А.Н. Сердюков, Е.Б. Шершнев, Ю.В. Никитюк, В.Ф. Шолох, С.И. Соколов

УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь

КОНЕЧНО-ЭЛЕМЕНТНЫЙ АНАЛИЗ ПРОЦЕССА ЛАЗЕРНОГО ТЕРМОРАСКАЛЫВАНИЯ КРИСТАЛЛИЧЕСКОГО КВАРЦА

Введение

В последнее время стали активно проводится исследования управляемого лазерного термораскалывания различных кристаллов [1–2]. Актуальность данного направления работ обусловлена рядом недостатков традиционных способов обработки, к которым в первую очередь относятся значительные потери обрабатываемого материала, загрязнение рабочих поверхностей и низкое качество реза.

Особо перспективным представляется применение управляемого лазерного термораскалывания для разделения кристаллического кварца, используемого при изготовлении кварцевых кристаллических

элементов.

Изучению особенностей управляемого лазерного термораскалывания кристаллического кварца посвящены работы [3-4], в которых верно указывается на необходимость учета кристаллографической ориентации обрабатываемого материала при выборе соответствующих параметров нужно отметить, обработки. Однако В данных что работах акцентируется внимание лишь на анизотропии теплового расширения игнорируется зависимость кристаллов кварца, при ЭТОМ OT кристаллографического направления теплопроводности И упругих свойств данных кристаллов.

1. Постановка задачи для численного решения

процесса Конечно-элементное моделирование лазерного термораскалывания кристаллического кварца было выполнено в два этапа: на первом этапе выполнялся расчёт полей температур, а на втором этапе решалась задача о нахождении термоупругих напряжений, формируемых в результате воздействия лазерного излучения И хладагента на обрабатываемый материал [5]. Такая последовательность получение результатов обеспечивает моделирования В рамках несвязанной задачи термоупругости в квазистатической постановке [6].

При определении направления развития лазерной трещины, был использован критерий максимальных растягивающих напряжений, в соответствии с которым трещина распространяется в направлении, перпендикулярном действию максимальных растягивающих напряжений [7]. При этом учитывалось, что трещина прекращает свой рост в зоне напряжений сжатия.

Для расчетов плотность и удельная теплоемкость кристаллического кварца полагались соответственно равными $\rho = 2649 \text{ кг/м}^3$ и Дж/кг·К. При моделировании C = 732были учтены различия физических свойств кристаллического кварца В различных кристаллографических направлениях: коэффициент теплопроводности и коэффициент линейного термического расширения кристаллического кварца считались соответственно равными $\lambda_{\parallel} = 12,3$ Вт/м ·K, $\alpha_{\parallel} = 9.10^{-6}$ К⁻¹ вдоль оси симметрии третьего порядка Z и $\lambda \perp$ = 6,8 Вт/м K, α⊥ = 14,8·10⁻⁶ К⁻¹ в плоскости перпендикулярной оси Z. Для расчетов использовались следующие константы упругой жесткости: C₁₁ = $C_{12} = 5,95 \cdot 10^9 \text{ MIIa}, C_{13} = 11,91 \cdot 10^9 \text{ MIIa}, C_{14}$ $C_{33} = 107,2 \cdot 10^9 \text{ MIIa}, C_{44} = 57,8 \cdot 10^9 \text{ MIIa}, C_{66}$ 86,75·10⁹ МПа, $= -17,8 \cdot 10^9 \text{ MHa},$ $=40,4\cdot10^9$ MIIa [8–10].

Расчеты проводились для квадратных пластин с геометрическими размерами $20 \times 20 \times 1,5$ мм и $20 \times 20 \times 0,75$ мм. Радиус пятна лазерного излучения R = 1,5 мм, мощность излучения P = 50 Вт. Скорость

перемещения пластины относительно лазерного пучка и хладагента выбиралась равной v = 5 мм/с.

Расчет термоупругих полей, формируемых в монокристаллической кварцевой пластине в результате последовательного лазерного нагрева и воздействия хладагента, осуществлялся для пяти различных вариантов: I – трехмерный анализ среза zy, при перемещении лазерного пучка в направлении оси Х; II – трехмерный анализ среза ух, при перемещении. лазерного пучка в направлении оси X; III – трехмерный анализ среза ух, при перемещении лазерного пучка в направлении оси Z; IV трехмерный анализ среза ху, при перемещении лазерного пучка в направлении оси Y; V – трехмерный анализ среза ху, при перемещении лазерного пучка в направлении оси Z. В соответствии с [10] для обозначения срезов использованы две буквы, обозначающие кристаллографические оси, вдоль которых расположен кристаллический элемент, при этом первая буква определяет, какая из осей направлена вдоль толщины образца.

