3. Mackenzie, J.D. Sol-Gel researches-achievements since 1981 and prospects for the future / J.D. Mackenzie // J. Sol-Gel Sci. Tech. – 2003. – Vol. 26. – $N_{2} 1-3. - C. 23-27.$

4. Пат. 2399589 РФ, МПК А61К8/29. Способ получения дисперсий TiO_2 в форме наночастиц, дисперсии, полученные указанным способом, и применение дисперсий TiO_2 для придания поверхностям заданных свойств / Балди Джованни, Битосси Марко, Барцанти Андреа; заявитель и патентообладатель КОЛОРОББИЯ Италия С.П.А. 2007125485/15; заявл. 2005.12.05; опубл. 20.09.2010; Бюл. 26.

С.В. Шалупаев, Ю.В. Никитюк, А.А. Середа

УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь

ОСОБЕННОСТИ ПРОЦЕССА ЛАЗЕРНОГО ТЕРМОРАСКАЛЫВАНИЯ КРИСТАЛЛОВ С КУБИЧЕСКОЙ ГРАНЕЦЕНТРИРОВАННОЙ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ ТИПА АЛМАЗА

Введение

Одним из наиболее эффективных методов прецизионного разделения хрупких неметаллических материалов является управляемое лазерное термораскалывание. Отличительной особенностью данного метода является разделение материала вследствие образования трещины, формируемой при последовательном лазерном нагреве и воздействии хладагента. К основным преимуществам управляемого лазерного термораскалывания относятся высокая точность разделения и высокая скорость обработки, его безотходность. Исследование особенностей применения данного метода для обработки стекол и керамики было выполнено в работах [1–3].

В работе [4] выполнено численное моделирование термоупругих полей, возникающих в процессе управляемого лазерного термораскалывания различных кристаллов в двумерной постановке задачи, но без учета анизотропии упругих свойств кристаллов. Однако динамика протекания различных физических процессов даже в кубических кристаллах может существенно измениться по сравнению с изотропными средами.

В связи с этим представляется целесообразным проведение трехмерного моделирования процесса управляемого лазерного термораскалывания кристаллов, относящихся к кубической системе, с учетом их анизотропии. В качестве таких кристаллов использованы кремний, германий и арсенид галлия, которые широко используются в современной микроэлектронике.

1. Постановка задачи

Для моделирования процессов лазерного термораскалывания пластин германия и арсенида галлия был использован метод конечных элементов. При моделировании управляемого лазерного термораскалывания на первом этапе выполнялся расчёт полей температур, а затем решалась задача о нахождении термоупругих напряжений, формируемых в результате воздействия лазерного излучения и хладагента на германий и арсенид галлия. Такая последовательность моделирования обеспечивает получение результатов в рамках несвязанной задачи термоупругости в квазистатической постановке. С физической точки зрения, квазистатическая постановка задачи термоупругости означает использование предположения о том, что напряженное состояние устанавливается значительно быстрее, чем достигается тепловое равновесие.

В качестве критерия, определяющего направление развития трещины, был выбран критерий максимальных растягивающих напряжений [5]. В соответствии с этим критерием лазерная микротрещина распространяется в направлении, перпендикулярном действию максимальных растягивающих напряжений. При этом принято во внимание, что трещина, распространяющаяся в зоне растяжения, прекращает свой рост в зоне сжатия.

Расчет термоупругих полей, формируемых в монокристаллической пластине из кремния, германия или арсенида галлия в результате последовательного лазерного нагрева и воздействия хладагента, осуществлялся для трех различных вариантов: I а – анализ среза (100), при резке в направлении [001]; I b – анализ среза (100), при резке в направлении [011]; II а – анализ среза (110), при резке в направлении [1–10]; II b – анализ среза (110), при резке в направлении [001]; II с – анализ среза (110), при резке в направлении [1–11], III – анализ среза (111), при резке в направлении [1–10].

Для определения напряжений использован закон Гука для анизотропных материалов в матричной форме [6, 7], а для определения матрицы упругой жесткости C_{ik} , вид которой для указанных ранее кристаллографических направлений представлен в работе [8], использованы следующие константы упругой жесткости, приведенные в таблице 1 [9,10].

