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Haiiniensl 4yncieHHBbIE PelIEHHs! ypaBHEHHH KBAHTOBOH TEOPHMH IIOJIsS, ONHUCBHIBAIOIIUX S-COCTOSHHMSI PAacCesHUS CHCTEM JBYX
CKaJAPHBIX YACTHI] B CIIy4asx HOTEHI[HAJIOB OJHO0030HHOTO oOMeHa U noTeHnuana FOkassl. Ha ocHOBaHHM MOITy4YeHHBIX pe-
IICHUH BHIYUCIICHBI aMIUTUTY bl PACCESHUS, JUIMHEI paccessHus U (asoBble cauru. [lokaszaHo, 4To HaifjeHHbIC aMILUTHTYABI pac-
CesHMS Y/IOBJIETBOPSIOT yCIOBHIO YHUTapHOCTH. [IpoBesieHO cpaBHEHHE MOIyYEHHBIX B TAKOM HPOCTON MOJIENH Pe3yJIbTaToOB C
9KCHEePUMEHTAIbHBIMI JaHHBIMU JJIs1 HEHTPOH-IPOTOHHBIX CHCTEM.

Knrouegvie cnoea: osyxuacmuunvie ypasHenus, peisimusucmcKoe KoHpuaypayuonnoe mpedcmasnenue, nomenyuan 00Ho60-
30HHO20 0OMeHA, aMnaumyoa paccesiHus, ONUHA paccesHus, pazoswlil cosue, cocmdsuvie kéadpamypul I aycca, oelimpor.

Numerical solutions of quantum field theory equations describing scattering s-states of.two scalar particles are found in cases of
a one-boson exchange potential and the Yukawa potential. Scattering amplitudesyscattering lengths and phase shifts are calcu-
lated on the basis of the solutions obtained. It is shown that the scattering.amplitudes found satisfy a unitarity condition. The
comparison of the results obtained in this simple model with experimental data‘for neutron-proton systems is carried out.
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Introduction

Equations of the quasipotential type [1], [2]
have found wide application in the study of relativis-
tic composite systems. Especially.suecessfully they
have been used in the study of two-particle system
bound states. One of the advantages of this approach
is the possibility of simple ‘quantum-mechanical
analogy. Two-particle equations of the quasipoten-
tial type can be formulated in the momentum repre-
sentation in the integral form and in the relativistic
configurational representation (RCR) in the differ-
ence or integral“™forms [3]. In our previous papers
[4], [5] the “advantages of integral equations for
bound stateswin the RCR were demonstrated. For
examplepninearticle [S] numerical solutions of two-
particle equations were obtained by simple methods
for the potentials in the RCR, equations for which in
the momentum representation are singular. Numeri-
cal solution of singular integral equations is a com-
plicated problem which requires using of special
methods [6], [7].

In this paper numerical solutions of relativistic
two-particle integral equations for s -scattering states
are found in cases of a one-boson exchange potential
and the Yukawa potential in the RCR. The scattering
amplitudes, scattering lengths and phase shifts are
calculated on the basis of the wave functions found.
Comparison of these values with experimental data
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for neutron-proton scattering is carried out. It should
be noted that numerical solving of the two-particle
equations for wave functions of scattering states in
the momentum representation, as well as of the
equations for the scattering amplitudes in the mo-
mentum representation causes serious difficulties
since the Green functions (GF) in these all equations
are singular.

1 Relativistic two-particle equations

Relativistic equations for the scattering s-states
of two particles with equal masses m have in the
RCR the form [8], [9]

v (X,»r) =sin(y,mr)—

_/” dr'G, (2 r W (W, (2,1,
0

where index j=1,2,3,4 corresponds to one of the

(1.1)

four variants of equations of the quasipotential type
[1-3]: j=1 (j=3) — the Logunov — Tavkhelidze
equation (modified), j=2 (j=4) - the Kady-
shevsky equation (modified). The value vy, (7,,7)

in equations (1.1) is the relative motion wave func-
tion, r is the modulus of radius-vector in the
RCR, y, 20 is the rapidity connected with the

energy of two-particle system 2E, by relation
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2E, =2mchy,, A is the coupling constant, V' (r)
is the potential. Green functions G, (z,,7,7") have
the following form [8], [9]:

