-МАТЕМАТИКА

УДК 512.542

О ПОЛУПОКРЫВАЮЩИХ-ИЗОЛИРУЮЩИХ ПОДГРУППАХ ИЛИ S-КВАЗИНОРМАЛЬНО ВЛОЖЕННЫХ ПОДГРУППАХ КОНЕЧНЫХ ГРУПП

Абид Махбуб¹, Лицзюнь Хуо¹, Цзинхуа Лу²

¹Университет Науки и Технологии Китая, Хэфэй, Китай ²Юго-западный университет Науки и Технологии, Мяньян, Китай

ON SEMI COVER-AVOIDING OR S-QUASINORMALLY EMBEDDED SUBGROUPS OF FINITE GROUPS

Abid Mahboob¹, Lijun Huo¹, Jinghua Lu²

¹University of Science and Technology of China, Hefei, China ²Southwest University of Science and Technology, Mianyang, China

В данной работе мы изучаем нильпотентность и сверхразрешимость конечных групп G, некоторые примарные подгруппы которых являются либо полупокрывающими-изолирующими, либо S-квазинормально вложенными в G. Получено обобщение некоторых известных результатов.

Ключевые слова: полупокрывающая-изолирующая подгруппа; S-квазинормально вложенная подгруппа; p-нильпотентная группа; сверхразрешимая группа.

In this paper, we characterize the nilpotency and supersolvability of a finite group G by assuming some subgroups of prime power order are either semi cover-avoiding or S-quasinormally embeded in G. Some known results are generalized.

Keywords: semi cover-avoiding subgroup; S-quasinormally embeded subgroup; p-nilpotent group; supersolvable group.

Introduction

All groups considered in this paper are finite and G always denotes a finite group. The following notations are used in the paper: $O_p(G)$ is the maximal normal p-subgroup of G, $\Phi(G)$ is the Frattini subgroup of G and \mathcal{U} is the class of all supersolvable groups. A class of groups \mathcal{F} is called a formation if \mathcal{F} is closed under taking homomorphic images and subdirect products. A formation \mathcal{F} is said to be saturated if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$. All unexplained terminology and notations are standard, as in [13], [9].

If M and N are normal subgroups of G with N < M, then we call M / N a normal factor of G. A subgroup H of G is said to cover the normal factor M/N of G provided that HM = HN, and H is said to avoid M/N provided that $H \cap M = H \cap N$. If H either covers or avoids each chief factor of G, then H is said to possess the cover-avoiding property in G. This concept was introduced by Gaschütz [6] in 1962 and studied by many authors (see, for example, [7], [12], [22], [18]). In 2006, Fan, Guo and Shum [5] introduced the semi cover-avoiding property: a subgroup H is said to be semi cover-avoiding in G if there is a chief series $1 = G_0 < G_1 < \dots < G_l = G$ of G such that H either covers or avoids G_i / G_{i-1} for every j = 1, ..., l. Many authors have investigated the structures of the

group G under the assumption that some subgroups of G is semi cover-avoiding in G and obtained some interesting results (see [10], [11], [25]).

Recall that a subgroup H of G is called S-quasinormal [14] in G provided that H permutes with all Sylow subgroups of G. A subgroup H of a group G is said to be S-quasinormally embedded [3] in G if for each prime p dividing the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G. By using S-quasinormally embedded subgroups, some authors have obtained many interesting results (see, for example, [1], [2], [15], [17]).

The following examples show that semi coveravoiding subgroups and S-quasinormally embedded subgroups are two independent concepts.

Example 0.1. Let $G = A_4 \times Z_2$, where A_4 is an alternating group and $Z_2 = \langle c \rangle$ is a cyclic group of order 2. Let $K_4 = \langle a, b \rangle$ be the Sylow 2-group of A_4 generated by two elements a and b of order 2 and let $H = \langle a, bc \rangle$. Then $1 \leq Z_2 \leq K_4 Z_2 \leq G$ is a chief series of G. It is easy to prove that H covers $K_4 Z_2 / Z_2$ and avoids the factors $G / K_4 Z_2$ and Z_2 / I , but H is not S-quasinormally embedded in G.

Example 0.2. Let $G = A_5$ be the alternative group of degree 5. Since A_5 is simple, there is no nontrivial semi cover-avoiding subgroup in A_5 .

