Е.А. Дей

Hb

УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь

ЭФФЕКТИВНОСТЬ МЕТОДА КОНЕЧНЫХ РАЗНОСТЕЙ ПРИ РЕШЕНИИ ТРЕХМЕРНОГО СТАЦИОНАРНОГО УРАВНЕНИЯ ШРЕДИНГЕРА

Введение

Проведение исследований в области наноразмерных физических систем связано с изучением и практическим использованием все новых объектов, поведение которых подчиняется законам квантовой механики. Наряду с развитием экспериментальных средств этот процесс требует и совершенствования методов расчета трехмерных квантовых систем на основе численного решения трехмерного уравнения Шредингера.

Для расчета параметров трехмерных квантовых структур в работах [1-3] использовался стандартный метод конечных разностей, обеспечивающий точность на уровне второго порядка по шагу расчетной сетки. В работе [4] предложено обобщение метода Нумерова для трехмерной схемы, что повышает точность результатов до четвертого порядка. В силу того, что уменьшение шага расчетной сетки при решении трехмерных уравнений жестко ограничено техническими возможностями компьютера, повышение точности результатов требует использования высших порядков конечно-разностной аппроксимации частных производных от волновой функции системы.

В работах [5, 6] была исследована вычислительная эффективность метода конечных разностей, основанного на высших порядках аппроксимации вторых производных, при численном решении одномерного и двумерного стационарного уравнения Шредингера. По результатам вычислений отмечена высокая практическая точность такого подхода и удобство его программной реализации.

В данной работе использованы варианты метода конечных разностей с высшими порядками аппроксимации частных производных (*p*=2..10) применительно к задаче численного решения трехмерного стационарного уравнения Шредингера. Получены расчетные формулы и выполнена их программная реализация в системе Matlab. В качестве тестовой задачи рассмотрен расчет уровней энергии и волновых функций трехмерного гармонического осциллятора. Для каждого порядка аппроксимации вычислены собственные значения энергии, рассчитан практический порядок сходимости численной схемы. Реализовано графическое отображение трехмерной волновой функции построением линий равного уровня в сечениях X=0, Y=0, Z=0. Разработанная программа использована далее для численного решения уравнения Шредингера с трехмерным аналогом потенциала Хенона-Хейлеса.

1. Конечно-разностная аппроксимация трехмерного уравнения Шредингера

Трехмерное уравнение Шредингера в декартовых координатах имеет вид

$$-\frac{\hbar^2}{2m} \left(\frac{d^2 \psi}{dx^2} + \frac{d^2 \psi}{dy^2} + \frac{d^2 \psi}{dz^2} \right) + V(x, y, z) \psi(x, y, z) = E \psi(x, y, z) \,. \tag{1}$$

Для запирающих потенциалов численное решение выполняется в ограниченной области изменения аргументов $x \min \le x \le x \max$, $y \min \le y \le y \max$, $z \min \le z \le z \max$. По каждой переменной введем равномерную согласованную сетку с шагом h, так что $x_i = x \min + i \cdot h$, $y_j = y \min + j \cdot h$, $z_k = z \min + k \cdot h$. Количество шагов по каждой переменной $N_x = (x \max - x \min)/h$, $N_y = (y \max - y \min)/h$, $N_z = (z \max - z \min)/h$. Значения функций в узлах сетки обозначаются стандартным способом $\psi_{i,j,k} \equiv \psi(x_i, y_j, z_k)$, $V_{i,j,k} \equiv V(x_i, y_j, z_k)$. По аналогии с [5, 6] используем центральные конечно-разностные аппроксимации порядка P для вторых частных производных волновой функции

$$\frac{\partial^{2} \psi}{\partial x^{2}} \bigg|_{x_{i}, y_{j}, z_{k}} = \frac{1}{h^{2}} \sum_{s=-p/2}^{p/2} C_{s} \psi_{i+s, j, k} + O(h^{p}), \quad \frac{\partial^{2} \psi}{\partial y^{2}} \bigg|_{x_{i}, y_{j}, z_{k}} = \frac{1}{h^{2}} \sum_{s=-p/2}^{p/2} C_{s} \psi_{i, j+s, k} + O(h^{p}), \quad \frac{\partial^{2} \psi}{\partial z^{2}} \bigg|_{x_{i}, y_{j}, z_{k}} = \frac{1}{h^{2}} \sum_{s=-p/2}^{p/2} C_{s} \psi_{i, j+s, k} + O(h^{p}). \quad (2)$$

Значения коэффициентов для соотношений (2) приведены в таблице 1.