G (Zgorsr) =

, , (1.2)

:G(].)()(q,r—r)—G(j)(;(q,r-i-r),
where

—i sh[(z/2+iy, Ymr]

G ) =— 1 , (1.3

o) = Gy

(4m chy, )" i sh[(z+iy, )mr]

G(z)(lq»r) = : 5

ch(zmr/2) K?
—i ch[(z/2+iy,)mr]
)
K, ch(z mr/2)

—i sh[(z+iy,)mr]
K& sh(zmr)y
In expressions (1.3) we use the notations
K" =K?® =msh2y,;

G) _ g _
K=K =2mshy,.

Equations (1.1) for bound states become ho-
mogeneous, and rapidity becomes imaginary,
namely X, =, where 0<w, <7z/2

(2E, =2mcosw,, 2E <2m):

sh(z mr)

G(s)(lq»’")

B

G(4)(qu") =

Vi (iw,,r) =
© . , . ) (14
= —ﬂjdr G, @w,,r,r W (i, (iw,,r").
0

In what follows we need the asymptotic behayior of
GFs(1.2)at r > o0

G(j)(zqﬂrar')|r4)w =

=2 ) . ) (1.5)
= exp(iy,mr)sin(y, mr").
q
Let us find the wavesfunctions asymptotics at
r — o using equations (1.1)%and expressions (1.5):

Y ()(q ) r)|Hw 4 sin(;(qmr) +
+4 foyx, ) expliy,mr),

where f . (%,) istused for the scattering amplitude

)
which is(detesmined by analogy with quantum me-
chanicsas «the coefficient at the scattered wave
exp(iy,mr) divided by g =msh y, [10], [11]:
Tz =
24 %, N n (1.6)
= ngr sin(y,mr'W (W, (2,7
The scattering amplitude is connected with the par-
tial scattering cross section o, (7,) and unitary

S-matrix S; (7,) by the relations

2
To (X,) = 4”|f</>(lq )| ;
S () =1+ 2iqf ;) (x,)-
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The unitarity of the S-matrix is reflected in the rep-
resentation S (x,) =exp(2ig , (x,))s where

#,,,(x,) is the phase shift.

Let us determine the scattering length by analogy
with quantum mechanics as a,;, = -/, (0) [10], [11].

It is not difficult to obtain the expression for scatter-
ing length via wave function from formula (1.6):

a; = —lf dr'r'V (', ("), (1.7)
0
where the denotation ¥, (r) = }}irilol//(i)( Zpa?)[@ s
q

introduced. It is possible to find equatiens for func-
tions ¥ ; (r). One can divide equations,(1,1) by ¢

and consider then their limit at y/ —»0, it yields

‘/7<./>(”):r_’1]id”’ 5 QT YW (). (1.8)

Green functions at zero rapidity y, have the form

G, (0,7,7) =G (0,7 —1") = G ; (0,1 +1"),
where
1 Tmr
G, (0,r) =—rcoth )
1 1
G, (0,r) = +—rcoth zmr,

dmch(zmr/2) 2

1 Tmr
G(3)(0,l”) = El’taﬂhT,

1

2
Taking into account expressions (1.7) one can repre-
sent the asimptotics of equations (1.8) at » — o in
the form

G4, (0,r) =—rcoth zmr.

1,17(1.)(1”)|r_>0O =r—ag, (1.9)

Formula (1.9) is much easier to use for the scattering

length finding than the expression (1.7) since it does
not contain integrals.

It is not difficult to see that the non-relativistic

limit (m — o, y, — 0) of all equations and formu-

las discussed gives corresponding equations and
expressions of quantum mechanics [10], [11].

