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Найдены численные решения уравнений квантовой теории поля, описывающих s-состояния рассеяния систем двух 
скалярных частиц в случаях потенциалов однобозонного обмена и потенциала Юкавы. На основании полученных ре-
шений вычислены амплитуды рассеяния, длины рассеяния и фазовые сдвиги. Показано, что найденные амплитуды рас-
сеяния удовлетворяют условию унитарности. Проведено сравнение полученных в такой простой модели результатов с 
экспериментальными данными для нейтрон-протонных систем. 
 
Ключевые слова: двухчастичные уравнения, релятивистское конфигурационное представление, потенциал однобо-
зонного обмена, амплитуда рассеяния, длина рассеяния, фазовый сдвиг, составные квадратуры Гаусса, дейтрон. 
 
Numerical solutions of quantum field theory equations describing scattering s-states of two scalar particles are found in cases of 
a one-boson exchange potential and the Yukawa potential. Scattering amplitudes, scattering lengths and phase shifts are calcu-
lated on the basis of the solutions obtained. It is shown that the scattering amplitudes found satisfy a unitarity condition. The 
comparison of the results obtained in this simple model with experimental data for neutron-proton systems is carried out. 
 
Keywords: two-particle equations, relativistic configurational representation, one-boson exchange potential, scattering ampli-
tude, scattering length, phase shift, composite Gaussian quadrature, deuteron. 

 
 

Introduction 
Equations of the quasipotential type [1], [2] 

have found wide application in the study of relativis-
tic composite systems. Especially successfully they 
have been used in the study of two-particle system 
bound states. One of the advantages of this approach 
is the possibility of simple quantum-mechanical 
analogy. Two-particle equations of the quasipoten-
tial type can be formulated in the momentum repre-
sentation in the integral form and in the relativistic 
configurational representation (RCR) in the differ-
ence or integral forms [3]. In our previous papers 
[4], [5] the advantages of integral equations for 
bound states in the RCR were demonstrated. For 
example, in article [5] numerical solutions of two-
particle equations were obtained by simple methods 
for the potentials in the RCR, equations for which in 
the momentum representation are singular. Numeri-
cal solution of singular integral equations is a com-
plicated problem which requires using of special 
methods [6], [7]. 

In this paper numerical solutions of relativistic 
two-particle integral equations for s -scattering states 
are found in cases of a one-boson exchange potential 
and the Yukawa potential in the RCR. The scattering 
amplitudes, scattering lengths and phase shifts are 
calculated on the basis of the wave functions found. 
Comparison of these values with experimental data 

for neutron-proton scattering is carried out. It should 
be noted that numerical solving of the two-particle 
equations for wave functions of scattering states in 
the momentum representation, as well as of the 
equations for the scattering amplitudes in the mo-
mentum representation causes serious difficulties 
since the Green functions (GF) in these all equations 
are singular. 
 

1 Relativistic two-particle equations 
Relativistic equations for the scattering s-states 

of two particles with equal masses m  have in the 
RCR the form [8], [9] 

( )

( ) ( )
0

( , ) sin( )

( , , ) ( ) ( , ),

j q q

j q j q

r mr

dr G r r V r r
∞

= −

′ ′ ′ ′− ∫

ψ χ χ

λ χ ψ χ
  (1.1) 

where index 1, 2,3, 4j =  corresponds to one of the 
four variants of equations of the quasipotential type 
[1–3]: 1j =  ( 3)j =  – the Logunov – Tavkhelidze 
equation (modified), 2j =  ( 4)j =  – the Kady-
shevsky equation (modified). The value ( ) ( , )j q rψ χ  
in equations (1.1) is the relative motion wave func-
tion, r  is the modulus of radius-vector in the 
RCR, 0q ≥χ  is the rapidity connected with the 
energy of two-particle system 2 qE  by relation 
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2 2 ch ,q qE m= χ  λ  is the coupling constant, ( )V r  
is the potential. Green functions ( ) ( , , )j qG r r′χ  have 
the following form [8], [9]: 

( )
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In expressions (1.3) we use the notations 
(1) (2)  sh 2 ;q q qK K m= = χ  
(3) (4) 2  sh .q q qK K m= = χ  

Equations (1.1) for bound states become ho-
mogeneous, and rapidity becomes imaginary, 
namely ,q qiw=χ  where 0 2qw< ≤ π  
( 2 2 cos ,qqE m w=  2 2qE m< ): 

( )

( ) ( )
0

( , )

( , , ) ( ) ( , ).

j q

j q j q

iw r

dr G iw r r V r iw r
∞

=

′ ′ ′ ′= − ∫

ψ

λ ψ
 (1.4) 

In what follows we need the asymptotic behavior of 
GFs (1.2) at :r →∞  

( )

( )

( , , )

2 exp( )sin( ).

j q r

q qj
q

G r r

i mr mr
K

→∞
′ ≅

− ′≅

χ

χ χ
       (1.5) 

Let us find the wave functions asymptotics at 
r →∞  using equations (1.1) and expressions (1.5): 
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( , ) sin( )

