В.В. Андреев^{1,2}, А.Ф. Крутов²

wanter and a second second

УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь Самарский национальный исследовательский университет имени академика С.П. Королёва, Самара, Россия

УГЛЫ СМЕШИВАНИЯ ИЗ РАСПАДОВ ВЕКТОРНЫХ МЕЗОНОВ

Введение

Значения углов смешивания $\phi - \omega$ и $\eta - \eta'$ обсуждались много раз за последние пятьдесят лет. Интерес к такой тематике связан с нарушением

SU(3) симметрии для процессов с указанными адронами. Имеются многочисленные исследования по извлечению значения углов смешивания на основе различных экспериментальных данных (см., например, [1–4]).

Важным моментом в процедуре извлечения углов смешивания из распадов легких мезонов являются построения матричных элементов данных процессов. Это делается с использованием тех или иных моделей (модельные киральные лагранжианы [4], релятивистские кварковые модели [5] и т. д.), включая даже предположения о массах кварков [1].

В данной работе предлагается провести процедуру извлечения углов смешивания из распадов псевдоскалярных *Р* и векторных мезонов *V* типа $V \rightarrow \ell^- \ell^+$ (распад в лептонную пару $\ell^- \ell^+$) и $V \rightarrow P\gamma$, $P \rightarrow V\gamma$ (радиационные распады) с использованием только структуры матричных элементов в рамках пуанкаре-инвариантной квантовой механики [6, 7] (ПИКМ). При этом не используется никаких предположений о параметрах релятивистской кварковой кварковые массы, параметры на основе ПИКМ: модели потенциала Основное требование вычислений др. взаимодействия состоит И соответствии модельных расчетов экспериментальных данным, взятых из PDG [8].

1. Определения

Простейшая схема смешивания SU(3)-синглетных и октетных состояний

$$\psi_{8}\rangle = \frac{1}{\sqrt{6}} \left\{ \left| u\overline{u} \right\rangle + \left| d\overline{d} \right\rangle - 2 \left| s\overline{s} \right\rangle \right\}, \quad \left| \psi_{1} \right\rangle = \frac{1}{\sqrt{3}} \left\{ \left| u\overline{u} \right\rangle + \left| d\overline{d} \right\rangle + \left| s\overline{s} \right\rangle \right\}, \tag{1}$$

приводит к физическими состояниям $\phi - \omega$ и $\eta - \eta'$ мезонов:

$$|\omega\rangle = \sin\theta_{V} |\psi_{8}\rangle + \cos\theta_{V} |\psi_{1}\rangle, \quad |\phi\rangle = \cos\theta_{V} |\psi_{8}\rangle - \sin\theta_{V} |\psi_{1}\rangle, \quad (2)$$

$$|\eta'\rangle = \sin\theta_P |\psi_8\rangle + \cos\theta_P |\psi_1\rangle, \quad |\eta\rangle = \cos\theta_P |\psi_8\rangle - \sin\theta_P |\psi_1\rangle, \quad (3)$$

где θ_{V} и θ_{P} углы смешивания для векторных и псевдоскалярных мезонов соответственно.

Предполагая ортогональность физических состояний $\phi - \omega$ и $\eta - \eta'$ состояний и отсутствие смешивания с другими векторными и псевдоскалярными мезонами соотношения (2) и (3) можно записать в виде:

$$|\omega\rangle = \sin \delta_V |\eta_{NS}\rangle + \cos \delta_V |\eta_S\rangle, \quad |\phi\rangle = \cos \delta_V |\eta_{NS}\rangle - \sin \delta_V |\eta_S\rangle, \quad (4)$$

$$|\eta'\rangle = \sin \delta_P |\eta_{NS}\rangle + \cos \delta_P |\eta_S\rangle, \quad |\eta\rangle = \cos \delta_P |\eta_{NS}\rangle - \sin \delta_P |\eta_S\rangle, \quad (5)$$

где $|\eta_{\rm NS}\rangle = |u\bar{u} + d\bar{d}\rangle / \sqrt{2}$ и $|\eta_{\rm S}\rangle = |s\bar{s}\rangle$.

