) ( )F G F G F G∗= = .   
Lemma 1.6. Let G  be a group. Then 

( ) ( ) ( )F G F G F G∗⊆ ⊆ .   
Proof. ( ) ( )F G F G∗⊆  is well known. Now we 

will show that ( ) ( )F G F G∗ ⊆  for every group G.  
The idea of the proof of lemma 1.6 belongs to 
L. Shemetkov (see also [9]).  

Let a group G  be the minimal order counter-
example for lemma 1.6. If ( )G EΦ ≠  then for 

( )G G/ Φ  the statement is true. From 
( ) ( ) ( ( ))F G G F G G∗ ∗/ Φ ⊆ / Φ  

and  
( ( )) ( ) ( )F G G F G G/ Φ = / Φ  

we have that ( ) ( )F G F G∗ ⊆ .  It is a contradiction 
with the choice of G.   

Let ( )G EΦ = .  Now ( ) ( )F G Soc G= .  By 
13.14.X [7] ( ) ( ) ( )F G E G F G∗ = .  Note ( ( ))E G EΦ = .  
Since 13.7.X [7] ( ) ( ( ))E G Z E G/  is the direct prod-
uct of simple nonabelian groups, 

( ( )) ( ( ))Z E G F E G= .  From it and theorem 10.6.A 
[1] we conclude that ( ) ( ( ))E G HZ E G=  where H  
is the complement to ( ( ))Z E G  in ( )E G .  Now H  is 
the direct product of simple nonabelian groups. 
Since ( )H char E G G,  we have H G.  From 
lemma 14.14.A [1] follows ( )H Soc G⊆ .  Since 

( ( )) ( ) ( )Z E G F G F G⊆ ⊆  and ( )H Soc G⊆ ,  it fol-

lows that ( ) ( )E G F G⊆ .  Now 

( ) ( ) ( ) ( )F G E G F G F G∗ = ⊆ .  
It is a contradiction with the choice of G.   

Example 1.7 [9]. Let 5G A  be the alternating 
group of degree 5 and 3K F=  be a field composed 
by three elements. We denoted by ( )KA A G=  the 
Frattini KG -module [10]. In view of [10], A  is the 
faithful irreducible KG -module of the dimension 4. 
By the known Gaschutz theorem, there exists a Frat-

tini extension A R G  such that ( )
G

A RΦ  and 
( )R R G/ Φ .  From the properties of module A  it 

follows that ( )F G R=  and ( ) ( )F G R∗ = Φ .   
 

2 Properties of R-conjugate-permutable sub-
groups 

First  we  begin  with  showing that if H  is 
R -congugate-permutable subgroup then H  need 
not to be H R, -conjugate permutable.  

Example 2.1. Let (1 3 6) (2 4)B = , , , ,  and 

(1 2)(3 4)(5 6)x = , , , ,  (2 4 5) (1 3)xB = , , , , .  One can 

check that x xB B BB=  (the author did it with the 
help of GAP). Let R x= .  It is easy to see that 

2R| |= .  Thus B  is R -conjugate-permutable. Con-
sider G B R= , .  Let (2 4 5)y = , , .  Again one can 

check that y yBB B B≠ .  Thus B  is not G -conju-
gate-permutable.  

Lemma 2.2 (Properties of R -conjugate-
permutable subgroups). Let H  and R  be a sub-
groups of a group G  and N  be a normal subgroup 
of G.  Then:  

(1) If H  is R -conjugate-permutable and 
HR RH=  then H  is conjugate-permutable in RH ,  
in particular subnormal in ;RH   

(2) If H  is R -conjugate-permutable then xH  
is xR -conjugate-permutable for all ;x G∈  

(3) If H  is R -conjugate-permutable then 
NH  is NR -conjugate-permutable;  
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(4) If H  is R -conjugate-permutable then 
HN N/  is RN N/ -conjugate-permutable;  

(5) If H N/  is RN N/ -conjugate-permutable 
then H  is R -conjugate-permutable;  

(6) If H  is a maximal R -conjugate-
permutable subgroup then ( );GR N H⊆  

(7) If H  is R -conjugate-permutable and 

1 nr … r R, , ∈  then 1 nrrH …H  is R -conjugate-permu-
table;  