( ) exp( ),
j q qr

j q q
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q f i mr
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≅ +

+

ψ χ χ
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where ( ) ( )j qf χ  is used for the scattering amplitude 
which is determined by analogy with quantum me-
chanics as the coefficient at the scattered wave 
exp( )qi mrχ  divided by sh qq m= χ  [10], [11]: 

( )

( )( )
0

( )

2 sin( ) ( ) ( , ).

j q

q j qj
q

f

dr mr V r r
qK

∞

=

′ ′ ′ ′= ∫

χ

λ χ ψ χ
 (1.6) 

The scattering amplitude is connected with the par-
tial scattering cross section 0( ) ( )j qσ χ   and  unitary 
S-matrix ( ) ( )j qS χ  by the relations 

2

0( ) ( )( ) 4 ( ;)j q j qf=σ χ π χ  

( ) ( )( ) 1 2 ( ).j q j qS iqf= +χ χ  

The unitarity of the S-matrix is reflected in the rep-
resentation ( ) ( )( ) exp(2 ( )),j q j qS i=χ φ χ  where 

( ) ( )j qφ χ  is the phase shift. 
Let us determine the scattering length by analogy 

with quantum mechanics as ( ) ( ) (0)j ja f= −  [10], [11]. 
It is not difficult to obtain the expression for scatter-
ing length via wave function from formula (1.6): 

( ) ( )
0

( ) ( ),j ja dr r V r r
∞

′ ′ ′ ′= − ∫λ ψ           (1.7) 

where the denotation ( ) ( )0
( ) lim ( , )j j q

q
r r q

→
=

χ
ψ ψ χ  is 

introduced. It is possible to find equations for func-
tions ( ) ( ).j rψ  One can divide equations (1.1) by q  
and consider then their limit at 0,q →χ  it yields 

( ) ( ) ( )
0

( ) (0, , ) ( ) ( ).j j jr r dr G r r V r r
∞

′ ′ ′ ′= − ∫ψ λ ψ  (1.8) 

Green functions at zero rapidity qχ  have the form  

( ) ( ) ( )(0, , ) (0, ) (0, ),j j jG r r G r r G r + r′ ′ ′= − −  
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2
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Taking into account expressions (1.7) one can repre-
sent the asimptotics of equations (1.8) at r →∞  in 
the form 

( ) ( )( ) .j jr
r r a

→∞
≅ −ψ   (1.9) 

Formula (1.9) is much easier to use for the scattering 
length finding than the expression (1.7) since it does 
not contain integrals. 

It is not difficult to see that the non-relativistic 
limit ( ,m →∞ 0)q →χ  of all equations and formu-
las discussed gives corresponding equations and 
expressions of quantum mechanics [10], [11]. 
 

2 Methods of solving 
To solve integral equations (1.1), (1.4) and 

(1.8) we used the composite Gaussian quadrature 
method [12]. Let us describe the essence of this 
method in case of equations (1.1). After replacing 
the upper infinite limit in the equations by a large 
value R, which can be chosen on the basis of the 
accuracy requirements for the solutions, and after 
presenting the integral as a sum of N integrals, we 
obtain 

( )

( ) ( )
1 1
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j q q
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j q j q
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where 1 ,k k kr r h−= +  0 0,r =  Nr R=  and kh  is the 
step. Let us reduce every interval 1[ ; ]k kr r r−∈  in 
equations (2.1) to the interval [ 1;1]x∈ −  by the vari-
able substitution 

1( )
2 2
k k k

k

h x r r
r u x −+
= = +  

and let us then apply the Gaussian quadrature for-
mula for M nodes for integrals obtained [12], [13]. 
As a result we yield the following expressions: 
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ψ χ χ

λ χ
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 (2.2) 

where ,ix  iC  are nodes and weights of the Gaussian 
quadrature on the interval [ 1;1].x∈ −  Taking for-
mula (2.2) in the points 

1( )
2 2

s l s s
s l s l

h x r r
r u x −+

= = +  

one can obtain linear algebraic systems 
( ( 1) ,M s lα = − +  ( 1) ) :M k iβ = − +  
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( ) ( , ( ), ( ));j q s l k iG G u x u xα β χ=          (2.3) 
( )

;
2

k i
k i

u x
A h C Vβ =  

( )sin ( ) ;q s ib mu xα χ=  

( ) ( , ( )).j q k iu xβψ ψ χ= . 
Application of standard solving methods [12], [13] 
for algebraic systems (2.3) gives the values of the 
wave function for every particular energy value 
2 .qE  In articles [4], [5] this method was used to 
solve the two-particle relativistic equations in the 
RCR for the bound states for which the correspond-
ing systems of equations were homogeneous. 