p = -						
P	C_{0}	$C_{\pm l}$	$C_{\pm 2}$	$C_{\pm 3}$	$C_{\pm 4}$	$C_{\pm 5}$
2	-2	1				
4	-5/2	4/3	-1/12			
6	-49/18	3/2	-3/20	1/90		
8	-205/72	8/5	-1/5	8/315	-1/560	
10	-5269/1800	5/3	-5/21	5/126	-5/1008	1/3150

Таблица 1 – Коэффициенты конечно-разностных аппроксимаций вторых производных для четных порядков P=2..10

Замена вторых производных в уравнении Шредингера (1) на конечно-разностные выражения (2) приводит к системе линейных однородных уравнений относительно значений волновой функции во внутренних узлах сетки $i = 1..N_x - 1$, $j = 1..N_y - 1$, $k = 1..N_z - 1$. В системе единиц $\hbar = 1$, m=1 уравнения системы имеют вид

$$-\frac{1}{2h^2}\sum_{s=-p/2}^{p/2}C_s\psi_{i+s,j,k} - \frac{1}{2h^2}\sum_{s=-p/2}^{p/2}C_s\psi_{i,j+s,k} - \frac{1}{2h^2}\sum_{s=-p/2}^{p/2}C_s\psi_{i,j,k+s} + V(x_i, y_j, z_k)\psi_{i,j,k} = E\psi_{i,j,k}$$
(3)

Для связанных состояний на границе расчетной области и за ее пределами волновая функция при численном расчете считается равной нулю, поэтому значения функции с неположительными номерами узлов и с номерами, превышающими N_x , N_y , N_z , не дают вклада в уравнения:

$$\psi_{-s,j,k} = \psi_{N_x+s,j,k} = 0, \ \psi_{i,-s,k} = \psi_{i,N_y+s,k} = 0, \ \psi_{i,j,-s} = \psi_{i,j,N_z+s} = 0, \ s = 0..P/2.$$

На основании (3) несложно записать явный вид системы линейных уравнений для любого значения *P*.

При *P*=2 из (3) получаем стандартный вариант системы линейных однородных уравнений метода конечных разностей для трехмерного уравнения Шредингера [1, 2]

$$-\frac{1}{2h^2}\left(\psi_{i-1,j,k}+\psi_{i+1,j,k}+\psi_{i,j-1,k}+\psi_{i,j+1,k}+\psi_{i,j,k-1}+\psi_{i,j,k+1}\right)+\left(\frac{3}{h^2}+V_{i,j,k}\right)\psi_{i,j,k}=E\psi_{i,j,k}\cdot$$

При Р=4 система уравнений (3) принимает вид

$$\frac{1}{24h^2} (\psi_{i-2,j,k} + \psi_{i+2,j,k} + \psi_{i,j-2,k} + \psi_{i,j+2,k} + \psi_{i,j,k-2} + \psi_{i,j,k+2}) - \frac{2}{3h^2} (\psi_{i-1,j,k} + \psi_{i+1,j,k} + \psi_{i,j-1,k} + \psi_{i,j+1,k} + \psi_{i,j,k-1} + \psi_{i,j,k+1}) + \left(\frac{15}{4h^2} + V_{i,j,k}\right) \psi_{i,j,k} = E \psi_{i,j,k} + \psi_{i,j,k-1} + \psi_{i,j,k+1} + \psi_{$$

2. Исследование вычислительных свойств метода конечных разностей при решении трехмерного уравнения Шредингера

В качестве тестовой задачи было рассмотрено уравнение Шредингера с потенциалом трехмерного гармонического осциллятора $V(x) = (x^2 + y^2 + z^2)/2$ в области $-L \le x \le L$, $-L \le y \le L$, $-L \le z \le L$. Эта задача позволяет протестировать метод для случая гладкого запирающего потенциала и сравнить результаты с точными значениями $E_n^{movH} = n+1$, где $n = n_x + n_y + n_z$, $n_x, n_y, n_z = 0, 1, 2, ...$ Специфика трехмерной задачи состоит в высокой степени вырождения энергетических уровней [4]. Для уровня E_n кратность вырождения равна (n+1)(n+2)/2.

Для численного решения использована сплошная нумерация узловых значений функции $g = (N_x - 1)(N_y - 1)(k - 1) + (N_x - 1)(j - 1) + i$, тогда система (3) представляется в матричной форме и образует стандартную матричную задачу на собственные значения относительно энергии трехмерной квантовой системы

$$\sum_{g'=1}^{N} M_{g,g'} \psi_{g'} = E \psi_g, \qquad (4)$$

где М – матрица коэффициентов.