NHD

[©] Abid Mahboob, Lijun Huo, Jinghua Lu, 2014

However, if H is any Sylow subgroup of G, then clearly H is S-quasinormally embedded in G.

In this paper, we investigate the structure of a group G under the assumption that all maximal subgroups of a Sylow subgroup is either semi coveravoiding or S-quasinormally embedded subgroups in G. Some new characterizations on the structure of finite groups are obtained and some known results are generalized.

1 Preliminaries

In this section, we list some known results which will be useful for the proofs of our main results.

Lemma 1.1 [20]. Let H be a p-subgroup of G for some prime p. Then H is S-quasinormal in G if and only if $O^p(G) \le N_G(H)$.

Lemma **1.2.** *If H is an S-quasinormal subgroup of G, then*

(1) H is subnormal in G [14];

(2) H/H_G is nilpotent [4].

Lemma **1.3** [1]. Let *H* be a subgroup of *G*. Then the following two statements are equivalent:

(1) H is an S-quasinormal nilpotent subgroup of G.

(2) The Sylow subgroups of H are S-quasinormal in G.

Lemma 1.4 [11]. Let H be a subgroup of G. If H is semi cover-avoiding in G, then H is semi coveravoiding in K for every subgroup K of G with $H \leq K$.

Lemma 1.5 [5]. Let N be a normal subgroup of G and let H be a subgroup of G which is semi coveravoiding in G. Then HN/N is semi coveravoiding in G/N if one of the following holds:

(1) $N \leq H$;

(2) (|N|, |H|) = 1.

Lemma 1.6 [3]. Suppose that U is an S-quasinormally embedded subgroup of G and K is a normal subgroup of G. Then

(1) U is S-quasinormally embedded in H whenever $U \le H \le G$.

(2) UK is S-quasinormally embedded in G and UK / K is S-quasinormally embedded in G/K.

Lemma 1.7 [11]. Let p be a prime dividing the order of G with (|G|, p-1) = 1 and P be a Sylow p-subgroup of G. If there is a maximal subgroup P_1 of P such that P_1 is semi cover-avoiding in G, then G is p-solvable.

Lemma 1.8 [21]. Let \mathcal{F} be a saturated formation containing all supersolvable groups and G has a normal subgroup E such that $G / E \in \mathcal{F}$. If E is cyclic, then $G \in \mathcal{F}$.

Lemma 1.9 [24]. Let K be an S-quasinormal subgroup of G and P a Sylow p-subgroup of K, where p is a prime. If either $P \le O_p(G)$ or $K_G = 1$, then P is S-quasinormal in G.

Lemma 1.10 [9]. Let N be a nontrivial solvable normal subgroup of G. If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G contained in N.

2 Main results

Theorem 2.1. Let p be an odd prime dividing the order of G and P a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and every maximal subgroup of P is either semi cover-avoiding or S-quasinormally embedded in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false, and let G be a counterexample of minimal order. Then: (1) $O_{1}(G) = 1$

(1) $O_{p'}(G) = 1$.

Suppose that $D = O_{p'}(G) \neq 1$. Obviously, PD/D is a Sylow *p*-subgroup of G/D. Let T/Dbe a maximal subgroup of PD/D. Then $T = P_1D$ for some maximal subgroup P_1 of *P*. By Lemmas 1.5 and 1.6 (2), P_1D/D is either semi coveravoiding or *S*-quasinormally embedded in G/D. On the other hand, since

 $N_{G/D}(PD/D) = N_G(P)D/D$

by [9], we see that $N_{G/D}(PD/D)$ is *p*-nilpotent. This shows that G/D satisfies the hypothesis of the theorem. Thus G/D is *p*-nilpotent. It follows that *G* is *p*-nilpotent, a contradiction.

(2) If M is a proper subgroup of G with $P \le M$, then M is p-nilpotent.

Clearly, $N_M(P)$ is *p*-nilpotent. By Lemmas 1.4 and 1.6 (1), we see that *M* satisfies the hypothesis. The minimal choice of *G* implies that *M* is *p*-nilpotent.

(3) G = PQ and $O_p(G) \neq 1$, where Q is a Sylow q-subgroup of G with $q \neq p$.