Функции от углов δ_a (*a* = *V* или *a* = *P*) связаны с углами смешивания θ_a соотношениями:

$$\sin\varphi_a = \sqrt{\frac{2}{3}}\cos\theta_a + \frac{1}{\sqrt{3}}\sin\theta_a, \ \cos\delta_a = \frac{1}{\sqrt{3}}\cos\theta_a - \sqrt{\frac{2}{3}}\sin\theta_a, \tag{6}$$

2. Векторные распады мезонов

Реакция распада мезона h в лептонную пару ℓ_1, ℓ_2

$$h \rightarrow \ell_1 + \ell_2$$

характеризуется S -матричным элементом

$$\mathbf{M}\left(h \to \ell_{1} \ell_{2}\right) =_{\mathrm{out}} \left\langle \ell_{1}, \ell_{2} \middle| \mathbf{S} - I \middle| \Psi_{\mathbf{Q}, M, J \mu} \right\rangle.$$
(8)

Здесь вектор

$$|\Psi_{\mathbf{Q},M,J\mu}\rangle \tag{9}$$

определяет состояние мезона спина *J*, массы *M* и импульса **Q** в представлении Гейзенберга [9].

Мезон h как релятивистскую составную систему кварка Q и антикварка \bar{q} рассмотрим в рамках пуанкаре-инвариантной квантовой механики [7, 10]. Пуанкаре-инвариантная квантовая механика дает возможность связать вектор состояния мезона (9) с векторами состояний, входящих в него кварков на основе представлений группы Пуанкаре. Главным требованием пуанкаре-инвариантной квантовой механики является условие сохранения пуанкаре-инвариантности как для систем без взаимодействия, так и для взаимодействующих частиц.

Схема решения поставленной задачи состоит в следующем: на первом этапе строится базис прямого произведения двух частиц без учета взаимодействия. В случае системы двух частиц с массами m_q и m_Q и соответственно с 4-импульсами $p_1 = \left(\omega_{m_q}(\mathbf{p}_1), \mathbf{p}_1\right)$ и $p_2 = \left(\omega_{m_Q}(\mathbf{p}_2), \mathbf{p}_2\right)$ этот базис $|\mathbf{p}_1, \lambda_1\rangle |\mathbf{p}_2, \lambda_2\rangle \equiv |\mathbf{p}_1, \lambda_1; \mathbf{p}_2, \lambda_2\rangle$ (10)

определяет приводимое представление группы Пуанкаре.

На втором этапе с помощью разложения Клебша-Гордана для группы Пуанкаре (см., например, [11, 12]) строится базис неприводимого представления, который характеризует систему целиком. Для этого введем полный импульс

$$\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2 \tag{11}$$

и относительный импульс k двух частиц. Базис двухчастичного неприводимого представления определяется квантовыми числами полного импульса (11), полного углового момента *J*, его проекцией μ , эффективной массой невзаимодействующих частиц

$$M_0 = \omega_{m_Q}(\mathbf{k}) + \omega_{m_q}(\mathbf{k}), \ \omega_m(\mathbf{k}) = \sqrt{\mathbf{k}^2 + m^2}.$$
 (12)

или $k = |\mathbf{k}|$, а также двумя дополнительными числами, которые снимают вырождение данного базиса.

В зависимости от выбор чисел, снимающих вырождение, различают две схемы: схема с «L-S» связью с квантовыми числами орбитального момента относительного движения ℓ и полного спинового момента *S* и схема «спиральность» с пуанкаре-инвариантными спиральностями $\tilde{\lambda}_1, \tilde{\lambda}_2$ [12], В системе центра инерции (**P** = 0) числа $\tilde{\lambda}_1$ и $\tilde{\lambda}_2$ совпадают с обычными спиральностями фермионов.

В схеме «спиральность» разложение Клебша-Гордана группы Пуанкаре имеет вид [12]:

$$|\mathbf{P},\mathbf{k},J,\mu,\tilde{\lambda}_{1},\tilde{\lambda}_{2}\rangle = \sqrt{\frac{\omega_{m_{q}}(\mathbf{p}_{1})\omega_{m_{Q}}(\mathbf{p}_{2})M_{0}}{\omega_{m_{q}}(\mathbf{k})\omega_{m_{Q}}(\mathbf{k})\omega_{M_{0}}(\mathbf{P})}} \times \sqrt{\frac{2J+1}{4\pi}} \int d^{2}\mathbf{k} D_{\mu,\lambda}^{*J}(\phi_{k},\theta_{k},-\phi_{k}) |\mathbf{p}_{1},\tilde{\lambda}_{1};\mathbf{p}_{2},\tilde{\lambda}_{2}\rangle, \qquad (13)$$