5

Расчет матричных соотношений (4) и численное решение задачи на собственные значения реализованы в вычислительной среде Matlab с использованием технологии разреженных матриц. Полученные в ходе решения значения абсолютной погрешности $|E_i^{числен} - E_i^{moven}|$ первых последовательных i=1..50 вычисленных уровней $E_i^{числен}$ для значений параметров L=4,8; h=0,24 и различных порядков аппроксимации частных производных P приведены в таблице 2.

Таблица 2 – погрешность вычисленных уровней энергии трехмерного гармонического осциллятора для различных порядков аппроксимации частных производных (L=4,8; h=0,24)

		L 1					
i	n	E_n^{moun}	<i>P=2</i>	P=4	<i>P=6</i>	P=8	P=10
1	0	1,5	5,41e-03	1,01e-04	3,22e-06	1,42e-07	6,30e-09
5	2	3,5	2,72e-02	9,07e-04	4,48e-05	2,35e-06	1,50e-08
10	2	3,5	1,99e-02	5,07e-04	2,02e-05	1,03e-06	3,66e-07
15	3	4,5	3,44e-02	1,11e-03	5,33e-05	2,79e-06	3,61e-07
20	3	4,5	2,71e-02	7,09e-04	2,87e-05	1,47e-06	6,79e-06
25	4	5,5	5,64e-02	2,36e-03	1,37e-04	3,40e-06	7,38e-07
30	4	5,5	4,90e-02	1,71e-03	8,64e-05	3,24e-06	6,79e-06
35	4	5,5	4,17e-02	1,31e-03	6,18e-05	4,05e-05	6,84e-05
40	5	6,5	8,58e-02	4,48e-03	2,70e-04	5,16e-06	6,79e-06
45	5	6,5	7,10e-02	2,97e-03	1,70e-04	3,85e-06	7,17e-06
50	5	6,5	7,10e-02	2,97e-03	1,70e-04	4,00e-05	6,84e-05

В ходе численного решения потребовалось использование квадратной матрицы размером 59319*59319, содержащей 406107 ненулевых элементов для *P*=2 и 1701999 ненулевых элементов для *P*=10.

По результатам трех последовательных расчетов при значениях шага *h*, *2h*, *4h* был рассчитан практический порядок сходимости численных схем

(5)

$$\widetilde{P} = \log_2 \left(\frac{E_n^{(4h)} - E_n^{(2h)}}{E_n^{(2h)} - E_n^{(h)}} \right)$$

для различных значений теоретического порядка P. Значения практического порядка сходимости \tilde{P} приведены в таблице 3. Результаты показывают, что вычисленный практический порядок сходимости несколько ниже теоретического значения. Снижение практического порядка можно объяснить большим количеством вырожденных уровней, вычисление которых подпрограммами линейной алгебры выполняется с различной точностью.

Таблица 3 – Расчет практического порядка сходимости \tilde{P} для различных порядков аппроксимации частных производных при L=4,8; h=0,24.

i	n	E_n^{mouh}	<i>P=2</i>	<i>P=4</i>	<i>P=6</i>	<i>P=8</i>	P=10
1	0	1,5	2,141	3,874	5,559	7,163	8,689
5	2	3,5	2,629	4,163	5,908	7,430	8,870
10	2	3,5	2,029	4,164	5,147	6,479	7,638
15	3	4,5	2,517	5,160	5,800	7,316	8,744
20	3	4,5	2,304	2,011	5,119	6,437	7,076
25	4	5,5	2,404	3,001	5,213	6,532	7,803
30	4	5,5	1,652	3,002	4,617	5,516	5,571
35	4	5,5	1,983	4,467	5,110	5,992	5,786
40	5	6,5	2,206	5,049	5,623	7,044	8,372
45	5	6,5	1,857	5,050	4,646	5,760	6,709
50	5	6,5	1,857	2,908	4,646	5,735	6,598

Нетривиальным вопросом является способ графического отображения трехмерной волновой функции. В определенной степени представление о распределении значений функции в пространстве дают двумерные графики линий равных значений, построенные в сечениях X=0, Y=0, Z=0. На рисунке 1 такие изображения приведены для ненормированной волновой функции основного состояния трехмерного гармонического осциллятора. Вид функции указывает на корректность полученных результатов.

Рисунок 1 – Линии равных значений волновой функции состояния *n*=1 трехмерного осциллятора в плоскостях *X*=0, *Y*=0, *Z*=0 соответственно

3. Численное решение уравнения Шредингера с трехмерным аналогом потенциала Хенона-Хейлеса

Изложенные расчетные схемы метода конечных разностей были использованы для численного решения трехмерного уравнения Шредингера с потенциалом, являющимся трехмерным обобщением потенциала Хенона-Хейлеса [7]

$$V(x, y, z) = (x^{2} + y^{2} + z^{2})/2 - 0,1(xy^{2} + 0,1x^{3} + yz^{2} + 0,1y^{3}).$$
(8)

В таблице 4 приведены значения энергетических уровней в сравнении с результатами работы [7], полученными методом дискретного представления переменных (DVR-method). На рисунке 2 приведены графики ненормированной волновой функции состояния *i*=6 для случая потенциала (8).