Since G is not *p*-nilpotent, by Thompson's theorem [23], there is a nonidentity characteristic subgroup H of P such that $N_G(H)$ is not p-nilpotent. Since $N_G(P)$ is *p*-nilpotent, we may choose a characteristic subgroup H of P such that $N_G(H)$ is not *p*-nilpotent, but $N_G(K)$ is *p*-nilpotent for every characteristic subgroup K of P with $H < K \le P$. Since *H* char $P \leq N_G(P)$, we have $H \leq N_G(P)$, and so $N_G(P) < N_G(H)$. Then by (2), we have $G = N_G(H)$. This shows that $H \leq O_n(G) \neq 1$ and $N_{G}(K)$ is *p*-nilpotent for any characteristic subgroup K of P with $O_p(G) < K \le P$ (if exists). In this case, using Thompson's theorem again, we see that $G/O_p(G)$ is p-nilpotent and so G is p-solvable. Thus for any prime divisor q of |G| with $q \neq p$, there exists a Sylow q-subgroup Q of G such that PQ is a subgroup of G (see [8, Chapter 6, Theorem 3.5]). If PQ < G, then PQ is *p*-nilpotent by (2). It follows from (1) that $Q \le C_C(Q \ (G)) = Q \ (G).$

a contradiction. Hence
$$G = PQ$$
.

(4) G has a unique minimal normal subgroup

N such that $G = N \rtimes M$, where M is a maximal subgroup of G, $N = O_p(G) = C_G(N)$.

Let N be a minimal normal subgroup of G. Then by (1) and (3), N is an elementary abelian p-group, and $N \subseteq O_p(G) < P$. It is easy to see that G/N satisfies the hypothesis. Hence G/N is p-nilpotent by the choice of G. Since the class of all p-nilpotent groups is a saturated formation, N is the unique minimal normal subgroup of G and $N \nleq \Phi(G)$. Consequently, $G = N \rtimes M$ for some maximal subgroup M of G. Clearly, $N = O_p(G)$.

(5) Final contradiction.

Since $P \not \lhd G$ and $P = NM_p$, we see that $N \not \le \Phi(G)$. Hence there exists a maximal subgroup P_1 of P such that $N \not \le P_1$. If $P_1 = 1$, then P is a cyclic subgroup of order p. It follows that $N_G(P) = C_G(P)$ since $N_G(P)$ is p-nilpotent. Hence G is p-nilpotent by Burnside Theorem, a contradiction. Hence we assume that $P_1 \neq 1$.

Assume that P_1 is semi cover-avoiding in G. Then there is a chief factor series

 $1 = G_0 < G_1 < \cdots < G_l = G$

such that for every j = 1,...,l, P_1 either covers or avoids G_j / G_{j-1} . In particular, P_1 covers or avoids $G_1 / 1$, which means that $G_1P_1 = P_1$ or $G_1 \cap P_1 = 1$. By (3), $G_1 = N$. If $NP_1 = P_1$, then $N \le P_1$, a contradiction. Hence $N \cap P_1 = 1$ and so |N| = p. It follows that $P = N(P \cap M) = N \times (P \cap M)$, which contradicts (4).

Now assume that *G* has an *S*-quasinormal subgroup *K* such that P_1 is a Sylow *p*-subgroup of *K*. If $K_G \neq 1$, then $N \leq K_G \leq K$, and thereby $N \leq P_1$, a contradiction. Therefore $K_G = 1$. Then by Lemmas 1.2 (2) and 1.3, P_1 is *S*-quasinormal in *G*. Thus P_1 is subnormal in *G* by Lemma 1.2(1). By [9], we have that $P_1 \leq O_p(G) = N \leq P$. Since P_1 is a maximal subgroup of P, $P_1 = N$, a contradiction also. The final contradiction completes the proof of the theorem.

Corollary 2.2. Let H be a normal subgroup of G such that G/H is p-nilpotent, where p is a prime dividing the order of G. If there exists a Sylow p-subgroup P of H such that $N_G(P)$ is either semi cover-avoiding or S-quasinormally embedded in G, then G is p-nilpotent.