Тип материала	С11, МПа	С ₁₂ , МПа	С ₄₄ , МПа	
Кремний	$1,656 \cdot 10^5$	0,6386·10 ⁵	$0,7953 \cdot 10^5$	
Германий	$1,26 \cdot 10^5$	$0,44 \cdot 10^5$	$0,677 \cdot 10^5$	
Арсенид галлия	$1,176 \cdot 10^5$	$0,527 \cdot 10^5$	$0,596 \cdot 10^5$	

Таблица 1 – Значения констант упругой жесткости

2. Результаты расчетов

На рисунке 1 приведена схема расположения зон воздействия лазерного излучения и хладагента в плоскости обработки и формы их сечений. Позицией 1 отмечен лазерный пучок, позицией 2 – хладагент, позицией 3 – пластина кремния, германия или арсенида галлия, позицией 5 и 4 отмечены, соответственно, сечения лазерного пучка 1 и зоны воздействия хладагента 2 на плоскости обработки. Горизонтальной стрелкой на рисунке 1 указано направление перемещения обрабатываемого изделия относительно лазерного пучка и хладагента.

Рисунок 1 – Схема расположения зон воздействия лазерного излучения и хладагента в плоскости обработки

Расчеты были выполнены для дисков радиусом 15,5 мм и толщиной h = 0,2 мм, h = 0,4 мм и h = 1 мм. Радиус пятна лазерного излучения R = 1,5 мм, плотность мощности излучения для кремния $17 \cdot 10^6$ BT/m²для германия $6 \cdot 10^6$ BT/m², для арсенида галлия $4 \cdot 10^6$ BT/m². Плотности мощности выбраны так чтобы температура материала не достигала температуры плавления, а в случае обработки арсенида галлия режимы обработки были выбраны такими, чтобы температура материала не превышала 600 °C, так как арсенид галлия относится к числу разлагающихся соединений и начиная с 600 °C, разлагается с выделением мышьяка. В области подачи хладагента радиусом 3 мм задается теплоотдача с коэффициентом равным 6800 BT/(m²·K). Скорость перемещения пластины относительно лазерного пучка и хладагента выбиралась равной v = 10 мм/с и v = 100 мм/с.

Исходя из спектров пропускания выбранных для моделирования кристаллов, в качестве источника излучения использован лазер с длиной волны 0,808 мкм для кремния и арсенида галлия и лазер с длиной волны 1,06 мкм для германия, энергия которых эффективно поглощается в поверхностных слоях.

В таблице 1 приведены расчетные значения максимальных по величине напряжений растяжения и сжатия, формируемые в зоне обработки при управляемом лазерном термораскалывании кристаллического кремния, германия и арсенида галлия для вариантов указанных в постановке задачи.

3. Выводы

Анализ данных, приведенных в таблице 2, позволяет установить, что максимум растягивающих напряжений при обработке всех рассматриваемых в данной работе кристаллов наблюдается для режима IIb. При этом их величина превышает предел прочности, что показывает возможность реализации процесса управляемого лазерного термораскалывания.

Разница в величинах растягивающих напряжений между различными вариантами обработки зависит от типа обрабатываемого кристалла. Так разница в величинах растягивающих напряжений между вариантами IIa и IIb составляет от 13 % до 22 % для кремния, от 17 % до 22 % для германия и от 21 % до 30 % для арсенида галлия; между вариантами обработки IIb и IIc – от 6% до 10% для кремния, от 8 % до 11 % для германия и от 8 % до 16 % для арсенида галлия. Подобное различие наблюдается и для других вариантов обработки: между вариантами III и IIb – от 6 % до 11 % для кремния, от 5 % до 8 % для германия и от 3 % до 10 % для арсенида галлия; между срезами (100) и (110) – от 14 % до 21 % для кремния, от 15 % до 21 % для германия и 22 % до 26 % для арсенида галлия. Следует также отметить, что в варианте обработки IIc отмечается асимметрия распределения термоупругих напряжений относительно линии обработки пластины. Данная асимметрия может привести к отклонению разделяющей трещины от перпендикулярного к поверхности материала направления развития.