с $\lambda = \tilde{\lambda}_1 - \tilde{\lambda}_2$. Функция $D^J_{\mu\lambda}(\varphi_k, \theta_k, -\varphi_k)$ задает матрицы неприводимого представления группы SU(2) индекса *J*. Явный вид матрицы *D* определяется через сферические углы вектора относительного движения $\hat{\mathbf{k}} = \{\sin \theta_k \cos \varphi_k, \sin \theta_k \sin \varphi_k, \cos \theta_k\}.$

На третьем этапе от системы без взаимодействия переходят к одночастичному базису связанной системы, путем добавления в один из операторов полного набора базиса (13) оператора взаимодействия. Требование сохранения пуанкаре-инвариантности в рамках точечной и мгновенной форм ПИКМ приводит к появлению волновой функции (ВФ) связанной системы Ф:

$$\langle \mathbf{P}, \mathbf{k}, J', \mu', \tilde{\lambda}_{1}, \tilde{\lambda}_{2} | \Psi_{\mathbf{Q}, M, J, \mu} \rangle = \delta(\mathbf{P} - \mathbf{Q}) \delta_{J, J'} \delta_{\mu, \mu'} \Phi^{J}_{\tilde{\lambda}_{1}, \tilde{\lambda}_{2}} (\mathbf{k}).$$
(14)

Нормировка ВФ с учетом числа цветов кварков N_c , которая следует из нормировки векторов состояний имеет вид

$$N_{c}\int_{0}^{\infty} d\mathbf{k} \, \mathbf{k}^{2} \left| \Phi_{\ell,S}^{J} \left(\mathbf{k} \right) \right|^{2} = 1.$$
(15)

Использование связи между векторами состояний в схеме с «L-S» в схеме «спиральность» приводит к следующему результату [12, 13]:

$$|\Psi_{\mathbf{P},J\mu,M}\rangle = \int_{0}^{\infty} d\mathbf{k} \, \mathbf{k}^{2} \Phi_{\ell,S}^{J}(\mathbf{k}) \sqrt{\frac{\omega_{m_{1}}(\mathbf{p}_{1})\omega_{m_{2}}(\mathbf{p}_{2})M_{0}}{\omega_{m_{1}}(\mathbf{k})\omega_{m_{2}}(\mathbf{k})\omega_{M_{0}}(\mathbf{P})}} \sqrt{\frac{2\ell+1}{4\pi}} \times \\ \times \sum_{\tilde{\lambda}_{1},\tilde{\lambda}_{2}} \mathbf{C}_{\tilde{\lambda}_{1}-\tilde{\lambda}_{2}-\lambda}^{1/2} \mathbf{C}_{0\,0\,\lambda}^{\ell\,S\,J} \int d^{2}\mathbf{k} \, D_{\mu\,\lambda}^{*J}(\varphi_{k},\theta_{k},-\varphi_{k}) |\mathbf{p}_{1},\tilde{\lambda}_{1},\mathbf{p}_{2},\tilde{\lambda}_{2}\rangle,$$

$$(16)$$

где $\mathbf{C}_{\lambda_{k_1}}^{1/2}$ $\frac{1/2}{\lambda_{k_2}}$ $\frac{s}{\lambda}$ – коэффициенты Клебша-Гордана,

Постоянная f_V лептонного распада $V(Q\overline{q}) \rightarrow \ell + \overline{\ell}$ для векторного мезона $V(Q\overline{q})$ массы M_V , обычно определяется следующим соотношением:

$$<0|J_{V}^{\mu}(0)|\Psi_{\mathbf{P},\lambda,M_{V}}>=i(1/2\pi)^{3/2}\frac{\varepsilon_{\lambda}^{\mu}M_{V}f_{V}}{\sqrt{2\,\omega_{M_{V}}(\mathbf{P})}}$$
(17)

с вектором поляризации $\varepsilon^{\mu}_{\lambda}$ векторного мезона.

В рамках ПИКМ, процесс распада $V(Q\bar{q}) \rightarrow \ell + \bar{\ell}$ обусловлен электромагнитным взаимодействием кварков, входящих в мезон *h*, поэтому в случае легких мезонов ток $J_V^{\mu}(0)$ запишется в виде:

$$J_V^{\mu}(0) = e_u \overline{u} \gamma^{\mu} u + e_d \overline{d} \gamma^{\mu} d + e_s \overline{s} \gamma^{\mu} s \,. \tag{18}$$

Ширина распада $V(Q\overline{q}) \rightarrow \ell + \overline{\ell}$ задается выражением

$$\Gamma_{V} = \frac{4\pi\alpha^{2}}{3M_{V}} f_{V}^{2} \left(1 + \frac{2m_{\ell}^{2}}{M_{V}^{2}}\right) \sqrt{1 - \frac{4m_{\ell}^{2}}{M_{V}^{2}}},$$
(19)

где *а* – постоянная тонкой структуры.