2. Результаты конечно-элементного анализа

Результаты расчетов приведены в таблицах 1 и 2. Из анализа данных приведенных в таблице 1 следует, что максимальные значения температуры для всех расчетных режимов не превышают температуру плавления кристаллического кварца, что является необходимым условием для реализации хрупкого разрушения пластины под действием термоупругих напряжений.

В таблице 2 приведены расчетные значения максимальных по величине напряжений растяжения и сжатия, формируемые в зоне обработки при управляемом лазерном термораскалывании кристаллического кварца.

Таблица 1 – Расчетные значения максимальных температур в обрабатываемой пластине

2	S.	Максимальная температура в обрабатываемой пластине Т, К		
	Вариант	h = 0,75 мм	h = 1,5 мм	
	Ι	1546	1116	
	Ι	1468	1163	
	III	1523	1202	
	IV	1523	1202	
	V	1468	1163	

Сравнительный анализ данных приведенных в таблице 2 с результатами работ [3-4] позволяет сделать вывод о том, что при

выборе режимов лазерного термораскалывания кристаллов кварца необходимо учитывать не только анизотропию теплового расширения данного материала, но также необходимо учитывать зависимость от кристаллографического направления теплопроводности И упругих свойств кристаллов. При ЭТОМ существенное данных отличие вышеуказанных параметров от ориентации кристалла обуславливает необходимость осуществления дифференцированного нагрева при резке в различных кристаллографических направлениях.

Таблица	2 –	Расчетные	значения	максимальных	по величине
напряжений	\sim				

Вариант	Максимальные напряжения в зоне обработки σ _y , МПа	h = 0,75 мм h = 1,5 мм	
I	растяжения	83,8	42,9
1	сжатия	641,9	414,2
п	растяжения	63,5	33,2
11	сжатия	512,7	355,9
ш	растяжения	85,1	56,2
111	сжатия	607,3	459,1
ТV	растяжения	93,1	73,0
1 V	сжатия	628,5	480,8
V	растяжения	65,7	34,3
v	сжатия	520,9	356,0

Заключение

В данной работе выполнено конечно-элементное моделирование процесса управляемого лазерного термораскалывания кристаллического кварца. На основании выполненных расчетов показана необходимость учета анизотропии свойств данного материала при выборе параметров обработки.

Литература

1. Наумов, А.С. Разработка технологии разделения приборных пластин на кристаллы: автореф. дис. ... канд. техн. наук: 05.11.14 / А.С. Наумов; МГУПИ. – М., 2007. – 20 с.

2. Сердюков, А.Н. Особенности управляемого лазерного термораскалывания кристаллического кремния / А.Н. Сердюков, С.В. Шалупаев, Ю.В. Никитюк // Кристаллография. – 2010. – Т. 55. – № 6. – С. 1180–1184.

3. Способ резки хрупких неметаллических материалов: пат. 2224648 РФ, МКИ 7 В28D5/00, С03В33/00/ В.С. Кондратенко, П.Д. Гиндин;

заявитель В.С. Кондратенко, П.Д. Гиндин. – №2002123517/03; заявл. 03.09.02; опубл. 27.02.04

4. Гиндин, П.Д. Разработка новых технологий и оборудования на основе метода лазерного управляемого термораскалывания для обработки деталей приборостроения, микро- и оптоэлектроники: автореф. дис. ... докт. техн. наук: 05.11.14 / П.Д. Гиндин; МГУПИ. – М., 2009. – 44 с.

5. Коваленко, Л.Д. Основы термоупругости / Л.Д. Коваленко. – Киев: Наукова думка, 1970. – 307 с.

6. Шабров, Н.Н. Метод конечных элементов в расчетах деталей тепловых двигателей / Н.Н. Шабров. – Л.: Машиностроение, 1983. – 212 с.

7. Карзов, Г.П. Физико-механическое моделирование процессов разрушения / Г.П. Карзов, Б.З. Марголин, В.А. Шевцова. – СПб.: Политехника, 1993. – 391 с.

8. Корицкий, Ю.В. Справочник по электротехническим материалам / Ю.В. Корицкий, В.В. Пасынков, Б.М. Тареева. – Л.: Энергоатомиздат, 1988. – 728 с.

9. Смагин, А.Г. Пьезоэлектричество кварца и кварцевые резонаторы / А.Г. Смагин, М.И. Ярославский. – М.: Энергия, 1970. – 488 с.

10. Глюкман, Л.И. Пьезоэлектрические кварцевые резонаторы / Л.И. Глюкман. – М.: Радио и связь, 1981. – 232 с.

R