Таблица 4 – вычисленные уровни энергии для трехмерного аналога потенциала Хенона-Хейлеса

	i	Результаты	МКР, <i>Р</i> =10,	i	Результаты	МКР, <i>Р</i> =10,
		[7]	L=4,8 h=0,24		[7]	L=4,8 h=0,24
	1	1,49388975	1,493889752	11	4,36246632	4,362541470
	2	2,47041786	2,470418049	12	4,37333156	4,373350879
	3	2,47996173	2,479961786	13	4,39593487	4,395949334
	4	2,49168459	2,491684617	14	4,41909346	4,419114039
	5	3,42714282	3,427147984	15	4,42935670	4,429372997
	6	3,43827646	3,438277425	16	4,45122547	4,451233703
	7	3,45388584	3,453887286	17	4,45262411	4,452630002
	8	3,47192175	3,471922700	18	4,47208896	4,472093174
	9	3,48408013	3,484080275	19	4,48245731	4,482471319
	10	3,48631241	3,486313523	20	4,48258834	4,482589363

Рисунок 2 – Линии равных значений волновой функции состояния *i*=6 трехмерного аналога потенциала Хенона-Хейлеса в плоскостях *X*=0, *Y*=0, *Z*=0 соответственно

Заключение

В работе выполнено исследование вычислительной эффективности высших порядков метода конечных разностей при решении трехмерного уравнения Шредингера. Реализовано графическое отображение трехмерных волновых функций построением линий равного уровня в сечениях X=0, Y=0, Z=0.

Результаты расчетов показывают, что получить приемлемые результаты при решении трехмерного уравнения Шредингера методом конечных разностей можно только с использованием высших порядков аппроксимации частных производных волновой функции. Существенно то, что метод конечных разностей приводит к стандартной, а не обобщенной матричной задаче на собственные значения.

Дальнейшее повышение точности результатов может быть достигнуто развитием обобщенного метода Нумерова для конечноразностных схем высших порядков, предложенного в [8], на трехмерный случай и использованием экстраполяции расчетов на последовательности сеток.

Литература

1. Deyasi, A. Computation of intersubband transition energy in normal and inverted core-shell quantum dots using finite difference technique / A. Deyasi, S. Bhattacharyya, N.R. Das // Superlattices and Microstructures. – 2013. – Vol. 60. – P. 414–425.

2. Liang, Gong Numerical analysis on quantum dots-in-a-well structures by finite difference method / Gong Liang, Shu Yong-chun, Xu Jingjun, Zhu Qin-sheng, Wang Zhan-guo // Superlattices and Microstructures. -2013. - Vol. 60. - P. 311-319. 3. Bouazra, A. Numerical modelling of InAs quantum dot with application of coordinate transformation and finite difference method / A. Bouazra, S. Mnasri, S. Abdi-Ben Nasrallah, M. Said //Computer Physics Communications. – 2014. – Vol.185. – P. 1290–1298.

4. Graen, T. NuSol – Numerical solver for the 3D stationary nuclear Schrödinger equation / T. Graen, H. Grubmüller // Computer Physics Communications. – 2016. – Vol. 198. – P. 169–178.

5. Дей, Е.А. Эффективность высших порядков метода конечных разностей при решении стационарного уравнения Шредингера / Е.А. Дей // Известия ГГУ – 2013. – № 6. – С. 178–183.

6. Дей, Е.А. Эффективность метода конечных разностей при решении двумерного стационарного уравнения Шредингера / Е.А. Дей // Материалы IV Международной научной конференции «Проблемы взаимодействия излучения с веществом», посвященной 90-летию со дня рождения Б.В. Бокутя (9-11 ноября 2016 г.) – Гомель: ГГУ им. Ф. Скорины, 2016, часть 1, с. 141–146.

7. Yu, Hua-Gen A coherent discrete variable representation method for multidimensional systems in physics / Hua-Gen Yu // Journal of Chemical Physics. – 2005. – Vol. 122. – P. 164107-1–164107-6.

8. Дей, Е.А. Численное решение стационарного уравнения Шредингера обобщенным методом Нумерова / Е.А. Дей // Известия ГГУ. – 2012, №6. – С. 31–37.

stilles