Proof. By Lemmas 1.4 and 1.6 (1) and Theorem 2.1, H is *p*-nilpotent. Let $H_{p'}$ be a normal Hall p'-subgroup of H. Assume that $H_{p'} \neq 1$. Then clearly, $(G/H_{p'})/(H/H_{p'}) \cong G/H$ is *p*-nilpotent. Applying Lemmas 1.5 and 1.6 (2) and [9], we see that $G/H_{p'}$ satisfies the hypothesis. Hence by induction on |G|, $G/H_{p'}$ is *p*-nilpotent. It follows that *G* is *p*-nilpotent. We may, therefore, assume $H_{p'} = 1$. Then H = P is a *p*-group. In this case, $G = N_G(P)$ is *p*-nilpotent.

Theorem 2.3. Let p be the smallest prime dividing |G| and P be a Sylow p-subgroup of G. If every maximal subgroup of P is either semi coveravoiding or S-quasinormally embedded in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. We prove it via the following steps.

(1) $O_{p'}(G) = 1.$

If $O_{p'}(G) \neq 1$, then $PO_{p'}(G) / O_{p'}(G)$ is a Sylow *p*-subgroup of $G / O_{p'}(G)$. Suppose that $M / O_{p'}(G)$ is a maximal subgroup of $PO_{p'}(G) / O_{p'}(G)$. Then there exists a maximal subgroup P_1 of P such that $M = P_1O_{p'}(G)$. By the hypothesis, P_1 is either semi cover-avoiding or S-quasinormally embedded in G. Then $M / O_{p'}(G) = P_1O_{p'}(G) / O_{p'}(G)$ is either semi cover-avoiding or S-quasinormally embedded in $G / O_{p'}(G)$ by Lemmas 1.5 and 1.6(2). The minimal choice of G implies that $G / O_{p'}(G)$ is p-nilpotent, and so G is p-nilpotent, a contradiction. Therefore, we have $O_{p'}(G) = 1$.

(2) $O_p(G) \neq 1$.

If all maximal subgroups of *P* are *S*-quasinormally embedded in *G*, then G is *p*-nilpotent by [1]. Hence there exists at least a maximal subgroup P_1 of *P* which is semi cover-avoiding in *G*. By Lemma 1.7, *G* is *p*-solvable. It follows from (1) that $O_p(G) \neq 1$.

(3) G is solvable.

If G is not solvable, then p = 2 by Feit-Thompson's theorem. Suppose that $M / O_2(G)$ is a maximal subgroup of $P / O_2(G)$. Then M is a maximal subgroup of P. By Lemmas 1.5 and 1.6(2), $M / O_2(G)$ is either semi cover-avoiding or S-quasinormally embedded in $G / O_2(G)$. Therefore $G / O_2(G)$ satisfies the hypothesis. The minimal choice of G implies that $G / O_2(G)$ is 2-nilpotent, and so $G / O_2(G)$ is solvable. It follows that G is solvable, a contradiction. Thus (3) holds.

Problems of Physics, Mathematics and Technics, № 1 (18), 2014

(4) *G* has a unique minimal normal subgroup $N = O_p(G)$, G = NM, where *M* is *p*-nilpotent and |N| > p.

Let *N* be a minimal normal subgroup of *G*. By (3), *N* is an elementary abelian subgroup. Since $O_{p'}(G) = 1$, $N \le O_p(G)$. It is easy to see that G/Nsatisfies the hypothesis. The choice of *G* implies that G/N is *p*-nilpotent. Since the class of all *p*-nilpotent groups is a saturated formation, *N* is a unique minimal normal subgroup of *G* and $N \nleq \Phi(G)$. This implies that $G = N \rtimes M$, $N = O_p(G)$ and *M* is *p*-nilpotent. If |N| = p, then $G/C_G(N)$ is an abelian group exponent p-1. It follows that $N \le Z(G)$ and so *G* is *p*-nilpotent, a contradiction.

(5) Final contradiction.