2 Methods of solving

To solve integral equations (1.1), (1.4) and
(1.8) we used the composite Gaussian quadrature
method [12]. Let us describe the essence of this
method in case of equations (1.1). After replacing
the upper infinite limit in the equations by a large
value R, which can be chosen on the basis of the
accuracy requirements for the solutions, and after
presenting the integral as a sum of N integrals, we
obtain

W (x,»r) = sin(y,mr) -

L ’ ’ ’ r (21)
_ﬂ‘z I dr (j)(/}./q:}/"r)V(r )l//(j)(lqar)a

k=1,
Tk-1
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where 7, =1, +h, 1,=0, n, =R and A, is the
step. Let us reduce every interval re[r,_;7] in
equations (2.1) to the interval x €[—1; 1] by the vari-
able substitution

hx +_’k +1

rEu =T

and let us then apply the Gaussian quadrature for-
mula for M nodes for integrals obtained [12], [13].
As a result we yield the following expressions:

v, (x,»r) =sin(y,mr)—
NM  C
—l};;hk?’ o (Zsrsu(x)x (22)
XV(uk (xi ))l//(j) (Iq sUy (xi))n
where x,, C, are nodes and weights of the Gaussian
quadrature on the interval x e[-1;1]. Taking for-

mula (2.2) in the points
h x, r+r._
ny=u () =t
one can obtain linear algebraic
(a=M(s-D)+I, f=Mk-1)+i):

N-M

%[@Nﬁlﬁp]‘//p =b;

systems

Kaﬂ :AﬁGaﬁ;

Gaﬂ = G(/)(anus(x/)ﬂuk (x[)); (2.3)

u (x;)
Ay = h Gy =

b, = sin(;(qm u, (xi));

Ve = ‘//(,-)(Zq»uk (x,))- .
Application of standard solving methods [12], [13]
for algebraic systems (2.3) gives the values of the
wave function for every particular energy value
2E,. In articles [4], [5] thistmethod was used to

solve the two-particle relativistic equations in the
RCR for the bound states*for,which the correspond-
ing systems of equations were homogeneous.
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3 Results of numerical calculations

Let us consider solving two-particle equations
(1.1) and (1.8) in case of the one-boson exchange
potential [3]

V(r)= ch(z —a)mr (3.1)
rsh zmr
and in case of the Yukawa potential
p(r) = S2EH), (3:2)
r

where parameter « is connected to the exchange
scalar boson mass u as cosa =1-z*/(2m?). Po*

tential (3.1) is a variant of relativistic generalization
of the Yukawa potential. The main difference of the
relativistic potential from the non-gelativistic one is
in its stronger singularity at » = 0!

Results of the scattering lengths calculations
for the Logunov — Tavkhelidze and modified Kady-
shevsky equations with potential (3.1) at m=1,
41 =0.2 are demonstrated in figure 3.1. It is shown

in the figure that ‘thedscattering lengths increase
sharply at certain,values of the coupling constants. A
similar behavior of the scattering length depending
on the coupling constant is well known in the non-
relativistic,theory. For instance, the scattering length
in, cas€ of the potential well has similar property
[10]y, We do not demonstrate scattering lengths for
other equations with potential (3.1) as well as for all
equations with potential (3.2) because they have
similar behaviour.

The results of the scattering cross sections and
phase shifts calculating for potential (3.1) at m =1,
u=0.2, 1=1 are demonstrated in figure 3.2.

Numerical calculations show that all the scat-
tering amplitudes obtained satisfy the unitarity con-
dition

. 2
m £, (z,) = al /(x| > (3.3)
which in case of superposition of two delta-function
potentials in the RCR was proved exactly [14].

S
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Figure 3.1 — Scattering lengths dependence on the coupling constant
for the one-boson exchange potential: @) j=1, b) j=4
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Figure 3.2 — Scattering cross sections«(a, b)
and respective phase shifts (¢, d) dependence on ‘the rapidity

Table 4.1 — Coupling constants for the deuteron binding energy and scattering lengths

Potential Equation | Coupling constant 4 Scattering length a,, Fm
Yukawa j=0 0.348536 5.43637

j=1 0:357978 5.47843

j=2 0.363810 5.48804

j=3 0.344018 5.43430

j=4 0.351273 5.44762
One-boson j=1 0.354172 5.46913
exchange Jj=2 0.360286 5.47941

