J MARKELLIN O. CHOPINIELLIN O. В.Н. Леванцов, В.С. Давыдов

УО «Гомельский государственный университет имени Франциса Скорины», Гомель, Беларусь

РАЗРАБОТКА WEB-ПРИЛОЖЕНИЙ НА ПЛАТФОРМЕ XCODE

Введение

Высокие технологии и микрокомпьютеры заняли значительную часть жизни человека. С движением технологического прогресса составные части компьютера становятся всё меньше, что позволяет уменьшать и форм-фактор компьютеров. В данный момент на рынке активное распространение получают планшетные компьютеры — устройства, совмещающие в одном корпусе системный блок, монитор и

устройства ввода-вывода. Главным отличием планшетных компьютеров от настольных является отсутствие у них таких устройств ввода-вывода как мышь и клавиатура — они заменены сенсорным экраном. В таких компьютерах пользователь интуитивно прикасается к элементам интерфейса для взаимодействия с ними, при необходимости ввода текста — на экране появляется виртуальная клавиатура, у которой за кнопки ответственны отдельные участки экрана.

Безусловным лидером рынка планшетных компьютеров в текущее время является Apple iPad, работающий под управлением операционной системы iOS. Для разработки приложений используется набор инструментов iOS SDK, включающий в себя среду разработки Xcode, редактор интерфейса Interface Builder, симулятор iOS Simulator и ряд инструментов для отладки, оптимизации и публикации приложений, а также обширную документацию.

1. Интерфейс программирования приложений на платформе Xcode

Cocoa Touch – это интерфейс программирования приложений на платформе Xcode для создания программ, исполняемых на платформах iPhone, iPod Touch и iPad компании Apple.

Cocoa Touch представляет из себя ступень абстракции операционной системы iOS. Он базируется на Mac OS X Cocoa API и, также как и он, в основном написан на Objective-C. Cocoa Touch позволяет использовать аппаратные средства не доступные на компьютерах Mac OS X, которые являются специфическими для мобильных устройств (акселерометр, Touch использует вспышка и пр.). Cocoa компас, проектирования Model-View-Controller (MVC) в своей архитектуре. Технологии операционной системы iOS могут быть представлены как набор уровней абстракции с Cocoa Touch на самом высоком уровне и Core OS вместе с ядром Mac OS X – на самом низком. Это делает удобным доступ к различным сервисам и технологиям, уменьшает затраты на разработку и освобождает разработчика от решения задач низкоуровневого программирования. Сосоа Touch включает в себя широкий спектр библиотек (фреймворков) наиболее важными из которых являются:

- Foundation Kit Framework базовый набор объектов языка (строки, коллекции, математические функции и пр.);
- UIKit Framework небор инструментов для создания пользовательского интерфейса;
- Game Kit Framework компоненты для организации игровых приложений используя специальный сервис от компании Apple Game Center;
 - Map Kit Framework набор классов для работы с картами

местности и их отображения.

В фреймворке UIKit определено множество классов, необходимых для построения и управления пользовательским интерфейсом программы. В нем представлены: объект самого приложения UIApplication, объект события, окна, представления, кнопки и многие другие элементы интерфейса.

Для управления поведением приложения определён протокол UIApplicationDelegate. В нём объявлены методы, которые реализуются синглтон-объектом класса UIApplication. Эти методы предоставляют разработчику информацию о ключевых событиях исполнения приложения, таких как окончание загрузки, момента, когда выполнение приложение будет прекращено, при нехватке памяти и некоторых других важных изменениях в поведении приложения.

Одной из самых главных задач делегата приложения является отслеживание состояния приложения. До появления операционной системы iOS 4.0 приложение имело только три состояния: активное, неактивное и нерабочее. В iOS 4.0 и более поздних приложения также могут работать в фоновом режиме и быть приостановленными.

Задачи, реализуемые наследниками протокола:

- наблюдение за изменениями состояния приложения;
- открытие URL во встроенном браузере;
- управление изменениями панели статуса устройства;
- ответ на системные уведомления;
- обработка удалённых уведомлений;
- обработка локальных уведомлений;
- ответ на изменения состояния защиты.

Стандартным для iPhone-приложения является построение по шаблону MVC (модель – представление – контроллер). В качестве представления обычно используются объекты класса UIView и его наследники.

Класс UIView, как и все классы с префиксом UI в названии (указывает на принадлежность в фреймворку UIKit), отвечает за представление данных на экране устройства.

Объект класса определяет прямоугольную область на экране и интерфейсы для управления содержимым этой области. Во время выполнения программы объект управляет отрисовкой своего содержимого, также он обрабатывает любое взаимодействие с этим содержимым.

Класс UIView определяет для себя самого в качестве базового поведения заполнение области, им занимаемой, фоновым цветом.

Поскольку объекты UIView являются главным свособом для взаимодействия приложения и пользователя, на них возложен ряд

обязанностей.

Рисование и анимация:

- представление отрисовывает содержимое с использованием технологий UIKit, Core Graphics, и OpenGLES;
- некоторые свойства представления могут менять свои значения анимированно.

Размещение и управление субпредставлениями:

- представление может иметь от нуля до огромного количества субпредставлений (subview);
- каждое представление определяет своё собственное поведение по умолчанию по изменению размеров в соответствии с событиями на родительском представлении;
- представление может напрямую изменять размеры и положение своих субпредставлений по необходимости.

Обработка событий:

– представления является так называемым респондером (ответчиком) и может обрабатывать касания экрана и другие события, определённые в родительском классе UIResponder.