Clearly, $P = N(P \cap M)$ and $P \cap M < P$. Thus, there exists a maximal subgroup P_1 of Psuch that P_1 containing $P \cap M$. Then $P = NP_1$ and $P_1 \neq 1$. By the hypothesis, P_1 is either semi coveravoiding or S-quasinormally embedded in G. Suppose that P_1 is semi cover-avoiding in G. Then P_1 covers or avoids N/1. If $P_1N = P_1$, then $N \le P_1$, a contradiction. Hence $P_1 \cap N = 1$. Consequently |N| = p, a contradiction. Now assume that P_1 is S-quasinormally embedded in G. Then there exists an S-quasinormal subgroup K such that P_1 is a Sylow *p*-subgroup of *K*. If $K_G \neq 1$, then $N \leq K_G \leq K$ by (4) and so $N \le P_1$. This contradiction shows that $K_G = 1$. Then by Lemmas 1.2 (2) and 1.3, P_1 is S-quasinormal in G. It follows from Lemma 1.2(1)that P_1 is subnormal in G. Now by [9], we have that $P_1 \leq O_n(G) = N$. The final contradiction completes the proof.

Corollary 2.4. Let p be the smallest prime dividing |G| and H a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every maximal subgroup of P is either semi cover-avoiding or S-quasinormally embedded in G, then G is p-nilpotent.

Proof. By Lemmas 1.4 and 1.6 (1), every maximal subgroup of P is either semi coveravoiding or S-quasinormally embedded in H. Applying Theorem 2.3, H is p-nilpotent. Let $H_{p'}$ be the normal p-complement of H. Then $H_{p'}$ is normal in G. By using the same argument as in the proof of Corollary 2.2, we may assume $H_{p'} = 1$ and so H = P is a p-group. Since G/H is p-nilpotent, we may let K/H be the normal p-complement of G/H. By Schur-Zassenhaus's theorem, there exists

a Hall p'-subgroup $K_{p'}$ of K such that $K = HK_{p'}$. By Theorem 2.3 again, we see that K is *p*-nilpotent. Hence $K = H \times K_{p'}$. In this case, $K_{p'}$ is a normal *p*-complement of *G*, thus *G* is *p*-nilpotent.

Corollary 2.5. Suppose that every maximal subgroup of any Sylow subgroup of G is either semi cover-avoiding or S-quasinormally embedded in G. Then G is a Sylow tower group of supersolvable type.

Corollary 2.6 [11, Theorem 3.2]. Let p be the smallest prime dividing the order of G and let P be a Sylow p-subgroup of G. If P is cyclic or every maximal subgroup of P is semi cover-avoiding in G, then G is p-nilpotent.

Proof. If P is a cyclic group, then by [19], G is p-nilpotent. Hence we assume that every maximal subgroup of P is semi cover-avoiding in G. By Corollary 2.3, G is p-nilpotent.

Theorem 2.7. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Then $G \in \mathcal{F}$ if and only if there is a normal subgroup H of G such that $G/H \in F$ and every maximal subgroup of the Sylow subgroup of His either semi cover-avoiding or S-quasinormally embedded in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Assume that it is false and let G be a counterexample of minimal order. Then:

(1) There is a normal Sylow subgroup P of G contained in H.

By Corollary 2.5, *H* has a Sylow tower of supersolvable type. Let *p* be the largest prime divisor of |H| and let *P* be a Sylow *p*-subgroup of *H*. Then *P* is normal in *H*. Since *P* char $H \leq G$, we have that $P \leq G$.

(2) Let N be a minimal normal subgroup of G contained in P. Then $G/N \in \mathcal{F}$ and N = P.

It is easy to see that

 $(G/N)/(H/N) \cong G/H \in \mathcal{F}.$

Let P_1/N be a maximal subgroup of P/N. By Lemmas 1.5 and 1.6, P_1 / N is either semi coveravoiding property or S-quasinormally embedded in G/N. Let Q be a Sylow q-subgroup of H, where $q \neq p$, and M_1 / N be a maximal subgroup of the Sylow q-subgroup QN/N of H/N. It is clear that $M_1 = Q_1 N$ for some maximal subgroup Q_1 of Q. By the hypothesis, Q_1 is either semi coveravoiding or S-quasinormally embedded in G. Hence M_1/N is either semi cover-avoiding or S-quasinormally embedded in G/N by Lemmas 1.5 and 1.6. Thus G/N satisfies the hypothesis of the theorem. The choice of G implies that $G/N \in \mathcal{F}$. Since \mathcal{F} is a saturated formation, N is the unique minimal normal subgroup of G contained in P, $\Phi(P) = 1$ and $N \not\leq \Phi(G)$. It follows from Lemma 1.10 that P = F(P) = N.

(3) Final contradiction.