Используя соотношения (16)–(18) и уравнение (4), получим, что константы ρ^0 , ϕ и ω -мезонов в рамках импульсного приближения запишутся в виде

$$f_{\rho}^{V} = \frac{g(u)(e_{u} - (1 + \Delta)e_{d})}{\sqrt{2}},$$

$$f_{\phi}^{V} = \frac{g(u)(e_{u} + (1 + \Delta)e_{d})\cos\delta_{V}}{\sqrt{2}} - e_{s}g(s)\sin\delta_{V},$$

$$f_{\omega}^{V} = \frac{g(u)(e_{u} + (1 + \Delta)e_{d})\sin\delta_{V}}{\sqrt{2}} + e_{s}g(s)\cos\delta_{V}.$$
(20)

В соотношении (20) предполагается «слабое» нарушение изотопической инвариантности между u и d кварками за счет малого параметра $\Delta \approx 0.01 \div 0.02$. Функция g представляет интеграл вида [14, 15]:

$$g(q) = \frac{N_c m_q}{\pi} \int_0^\infty d\mathbf{k} \frac{\mathbf{k}^2}{(\mathbf{k}^2 + m_q^2)^{3/4}} \Phi_V(\mathbf{k}, \beta_{qq}).$$
(21)

Таким образом в рамках ПИКМ, на основе требования соответствия модельных расчетов экспериментальным данным появляется возможность определить углы смешивания $\phi - \psi$ мезонов с помощью системы уравнений (20). Результаты вычисления углов смешивания представлены в таблице 1 в зависимости от параметра Δ .

Таблица 1 – Угол смешивания θ_v в зависимости от параметра A и экспериментальные значения лептонных констант

Распад	f_{\exp}^V , ГэВ	Δ	$ heta_{_V},$ °
$\rho^0 \rightarrow e^+ e^-$	$0,1564 \pm 0,0007$	0,00	$(30, 4 \pm 0, 7)^{\circ}$
$\phi \rightarrow e^+ e^-$	$0,0762 \pm 0,0012$	0,01	$(31,0\pm0,7)^{\circ}$
$\omega \to e^+ e^-$	0,0459±0,0008	0,02	$(31,5\pm0,7)^{\circ}$

3. Радиационные распады $V \rightarrow P\gamma$ и $P \rightarrow V\gamma$

Методика вычисления констант радиационных распадов $V \rightarrow P\gamma$ и $P \rightarrow V\gamma$ аналогична расчету распада векторного мезона в лептонную пару.

Используя параметризацию матричного элемента для перехода $V \rightarrow P\gamma$ в виде:

$$<\Psi_{\mathbf{Q},M_{P}}\left|J_{V}^{\alpha}(0)\right|\Psi_{\mathbf{P},\mu,M_{V}}>=i\frac{g_{VP\gamma}}{\left(2\pi\right)^{3}}\frac{\varepsilon^{\alpha\nu\rho\sigma}\varepsilon_{\nu}(\mu)P_{\rho}Q_{\sigma}}{\sqrt{4\omega_{M_{V}}(\mathbf{P})\omega_{M_{P}}(\mathbf{Q})}},$$
(22)

где $g_{VP\gamma}$ – константа радиационного распада получим, что ширина распада запишется следующим образом:

$$\Gamma(V \to P\gamma) = \frac{\alpha}{24} g_{VP\gamma}^{2} \left(\frac{m_{V}^{2} - m_{P}^{2}}{m_{V}}\right)^{3}, \quad \Gamma(P \to V\gamma) = \frac{\alpha}{8} g_{VP\gamma}^{2} \left(\frac{m_{P}^{2} - m_{V}^{2}}{m_{P}}\right)^{3}.$$
(23)

Используя соотношения (16), (18) и (17), а также формулы (4) и (5) можно найти интегральные представления константы $g_{VP\gamma}$ для различных переходов (смотри таблицу 2). Для легких мезонов константа $g_{VP\gamma}$ представляется линейную комбинацию функций;

$$X_{ud} = e_d I_v(d) + e_u I_v(u), \qquad Z_{ud} = e_u I_v(u) - e_d I_v(d), \quad X_s = e_s I_v(s), \qquad (24)$$