Представления могут использовать метод addGestureRecognizer: для добавления к своему поведению просмотрщика, опознающего наиболее стандартные жесты пользователя (например, двойное касание, щипок, жест прокручивания и т. д.)

На представление можно добавлять другие представления, создавая при этом сложную иерархическую визуальную структуру. Между представлением и его субпредставлением создаётся отношение родитель — потомок. В терминах языка главное представление называется superview, а субпредставление — subview. Как правило, видимая область субпредставления может выходить за границы родительского представления, однако можно использовать свойство clipsToBounds — обрезать по границам, изменяющего это поведение на противоположное. Родительское представление может содержать любое количество субпредставлений, однако у субпредставления может быть только одно родительское, которое отвечает за размещение своих субпредставления должным образом.

2 Примеры реализации приложений

2.1 Приложение для обучения детей счету

Разработанное приложение является игровым, его целевой аудиторией являются дети дошкольного возраста. Это выдвигает требования к простому и максимально понятному пользовательскому интерфейсу, красочному дизайну и интуитивным взаимодействием с пользователем.

Экран приложения состоит из игрового поля, на котором

отображаются счётные палочки, меню создания новых объектов, панели заданий, панели «Share», кнопок выбора режима, смены фона и переключения на экран общей информации.

Процесс взаимодействия с приложением представляет расширенный для режима множественных прикосновений Drag-and-**Отор-интерфейс** (поднял и положил). Пользователь, используя меню создания объектов, вытаскивает на игровое поле необходимые ему счётные палочки. Каждой палочке на экране соответствует спрайт, имеющий положение, определённый угол поворота и связанное с ним физическое тело, которое в процессе симуляции физического мира прикосновений силам стороны подвергается co пользователя, сталкивается с другими телами и реагирует на события игрового поля. В результате симуляции тело меняет своё положение и это немедленно отображается на игровом поле.

2.2 Приложение для организации и проведения мероприятий

Данное приложение предназначено для пойска интересующих человека мероприятий, просмотре информации по данному мероприятию, а также просмотр участников данного мероприятия. Если данное событие заинтересовало человека, то пользователь приложения всегда может добавить данное событие в календарь, и коммуникатор по мере наступления данного события будет напоминать человеку о нем.

Данное приложение взаимодействует с популярными социальными сетями: facebook, twitter, foursquare. Приложение получает данные от сервера, основанного на платформе drupal.

Для работы с приложением не обязательно регистрироваться, но для работы с функциями программы, завязанными на социальные сети необходимо авторизироваться в данных социальных сетях.

Организаторы мероприятия должны подготовить данные о проводимом мероприятии на сервере drupal. При запуске приложения на iPhone оно отправляет запрос на сервер и получает с него данные. После получения данных программа отображает их.

Программа также обладает и другими функциями. Программа может расшифровывать QR коды, нанесенные на различные предметы и здания. Также реализована прокладка маршрута между текущим положением пользователя и местом, куда пользователю необходимо добраться. В программу также добавлена функция расширенной реальности, т. е. программа на экране iPhon должна показывать направление к требуемому объекту. Также программа позволяет отмечаться на местах зарегистрированных в системе foursquare а также добавить возможность размещать фотографии на стене facebook.

2.3 Приложение для просмотра видеофайлов из социальных сетей Это приложение построено по принципу tab-based, то есть его интерфейс основан на использовании вкладок с представлениями, переключение между которыми производится посредством tab bar'а – полосы управления вкладками, расположенной в нижней части экрана приложения.

Поскольку iPhone имеет встроенный датчик, отслеживающий изменение положения устройства (акселерометр), имеется возможность разрабатывать приложения, изменяющие свой интерфейс (повороте) положения устройства. Всего положений изменении интерфейса два – ландшафтное (landscape) и портретное (portrait). Ландшафтная ориентация – это когда устройство расположено своей более широкой стороной параллельно горизонту, портретная - более узкой. Поскольку, с точки зрения разработчика, наиболее удобно управлять работой приложения в ландшафтном режиме, то приложение SMPlayer поддерживает только эту ориентацию интерфейса. При повороте устройства из ландшафтного режима в портретный интерфейс не изменяется, при повороте же из ландшафтного режима на 180 градусов, интерфейс также разворачивается на такой же угол, снова оказываясь в ландшафтной ориентации по отношению к пользователю.

При первоначальном запуске приложения пользователь вначале проходит процедуру аутентификации, после чего, в случае удачи, приложение переходит в основной режим работы.

Всего в приложении имеется четыре вкладки: поиск, мои записи, плейлисты, профиль. Также на таббаре имеется кнопка переключения между режимами аудио и видео. Бар можно убрать с экрана, потянув вниз пальцем, при этом в нижнем правом углу появляется закладочка, за которую бар можно вытянуть обратно.

Заключение

Разработанные приложения на платформе XCODE, ориентированны на любого пользователя который умеет пользоваться программами на смартфонах фирмы Apple. Они просты в употреблении, не требует много сетевого трафика для получения данных и позволяет в последующем работать с основными функциями без Интернета. Для многих функций Интернет все же требуется.

Литература

- 1. Лебедев, В.А. Объектно-ориентированное программирование: учеб. пособие / В.А. Лебедев, А.О. Ноготков. Уфа: [б. и.], 1995. 56 с.
- 2. Хиллегасс, А. Программирование в среде Сосоа для Мас ОС X: обучение для профессионалов / А. Хиллегасс. М.: ЭКОМ, 2009. 433 с.