Suppose that every maximal subgroup of P is *S*-quasinormally embedded in *G*. Then by [1], $G \in \mathcal{F}$, a contradiction. So we may assume that there is some maximal subgroup P_1 of P such that P_1 is semi cover-avoiding in *G*. Then there exists a chief series of *G*

$$1 = G_0 < G_1 < \cdots < G_l = G$$

such that P_1 covers or avoids every factor G_j / G_{j-1} , j = 1, ..., l. Since N=P is a minimal normal in G, there exists j such that $G_j \cap N = N$ and $G_{j-1} \cap N = 1$. If P_1 covers G_j / G_{j-1} , then $P_1G_j = P_1G_{j-1}$. It follows that $P_1(G_j \cap N) = P_1(G_{j-1} \cap N)$, that is, $P_1N = P_1$, a contradiction. If P_1 avoids G_j / G_{j-1} , then $P_1 \cap G_j = P_1 \cap G_{j-1}$ and so

$$P_1 \cap G_i \cap N = P_1 \cap G_{i-1} \cap N.$$

This means that $P_1 = 1$ and so |N| = p. Then by (2) and Lemma 1.8, $G \in \mathcal{F}$. This contradiction completes the proof.

Corollary 2.8 [16, Theorem 3.6]. Let \mathcal{F} be a saturated formation containing \mathcal{U} . If there is a normal Hall subgroup H of G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any Sylow subgroup of H has the semi cover-avoiding property in G, then $G \in \mathcal{F}$.

Theorem 2.9. Let \mathcal{F} be a saturated formation containing \mathcal{U} and H be a solvable normal subgroup of G such that $G/H \in \mathcal{F}$. If every maximal subgroup of any Sylow subgroup of F(H) is either semi cover-avoiding or S-quasinormally embedded in G, then $G \in \mathcal{F}$.

Proof. Assume that the theorem is false and let (G,H) be a counterexample with |G|+|H| is minimal.

Firstly, assume that $H \cap \Phi(G) \neq 1$. Let *Q* be a Sylow q-subgroup of H, where q is a prime divisor of |H|. Since *Q* char $H \leq G$, we have that $Q \leq G$ and so $(G/Q)/(H/Q) \cong G/H \in \mathcal{F}$. By [13, Chapter 3, Theorem 3.5], F(H/Q) = F(H)/Q. It is easy to see that (G/Q, H/Q) satisfies the hypothesis of the theorem. Hence $G/Q \in \mathcal{F}$ by minimal choice of G. Since $Q \leq \Phi(G)$ and \mathcal{F} is a saturated formation, we have that $G \in \mathcal{F}$. This contradiction shows that $H \cap \Phi(G) = 1$. By Lemma 1.10, F(H) is the direct product of minimal normal subgroups of G contained in H. Let P be the Sylow *p*-subgroup of F(H)and assume that $P = N_1 \times N_2 \times \cdots \times N_t$, where N_1, \dots, N_t are minimal normal subgroups of G. We now prove that $|N_i| = p$ for each $i \in \{1, ..., t\}$. If P is cyclic, then it is clear. Assume that P is not cyclic and there exists some N_i such that $|N_i| > p$. Without loss of generality, we may assume that i = 1. Clearly, there exists a maximal subgroup M of G such that $G = N_1M$ and $N_1 \cap M = 1$. Let M_p be a Sylow *p*-subgroup of M. Then $G_p = N_1M_p = PM_p$ is a Sylow *p*-subgroup of G. Take a maximal subgroup G_p^* of G_p , containing M_p and let $P_1 = G_p^* \cap P$. Then

 $G_p^* = G_p^* \cap PM_p = (G_p^* \cap P)M_p = P_1M_p$ and

$$P_1 = G_p^* \cap (N_1 \times N_2 \times \dots \times N_t) =$$

= $(G_p^* \cap N_1)N_2 \cdots N_t = N_1^*N_2 \cdots N_t,$

where $N_1^* = G_p^* \cap N_1$. Since

$$|N_1: G_p^* \cap N_1| = |N_1G_p^*: G_p^*| = |G_p: G_p^*| = p,$$

 $N_1^* = G_p^* \cap N_1$ is a maximal subgroup of N_1 . This

 $N_1 = O_p \cap N_1$ is a maximal subgroup of N_1 . This implies that $P_1 = N_1 N_2 \cdots N_t$ is a maximal subgroup of *P*. By the hypothesis, P_1 is semi cover-avoiding or *S*-quasinormal embedded in *G*. Let $T = N_2 \times \cdots \times N_t$.