где $I_{\nu}(q)$ в рамках точечной формы ПИКМ (в отсутствие аномальных магнитных моментов кварков) может быть записана в виде [16]:

$$I_{v}(q) = \frac{1}{\sqrt{M_{P}M_{V}}} \int_{0-1}^{\infty} \left(\frac{k^{2}(2x^{2}+1)}{\omega_{m_{q}}(k) + m_{q}} - 3\omega_{m_{q}}(k) - m_{q} \right) \frac{k^{2} \left| \Phi_{V}(k,\beta_{qq}) \right|^{2}}{2\omega_{m_{q}}(k)} dx dk.$$
(25)

Соотношения из таблицы 2 позволяют провести анализ возможных значений углов смешивания путем сравнения с экспериментальными данными. Так из распадов $\omega \to \pi^0 \gamma$, $\phi \to \pi^0 \gamma$ и $\eta' \to \rho^0 \gamma$, $\rho^0 \to \eta \gamma$ путем решения системы уравнений находим, что

$$\theta_{V} = (31,94 \pm 0,30)^{\circ}, \ \theta_{P} = (-14,90 \pm 1,10)^{\circ}.$$
 (26)

Минимизация функционала как функции от θ_P и θ_V

$$\chi^{2}(\theta_{P},\theta_{V}) = \sum_{n=2}^{9} \frac{g_{\exp}^{2}(n) - g_{\text{model}}^{2}(n)}{\delta g_{\exp}^{2}(n)}$$
(27)

с использованием всех распадов (n = (2-9) в таблице 2) и в предположении, что $X_{ud} = 0,830 \pm 0,056$ ((n = 1 в таблице 2) дает, что χ^2_{min} достигается при

$$\theta_V = (31,94 \pm 0,29)^\circ, \ \theta_P = (-18,83 \pm 2,94)^\circ.$$
(28)

Таблица 2 – Модельные представления для константы распада $V \to P\gamma$ вместе с извлеченными из соотношений (23) экспериментальными значениями $|g_{VP\gamma}|$

•			
п	Распад	Представление <i>g</i> _{<i>VP</i>γ} в ПИКМ	$ g_{VP\gamma} $ (exp.), $\Gamma \ni B^{-2}$
1	$\rho^0 \rightarrow \pi^0 \gamma$	X _{ud}	0,830±0,056
2	$\rho^0 \rightarrow \eta \gamma$	$Z_{ud}\cos\delta_P$	$1,586 \pm 0,055$
3	$\omega \rightarrow \pi^0 \gamma$	$Z_{ud} \sin \delta_V$	$2,298 \pm 0,040$
4	$\omega \rightarrow \eta \gamma$	$X_{ud}\sin\delta_V\cos\delta_P - 2X_s\sin\delta_P\cos\delta_V$	$0,449 \pm 0,020$
5	$\phi \rightarrow \pi^0 \gamma$	$Z_{ud}\cos\delta_{ m V}$	$0,133 \pm 0,003$
6	$\phi \rightarrow \eta \gamma$	$X_{ud}\cos\delta_P\cos\delta_V + 2X_s\sin\delta_P\sin\delta_V$	$0,694 \pm 0,006$
7	$\phi \rightarrow \eta' \gamma$	$X_{ud}\sin\delta_P\cos\delta_V - 2X_s\sin\delta_V\cos\delta_P$	$0,716 \pm 0,012$
8	$\eta' \rightarrow \rho^0 \gamma$	$Z_{_{ud}}\sin\delta_{_P}$	$1,323 \pm 0,025$
9	$\eta' \rightarrow \omega \gamma$	$2X_s\cos\delta_P\cos\delta_V + X_{ud}\sin\delta_P\sin\delta_V$	$0,429 \pm 0,025$

Углы смешивания ϕ и ω мезонов (26), (28) и в таблице 1 согласуются с другом пределах 0,6°. В работе [5] на основе анализа распадов векторных мезонов предлагается использовать значение $\delta_V = -3,3^\circ$, что с учетом определения углов смешивания в данной работе приводит к значению $\theta_V = 31,96^\circ$, что практически совпадает с (26) и (28).