(8) If H  is R -conjugate-permutable then 
1 nrrRH H …H=  for some ;ir R∈  

(9) If iH  is iR -conjugate-permutable sub-
group of a group iG  , where 1 2i = , ,  then 1 2H H×  
is 1 2R R× -conjugate-permutable subgroup in the 
group 1 2 .G G×  

Proof. It is straightforward to check.  
Recall that a subgroup H  of a group G  is the 

pronormal subgroup if H  and xH  are conjugate in 
xH H, .  Moreover if xx H H∈ ,  for all x G∈  

then H  is called abnormal. Note that every abnor-
mal subgroup is pronormal.  

Lemma 2.3. Let R  be a subgroup of a group 
G.  If a pronormal subgroup H  of G  is R -con-
jugate-permutable then ( )GR N H⊆ .  In particular, 
if H  is also abnormal then R H⊆ .    

Proof. Let r R∈ .  Then r rH H HH= .  Since 
H  is pronormal in G,  H  and rH  are conjugate in 

rH H .  Hence there is ry HH∈  such that 
r yHH HH= .  But then there is 1 2h h H, ∈  such that 

1 2
yy h h= .  Hence 2 1y h h= ,  ie y rH H H= = .  Thus 
( )GR N H⊆ .  It is easy to see that if H  is abnormal 

in G  then ( )GH N H= .  Hence, if H  is abnormal 
and R -conjugate-permutable in G  then R H⊆ .  

 
3 Applications of R-conjugate-permutable 

subgroups 
The following example shows that ( )F G -con-

jugate-permutable subgroup need not to be conju-
gate-permutable, even subnormal.  

Example 3.1. Let 4G S  be the symmetric 
group of degree 4. Let H  be Sylow 2-subgroup of 
G.  Then H  is a maximal subgroup of G  which is 
not normal in G.  Note that 

( ) ( ) ( )F G F G F G H∗= = ⊆ .  
Hence H  is ( )F G -conjugate-permutable in G.  But 
H  is abnormal maximal subgroup of G,  hence H  
is neither conjugate-permutable nor subnormal sub-
group of G.  Now consider 4K G S= × .  Since 

4 ( )KS C G⊆ ,  H  is ( )F K -conjugate-permutable in 
K .  But ( )F K  is not subgroup of H .  Also H  is 

not self-normalizing in K  and not conjugate-
permutable in K .   

Theorem 3.2. A group G  is nilpotent if and 
only if every maximal subgroup of G  is ( )F G -con-
jugate-permutable.  

Proof. Let G  be a nilpotent group. Then 
( )F G G= .  Since G  is nilpotent, every maximal 

subgroup of G  is normal in G,  and hence, ( )F G -
conjugate-permutable.  

Conversely. Assume the result is false. Let a 
group G  be a counterexample of minimal order. 
Then all maximal subgroups of G  are ( )F G -con-
jugate-permutable but G  is not nilpotent group.  

Suppose that ( )G EΦ ≠ .  Consider the quotient 

( )G G/ Φ .  We have ( ( )) ( ) ( )F G G F G G/ Φ = / Φ .  
By lemma 2.2 it is easy to see that all maximal sub-
groups of ( )G G/ Φ  are ( ( ))F G G/ Φ -conjugate-
permutable. Since ( )G G G| |>| / Φ |,  we have 

( )G G/ Φ  is nilpotent. From Theorem 9.3(b) [1, 
p. 30] it follows that G  is nilpotent, a contradiction.  

Assume that ( )G EΦ = .  Then ( ) ( )F G Soc G= .   

Now assume that ( )F G  is not nilpotent. So there is 

a subgroup ( ( ))pS Syl F G∈  such that S  is not nor-

mal in ( )F G .  Let ( )pP Syl G∈  and ( )P F G S∩ = .  