Jj=3 0.338462 5.42058

j=4 0.346667 5.43618

4 A simplest .model of two-particle system of
the deuteron type

Let us consider as an example of application of
two-particle ‘equations with one-boson exchange
potential \some results of calculations for neutron-
proton scattering and for neutron-proton bound state
(deuteron). The two-particle relativistic equations
under, consideration and one-boson exchange poten-
tial (3.1) were obtained under the assumption of
equal masses of both particles in the system. How-
ever proton and neutron have different masses. In
addition the nucleons are spinor particles but equa-
tions (1.1) and potentials (3.1), (3.2) describe the
system of two scalar particles. Nevertheless, not pre-
tending to an excellent agreement with the experi-
mental results we consider extremely simple scalar
model of the deuteron type in which the mass m is
the double reduced mass of the proton and neutron:

m= 2mpmn/(mp +m,),

16

where
m, =938.272013MeV, m, = 939.565346 MeV

[15], when m =938.918234MeV. We choose the
mass of scalar exchange boson equal to the mass of
7" -meson: 1 =134.9766MeV [15].

It is known from the experiments that binding
energy of the deuteron is 2.224575(9)MeV [16]

and the scattering length for the proton-neutron trip-
let state is 5.424(4)Fm [17]. Substituting this value

of energy in equations (1.4) with potentials (3.1),
(3.2) we find the eigenvalues of the coupling con-
stants A using the method discussed in [5]. Then we
use the obtained values of the coupling constant for
determining the scattering characteristics of the neu-
tron-proton system: the scattering lengths, scattering
cross sections and phase shifts. The results of calcu-
lation of the coupling constant and scattering lengths
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are given in Table 4.1 for the four relativistic equa-
tions and for the Schrédinger equation (j=0). A

few values of the coupling constant in each case
were found. They correspond to different states, i.e.
this model does not match the experimentally estab-
lished possibility of the existence of only one state
of the deuteron. The coupling constants correspond-
ing to the ground state of the system are given in
table 4.1.

It is seen in the table that the best correspon-
dence with experiment is given by the value of the
scattering length, obtained by solving the modified
Logunov — Tavkhelidze equation (j=3) with the

one-boson exchange potential.
The results of calculations of the phase shift for
equation j=3 with one-boson exchange potential

and the experimental values in the dependence of the
scattering energy [18] are demonstrated in figure
4.1. The figure shows that the results of calculations
are located very close to the experimental values.
Thus, this simple model gives good correspondence
with the experimental value of the scattering length
but gives not very good results for the phase shifts.
In figure 4.2 the results of calculations of partial
cross section also are represented corresponding to
the phase shift in figure 4.1 for different values of
energy.
4 '

T T T T T T

T

G:II "I. 1Il| 1I‘| L‘II '.;'l :(’I 'rl'. Al-l'l a5 :E-‘
Figure 4.1 — Phase shifts in.degrees dependence on

energy (MeV): the experimental values are denoted

by dots, calculated-values by solid line

WID 2‘0 3b Ab a0 2}3(1
Figure 4.2 — Scattering cross section in (Fm®)
dependence on energy (MeV) for j =3 equation

We do not represent figures with the results of
calculations of the phase shifts and scattering cross
sections for the other cases since they have similar

Problems of Physics, Mathematics and Technics, Ne 2 (19), 2014

behavior and other phase shifts do not give better
correspondence with experiment.

Conclusion

In this paper we found numerical solutions of
the relativistic equations of quantum field theory
describing the scattering s -states of two scalar par-
ticles with a variant of one-boson exchange potential
and the Yukawa potential in the relativistic configu-
rational representation. The scattering amplitudes,
phase shifts and scattering lengths are calculated en
the basis of the solutions obtained. It is shewn that
all numerical values of the scattering amplitudes
found satisfy the unitarity condition. A “eemparison
of the results obtained in this simpl¢ model'with the
experimental measurements for the\triplet neutron-
proton scattering was carried_out."Gemparison dem-
onstrated good correspondence with the experimen-
tal results for the scattering length.
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