Угол смешивания псевдоскалярных мезонов (28) тесно коррелирует с значением $\theta_p = -18, 2^{\circ} \pm 1, 4^{\circ}$, полученное в [1] и значением $\theta_p = -18, 5^{\circ} \pm 1, 0^{\circ}$, используемое в рамках релятивистской кварковой модели [5] для радиационных распадов $V \rightarrow P\gamma$ и $P \rightarrow V\gamma$.

Отметим, что в частных случаях (см. (26)), значения θ_p могут отличаться от величины (28). Аналогичный вывод сделан и в работах [4, 5], где показано, что для различных комбинаций наблюдаемых величин оптимальные с точки зрения экспериментальных данных значения θ_p могут изменяться в пределах от –11,0° до –19,0°.

Заключение

На основе общей структуры констант лептонных и радиационных распадов легких мезонов, возникающих в ПИКМ, проведен анализ углов смешивания для ϕ , ω и η , η -мезонов. Результаты согласуются в пределах ошибок с работами [1, 4, 5].

Работа выполнена при финансовой поддержке Белорусского Республиканского Фонда Фундаментальных Исследований (г.Минск, Беларусь). Авторы также благодарны Самарскому университету (г.Самара, Россия) за поддержку.

Литература

1. Bramon, A. The eta-eta-prime mixing angle revisited / A. Bramon, R. Escribano, M.D. Scadron // Eur. Phys. J. – 1999. – Vol. C7. – P. 271–278.

2. Durand, L. Light meson masses and mixings [Electronic resource] / L. Durand. – 2001. – Mode of access: http://arxiv.org/pdf/hep-ph/0105310. – Date of access: 14.01.2001.

3. Burakovsky, L. The Schwinger nonet mass and Sakurai mass-mixing angle formulae reexamined / L. Burakovsky, J.T. Goldman // Phys. Lett. – 1998. – Vol. B427. – P. 361.

4. Pham, T.N. $\eta - \eta'$ Mixing Angle from Vector Meson Radiative Decays / T.N. Pham // Nucl. Part. Phys. Proc. – 2016. – Vol. 270–272. – P. 73–77.

5. Jaus, W. Relativistic constituent quark model of electroweak properties of light mesons / W. Jaus // Phys. Rev. – 1991. – Vol. D44. – P. 2851–2859.

6. Mini review of Poincaré invariant quantum theory / W.N. Polyzou, Y. Huang, C. Elster [et al.] // Few Body Syst. – 2011. – Vol. 49. – P. 129–147.

7. Крутов, А.Ф. Мгновенная форма пуанкаре-инвариантной квантовой механики и описание структуры составных систем / А.Ф. Крутов, В.Е. Троицкий // ЭЧАЯ. – 2009. – Т. 40. – № 2. – С. 268–318.

8. Olive, K.A. Review of Particle Physics / K.A. Olive // Chin. Phys. - 2016. - Vol. C40. - № 10. - P. 100001.

9. Биленький, С.М. Введение в диаграммы Фейнмана и физику электрослабого взаимодействия / С.М. Биленький. – Москва : Энергоатомиздат, 1990. – 327 с.

10. Keister, B.D. Relativistic Hamiltonian dynamics in nuclear and particle physics / B.D. Keister, W.N. Polyzou // Adv. Nucl. Phys. - 1991. - Vol. 20. - P. 225-479.

11. Широков, Ю.М. Релятивистская теория поляризационных эффектов / Ю.М. Широков // ЖЭТФ. – 1958. – Т. 34. – № 4. – С. 1005–1011.

12. Верле, Ю. Релятивистская теория реакций / Ю. Верле. - Москва : Атомиздат, 1969. - 442 с.

13. Браун, Д.Е. Нуклон-нуклонные взаимодействия / Д.Е. Браун, А.Д. Джексон. – Москва : Атомиздат, 1979. – 248 с.

14. Андреев, В.В. Область константы КХД ниже 1 ГэВ в пуанкарековариантной модели / В.В. Андреев // Письма в ЭЧАЯ. - 2011. - Т. 8. - № 4 (167). - С. 581–596.

15. Krutov, A.F. The radius of the rho meson determined from its decay constant / A.F. Krutov, R.G. Polezhaev, V.E. Troitsky // Phys. Rev. -2016. - Vol. D93. - N_{2} 3. - P. 036007.

16. Андреев, В.В. Константа радиационного распада векторного мезона в пуанкаре-инвариантной квантовой механике / В.В. Андреев, В.Ю. Гавриш // Известия ГГУ им. Ф. Скорины. – 2013. – № 6(81). Естественные науки. – С. 162–166.

recontin