Assume that P_1 is semi cover-avoiding in G. Then by Lemma 1.5, P_1/T is semi cover-avoiding in G/T. Let

$$1 = \overline{T} \trianglelefteq G_1 / T = \overline{G_1} \trianglelefteq \cdots \trianglelefteq G / T = \overline{G_n}$$

be the chief series of G/T such that P_1 either covers or avoids every factor of this series. Let *i* be the smallest index in $\{1,...,n\}$ such that P_1/T covers $\overline{G_{i+1}}/\overline{G_i}$. Then it is easy to see that $G_i \cap P_1 = T$ and $G_{i+1} \leq G_i P_1 = G_i N_1^*$.

It follows that $G_{i+1} = G_i(N_1^* \cap G_{i+1})$, and so $N_1^* \cap G_{i+1} > 1$. But since N_1 is a minimal normal subgroup of G, we obtain that $N_1 \le G_{i+1}$ and $N_1 \cap G_i = 1$. Therefore,

$$|N_1| = |G_{i+1} / G_i| = |N_1^* \cap G_{i+1}| = |N_1^*|$$

This contradiction shows that P_1/T avoids every chief factor $\overline{G_{i+1}}/\overline{G_i}$, for i = 0, 1, ..., n. This implies that $P_1/T = 1$ and $|N_1| = p$, a contradiction. Now we assume that there is an S-quasinormal subgroup K of G such that P_1 is a Sylow p-subgroup of K. Clearly, $P_1 \leq O_p(G)$. Hence by Lemma 1.9, P_1 is S-quasinormal in G. It follows from Lemma 1.1 that $O^p(G) \leq N_G(P_1)$. Since G_p^* and P are both normal in G_p , we have that $P_1 = G_p^* \cap P \leq G_p$. Hence $G = G_p O^p(G) \leq N_G(P_1)$. Consequently, $P_1 \leq G$. Since $N_1 \leq P_1$, we have $P_1 \cap N_1 = 1$. This induces that $|N_1| = p$, a contradiction again.

Problems of Physics, Mathematics and Technics, № 1 (18), 2014

The above discussion shows that $F(H) = R_1 \times R_2 \times \cdots \times R_n$, where R_i is the minimal normal subgroup of G of prime order for all i = 1, ..., n. Since $G/C_G(R_i)$ is isomorphic to some subgroup of $Aut(R_i)$, $G/C_G(R_i)$ is abelian. It follows that $G/C_G(F(G)) = G/\bigcap_{i=1}^n C_G(R_i)$ is abelian and hence $G/C_G(F(G)) \in \mathcal{F}$. Then since $G/H \in \mathcal{F}$, we see that

 $G/(H \cap C_G(F(H))) = G/C_H(F(H)) \in \mathcal{F}.$

Since F(H) is abelian, $F(H) \le C_H(F(H))$. On the other hand, since H is solvable,

 $C_H(F(H)) \le F(H).$

Thus $F(H) = C_H(F(H))$ and so $G/F(H) \in \mathcal{F}$. Now by Theorem 2.7, we obtain that $G \in \mathcal{F}$, a contradiction. This completes the proof.

REFERENCES

1. *Asaad*, *M*. On *S*-quasinormally embedded subgroups of finite groups / M. Asaad, A.A. Heliel // J. Pure. Appl. Algebra. – 2001. – Vol. 165. – P. 129–135.

2. Asaad, M. Finite groups with some subgroups of prime power order S-quasinormally embedded / M. Asaad, A.A. Heliel, M. Ezzat Mohamed // Comm. Algebra. -2004. - Vol. 32, $N_{\rm D}$ 5. -P. 2019–2027.

3. *Ballester-Bolinches*, *A*. Sufficient conditions for supersolubility of finite group / A. Ballester-Bolinches, M.C. Pedraza-Aquilera // J. Pure Appl. Algebra. – 1998. – Vol. 127, № 2. – P. 113–118.

4. *Deskins*, *W.E.* On quasinormal subgroups of finite groups / W.E. Deskins // Math. Z. – 1963. – Vol. 82. – P. 125–132.