Таблица 2 – Расчетные значения максимальных по величине напряжений растяжения

	N	Максимальные растягивающие напряжения в зоне обработки σ_{vv} , МПа								
			h = 0,2 мм		h = 0,4 мм		h = 1 мм			
	Реж МБ	материал	v=10	v=100	v=10	v=100	v=10	v=100		
		материал	мм/с	мм/с	мм/с	мм/с	мм/с	мм/с		
	Ia	кремний	68,5	36,5	32,0	19,9	10,2	10,1		
		германий	73,3	38,7	34,5	21,3	12,1	11,4		
		арсенид галлия	38,9	20,7	18,2	11,3	6,2	5,7		
	Ιb	кремний	68,6	36,1	31,9	20,2	10,0	11,0		
		германий	73,25	39,1	34	22,4	11,5	13,4		
		арсенид галлия	38,7	20,7	17,59	12,3	6	7,2		
	II a	кремний	69,3	36,3	32,4	19,9	10,1	9,9		
		германий	73,35	38,9	34,7	20,9	11,7	11,1		
		арсенид галлия	39	20,7	18,5	11,1	6,1	5,4		
	Пb	кремний	80,9	44,7	37,5	24,5	12,0	12,7		
		германий	91,3	49,2	41,9	26,9	14,3	13,8		
		арсенид галлия	51,5	27,7	23,4	14,9	8,1	7,7		
	II c	кремний	74,7	40,1	34,6	22,3	10,8	11,9		
		германий	81,6	43,6	37,4	24,7	12,7	14,4		
		арсенид галлия	44,6	23,8	19,8	13,7	6,8	7,85		
	III	кремний	75,8	40,3	35,3	22,0	11,3	11,3		
		германий	86	45,3	39,6	25,4	13,5	14,5		
		арсенид галлия	47,6	24,9	21,8	14,6	7,4	8,24		

Таким образом, полученные результаты позволяют сделать вывод о необходимости учета анизотропии упругих свойств пластин из кристаллов, относящихся к кубической системе, при моделировании процессов лазерного термораскалывания. Указанная разница в величинах напряжений должна быть учтена при выборе параметров процесса разделения (например, за счет изменения скорости резки или мощности лазерного излучения).

Литература

1. Лазерное термораскалывание диэлектрических материалов / С.В. Шалупаев [и др.] // Ceramics. Polish ceramic bulletin. – 2001. – Vol. 65. – Р. 75–83.

2. Увеличение эффективности управляемого лазерного термораскалывания диэлектрических материалов / В.К. Сысоев [и др.] // Оптический журнал. – 2004. – Т. 71. – № 2. – С. 65–69.

3. Двулучевое лазерное термораскалывание хрупких неметаллических материалов / С.В. Шалупаев [и др.] // Оптический журнал. – 2006. – Т. 73. – № 5. – С. 62–66.

4. Наумов, А.С. Разработка технологии разделения приборных пластин на кристаллы: автореф. дис. ... канд. техн. наук: 05.11.14 / А.С. Наумов. – М. : МГУПИ, 2009. – 19 с.

5. Карзов, Г.П. Физико-механическое моделирование процессов разрушения / Г.П. Карзов, Б.З. Марголин, В.А. Шевцова. – СПб. : Политехника, 1993. – 391 с.

6. Концевой, Ю.А. Пластичность и прочность полупроводниковых материалов и структур / Ю.А. Концевой, Ю.М. Литвинов, Э.А. Фаттахов. – М. : Радио и связь, 1982. – 240 с.

7. Lackner, T. Determination of axisymmetric elastic constants in anisotropic silicon for a thyristor tablet / T. Lackner // Journal of electronic materials. -1989. - Vol. 18. $- N_{\rm P}1. - P. 19-24$.

8. Моделирование процесса двулучевого лазерного термораскалывания силикатных стекол в рамках линейной механики разрушения / С.В. Шалупаев [и др.] // Проблемы физики, математики и техники. – 2013. – № 2(15). – С. 29–34.

9. Блистанов, А.А. Акустические кристаллы / А.А. Блистанов, В.С. Бондаренко, В.В. Чкалова. – М. : Наука, 1982. – 632 с.

10. Physical Properties of Semicondactors [Электронный ресурс] / Официальный сайт Федерального государственного бюджетного учреждения науки «Физико-технический институт им. А.Ф.Иоффе РАН». – URL: http://www.ioffe.ru/SVA/NSM/Semicond/Ge/mechanic.html. – Дата доступа: 06.02.2014.