Note that ( ) ( )x x xS P F G P F G S= ∩ = ∩ =  for 
every ( )Gx N P∈ .  It means that ( ) ( )G GN P N S⊆ .  
Since ( )GN S G≠ ,  we have ( )GN P G≠ .  Let M  be 
a maximal subgroup of G  such that ( )GN S M⊆ .  
By lemma 6.20 [1, p. 247]  M  is the abnormal 
subgroup of G. By Frattini’s argument 

( ) ( ) ( )GN S F G MF G G= = .  Since M  is the maximal 

and ( )F G -conjugate-permutable subgroup, M  is 
normal in G  by lemmas 2.2 and 2.3, a contradiction.  

Therefore we see that ( )F G  is nilpotent. Then 

1( ) ( ) ( ) tF G F G Soc G N N= = = ×...×  where iN  
runs over all minimal normal subgroups of G.  From 

( )G EΦ =  and nilpotency of ( )F G  it follows that 

iN  is an abelian subgroup for all 1i t= ,..., .  Then 
there is a maximal subgroup iM  such that 

i iN M G=  for all 1i t= ,..., .  Note that ( )iM F G G= .  

Since iM  is ( )F G -conjugate-permutable, iM  is 
normal in G  for all 1i t= ,...,  by lemmas 2.2 and 
2.3. Since iN  is abelian subgroup, we have 

( )i G iN C N⊆  and i iN M E∩ = .  Then iM G  im-
plies ( )i G iM C N⊆  for all 1i t= ,..., .  We show that 

( )i i G iG M N C N= ⊆  for every 1i t= ,..., .  Therefore 
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( )iN Z G⊆  for all 1i t= ,..., .  Then ( ) ( )F G Z G⊆ .  

Hence ( ( )) ( )GG C F G F G⊆ ⊆ .  Thus G  is nilpo-
tent, a contradiction.  

Corollary 3.3. If G  is not a nilpotent group 
then there is an abnormal maximal subgroup M  of 
G  such that ( )F G M .   

Proof. Assume the contrary. Then if 
( )F G M⊆  for all abnormal maximal subgroups M  

of G  then all of them are ( )F G -conjugate-
permutable. It means that all maximal subgroups of 
G  are ( )F G -conjugate-permutable. Thus G  is 
nilpotent, a contradiction.   

Corollary 3.4 (Foguel, [5]). If every maximal 
subgroup a group G  is conjugate-permutable then 
G  is nilpotent.  

From the example 1.7 it is follows that we can 
not use ( )F G∗  in place of ( )F G  in theorem 3.2.  

Theorem 3.5. The following statements for a 
group G  are equivalent:  

(1) G  is nilpotent;  
(2) Every abnormal subgroup of G is ( )F G∗ -con-

jugate-permutable subgroup of ;G  
(3) Normalizers of all Sylow subgroups of G  

are ( )F G∗ -conjugate-permutable subgroups of ;G  
(4) Sylow subgroups of G  are ( )F G∗ -

conjugate-permutable subgroups of group G.   
Proof. Prove that (1) implies (2). Since G  is 

nilpotent, ( )F G G∗ =  and any subgroup of G  is sub-
normal. It means that the subgroup G  is the only one 
abnormal subgroup in G.  It is clear that G  is the 

( )F G∗ -conjugate-permutable. Thus (1) implies (2).  
It is well known that normalizers of all Sylow 

subgroups of G  are abnormal in .G  Therefore (2) 
implies (3).  

Prove that (3) implies (4). By lemma 2.3 we 
see that ( ) ( )GF G N P∗ ⊆  for every Sylow subgroup 
P  of G.  Hence every Sylow subgroup of G  is the 

( )F G∗ -conjugate-permutable subgroup of G.  Thus 
(3) implies (4).  

Finally we show that (4) implies (1). Assume 
that (1) is not true and G  is a counterexample of 
least order.  