5. *Fan*, *Y*. Remarks on two generalizations of normality of subgroups / Y. Fan, X. Guo, K.P. Shum // Chinese Ann. Math. Ser. A. -2006. - Vol. 27, N 2. - P. 169–176.

6. *Gaschütz, W*. Praefrattinigruppen / W. Gaschütz // Arch. Math. (Basel). – 1962. – Vol. 13. – P. 418–426.

7. *Gillam*, *J.D.* Cover-avoid subgroups in finite solvable groups / J.D. Gillam // J. Algebra. – 1974. – Vol. 29. – P. 324–329.

8. *Gorenstein*, *D*. Finite Groups / D. Gorenstein. – New York, Evanston, London: Harper & Row Publishers, 1968.

9. *Guo*, *W*. The Theory of Class of Groups / W. Guo. – Beijing, New York, Dordrecht, Boston. London: Science Press-Kluwer Academic Publishers, 2000.

10. *Guo*, *X*. On finite groups with some semi cover-avoiding subgroups / X. Guo, L. Wang // Acta Math Sinica. English Series. – 2007. – Vol. 23. – P. 1689–1696.

11. *Guo*, *X*. On semi cover-avoiding subgroups of finite group / X. Guo, P. Guo, K.P. Shum // J. Pure Appl. Algebra. – 2007. – Vol. 209. – P. 151–158.

12. *Guo*, *X*. Cover-avoidance properties and the structure of finite groups / X. Guo, K.P. Shum // J. Pure Appl. Algebra. -2003. - Vol. 181, No 2–3. - P. 297–308.

13. *Huppert, B.* Endliche Gruppen I / B. Huppert. – Berlin, Heidelberg, New York : Springer-Verlag, 1967.

14. *Kegel*, *O.H.* Sylow gruppen und subnormalteiler endlicher gruppen / O.H. Kegel // Math. Ż. – 1962. – Vol. 78. – P. 205–221.

15. *Li*, *Y*. Finite groups with some *S*-quasinormally embedded subgroups / Y. Li // Comm. Algebra. – 2010. – Vol. 38, № 11. – P. 4202–4211.

16. *Lii*, *X*. Semi *CAP*-subgroups and the structure of finite groups / X. Li, Y. Yang // Acta Math. Sin. – 2008. – Vol. 51. – P. 1181–1187.

17. Li, Y. On *p*-nilpotency of finite groups with some subgroups π -quasinormally embedded / Y. Li, Y. Wang, H. Wei // Acta Math Hungarica. – 2005. – Vol. 108, \mathbb{N}° 4. – P. 283–298.

18. Petrillo, J. CAP-subgroups in a direct product of finite groups / J. Petrillo // J. Algebra. – 2006. – Vol. 306, \mathbb{N} 2. – P. 432–438.

19. *Robinson*, *D.J.S.* A Course in the Theory of Groups / D.J.S. Robinson. – New York, Heidelberg, Berlin: Springer-Verlag, 1982.

20. *Schmid*, *P*. Subgroups permutable with all Sylow subgroups / P. Schmid // J. Algebra. – 1998. – Vol. 207. – P. 285–293.

21. *Skiba*, *A.N.* On weakly *s*-permutable subgroups of finite groups / A.N. Skiba // J. Algebra. – 2007. – Vol. 315. – P. 192–209.

22. Tomkinson, M.J. Cover-avoidance properties in finite soluble groups / M.J. Tomkinson // Canad. Math. Bull. – 1976. – Vol. 19, № 2. – P. 213– 216.

23. *Thompson, J.C.* Normal *p*-complements for finite groups / J.G. Thompson // J. Algebra. – 1964. – Vol. 1. – P. 43–46.

24. Wei, H. On c^* -normality and its properties / H. Wei, Y. Wang // J. Group Theory. – 2007. – Vol. 10. – P. 211–223.

25. Zhao, T. Semi cover-avoiding properties of finite groups / T. Zhao, X. Li // Front. Math. China. – 2010. – Vol. 5, № 4. – P. 793–800.

Research is supported by a NNSF grant of China (grant #11371335) and Research Fund for the Doctoral Program of Higher Education of China (Grant 20113402110036).

Поступила в редакцию 21.11.13.