By lemma 2.3 we have that ( ) ( )GF G N P∗ ⊆  
for every Sylow subgroup P  of G.  By Baers’s re-
sult (see [11]), ( ) ( )F G Z G∗

∞⊆  the hypercenter of 
G.  Note that ( ) ( ) ( )F G F G Z G∗

∞= = .   
Assume that ( )G EΦ ≠ .   
Let ( ) ( ( ))H G F G G∗/ Φ = / Φ .   
Show that ( ) ( ) ( )H G F G G∗/ Φ = / Φ .  It is 

clear that ( ) ( ) ( )F G G H G∗ / Φ ⊆ / Φ .  Suppose that 

( ) ( ) ( ) ( )H G F G G H F G E∗ ∗/ Φ / / Φ / ≠ .  Note that 
( )H G/ Φ  and ( ) ( )F G G∗ / Φ  are quasinilpotent. It 

follows that ( )H F G∗/  is quasinilpotent. Now 
( ) ( ) ( ) ( )H Z G Z H Z G H Z H∞ ∞ ∞ ∞/ / / /  is qua-

sinilpotent. By theorem 13.6 [7, p. 125] H  is the 
normal quasinilpotent subgroup of G.  Hence 

( )H F G∗⊆ .  We have the contradiction with 
( )H F G E∗/ ≠ .  Thus ( ( )) ( ) ( )F G G F G G∗ ∗/ Φ = / Φ .   

Let ( )S G/ Φ  be a Sylow subgroup of 
( )G G/ Φ .  There is a Sylow subgroup P  of G  such 

that ( ) ( ) ( )P G G S GΦ / Φ = / Φ .  
From ( ( )) ( ) ( )F G G F G G∗ ∗/ Φ = / Φ  it follows 

that ( )S G/ Φ  is the ( ( ))F G G∗ / Φ -conjugate-
permutable subgroup of ( )G G/ Φ .  By minimality of 
G  we have that ( )G G/ Φ  is nilpotent. Hence, G  is 
nilpotent by theorem 9.3(b) [1, p. 30], a contradiction.  

Suppose now that ( )G EΦ = .  By theorems 8.6, 
8.8 [6, p. 96–97] we have ( ) ( )Z G Z G∞ = .  Therefore 

( ) ( )F G Z G∗ = .  Now we have 
( ( )) ( )GG C F G F G∗= ⊆ .  

Thus G  is nilpotent. This is the final contradiction.  
Corollary 3.6. A group G  is nilpotent if and 

only if the normalizers of all Sylow subgroups of G  
contains ( )F G∗ .  

Proof. If G  is nilpotent then for every Sylow 
subgroup P  of G  we have ( ) ( )GF G N P G∗ = = .  
Thus the normalizers of all Sylow subgroups of G  
contains ( )F G∗ .  If the normalizers of all Sylow 
subgroups of G  contains ( )F G∗  then they are 

( )F G∗ -conjugate-permutable. Thus G  is nilpotent.  
Corollary 3.7 (Foguel, [5]). If every Sylow sub-

group a group G  is conjugate-permutable then G  
is nilpotent.  

Theorem 3.8. If all cyclic primary subgroups 
of a group G  are ( )F G∗ -conjugate-permutable 
then G  is nilpotenet.  

Proof. Let ( )pP Syl G∈  and x P∈ .  Then the 

subgroup x  is the ( )F G∗ -conjugate-permutable 

subgroup. So ( )x x F G∗  by (1) of lemma 

2.2. Note that x P.  Since ( )x P x F G∗≤ ∩ ,  

by theorem 1.1.7 [4, p. 3] x  is the subnormal sub-

group in the product ( ( ))P x F G∗ .  Since P  is gen-

erated by its cyclic subnormal in ( )PF G∗  sub-
groups, by theorem 7.5 [6, p. 70] we have that 

( )P PF G∗ .  Thus every Sylow subgroup of G  is 
( )F G∗ -conjugate-permutable. Now theorem 3.8 

immediately follows from theorem 3.5.  
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Corollary 3.9 (Foguel, [5]). If every cyclic pri-
mary subgroup a group G  is conjugate-permutable 
then G  is nilpotent.  

As follows from example 1.2 [5] the converse 
of the theorem 3.8 are false.  

Remark. In theorems 3.5 and 3.8 we can not 
use ( )F G  in place of ( )F G∗ .  Let 5G A  be the 
alternating group of degree 5. Then ( )F G E=  and 
every subgroup of G  is ( )F G -conjugate-
permutable. But G  is not nilpotent.  
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