3 Results of numerical calculations 
Let us consider solving two-particle equations 

(1.1) and (1.8) in case of the one-boson exchange 
potential [3] 

ch( )( )
sh

mrV r
r mr

−
=

π α
π

   (3.1) 

and in case of the Yukawa potential 
exp( )( ) ,rV r

r
−

=
μ    (3.2) 

where parameter α  is connected to the exchange 
scalar boson mass μ  as 2 2cos 1 (2 ).mα μ= −  Po-
tential (3.1) is a variant of relativistic generalization 
of the Yukawa potential. The main difference of the 
relativistic potential from the non-relativistic one is 
in its stronger singularity at 0.r =   

Results of the scattering lengths calculations 
for the Logunov – Tavkhelidze and modified Kady-
shevsky equations with potential (3.1) at 1,m =  

0.2μ =  are demonstrated in figure 3.1. It is shown 
in the figure that the scattering lengths increase 
sharply at certain values of the coupling constants. A 
similar behavior of the scattering length depending 
on the coupling constant is well known in the non-
relativistic theory. For instance, the scattering length 
in case of the potential well has similar property 
[10]. We do not demonstrate scattering lengths for 
other equations with potential (3.1) as well as for all 
equations with potential (3.2) because they have 
similar behaviour. 

The results of the scattering cross sections and 
phase shifts calculating for potential (3.1) at 1,m =  

0.2,μ =  1λ =  are demonstrated in figure 3.2. 
Numerical calculations show that all the scat-

tering amplitudes obtained satisfy the unitarity con-
dition 

2

( ) ( )Im ( ) ( ) ,j q j qf q fχ χ=             (3.3) 
which in case of superposition of two delta-function 
potentials in the RCR was proved exactly [14]. 
 

 

 
Figure 3.1 – Scattering lengths dependence on the coupling constant  

for the one-boson exchange potential: a) 1,j =  b) 4j =  

РЕПОЗИТОРИЙ ГГ
У И

МЕНИ Ф
. С

КО
РИНЫ



Yu.A. Grishechkin, V.N. Kapshai 
 

                 Проблемы физики, математики и техники, № 2 (19), 2014 16 

 

 
Figure 3.2 – Scattering cross sections (a, b)  

and respective phase shifts (c, d) dependence on the rapidity 
 

Table 4.1 – Coupling constants for the deuteron binding energy and scattering lengths 
 

Potential Equation Coupling constant λ  Scattering length ( ) ,ja  Fm  
0j =  0.348536 5.43637 
1j =  0.357978 5.47843 
2j =  0.363810 5.48804 
3j =  0.344018 5.43430 

Yukawa 

4j =  0.351273 5.44762 
1j =  0.354172 5.46913 
2j =  0.360286 5.47941 
3j =  0.338462 5.42058 

One-boson  
exchange 

4j =  0.346667 5.43618 
 

4 A simplest model of two-particle system of 
the deuteron type 

Let us consider as an example of application of 
two-particle equations with one-boson exchange 
potential some results of calculations for neutron-
proton scattering and for neutron-proton bound state 
(deuteron). The two-particle relativistic equations 
under consideration and one-boson exchange poten-
tial (3.1) were obtained under the assumption of 
equal masses of both particles in the system. How-
ever proton and neutron have different masses. In 
addition the nucleons are spinor particles but equa-
tions (1.1) and potentials (3.1), (3.2) describe the 
system of two scalar particles. Nevertheless, not pre-
tending to an excellent agreement with the experi-
mental results we consider extremely simple scalar 
model of the deuteron type in which the mass m  is 
the double reduced mass of the proton and neutron: 

2 ( ) ,p n p nm m m m m= +  

where  
938.272013MeV,pm =  939.565346MeVnm =  

[15], when 938.918234MeV.m =  We choose the 
mass of scalar exchange boson equal to the mass of 

0π -meson: 134.9766 MeVμ =  [15].  
It is known from the experiments that binding 

energy of the deuteron is ( )2.224575 9 MeV  [16] 
and the scattering length for the proton-neutron trip-
let state is ( )5.424 4 Fm  [17]. Substituting this value 
of energy in equations (1.4) with potentials (3.1), 
(3.2) we find the eigenvalues of the coupling con-
stants λ  using the method discussed in [5]. Then we 
use the obtained values of the coupling constant for 
determining the scattering characteristics of the neu-
tron-proton system: the scattering lengths, scattering 
cross sections and phase shifts. The results of calcu-
lation of the coupling constant and scattering lengths 
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are given in Table 4.1 for the four relativistic equa-
tions and for the Schrödinger equation ( 0j = ). A 
few values of the coupling constant in each case 
were found. They correspond to different states, i.e. 
this model does not match the experimentally estab-
lished possibility of the existence of only one state 
of the deuteron. The coupling constants correspond-
ing to the ground state of the system are given in 
table 4.1. 

It is seen in the table that the best correspon-
dence with experiment is given by the value of the 
scattering length, obtained by solving the modified 
Logunov – Tavkhelidze equation ( 3)j =  with the 
one-boson exchange potential. 

The results of calculations of the phase shift for 
equation 3j =  with one-boson exchange potential 
and the experimental values in the dependence of the 
scattering energy [18] are demonstrated in figure 
4.1. The figure shows that the results of calculations 
are located very close to the experimental values. 
Thus, this simple model gives good correspondence 
with the experimental value of the scattering length 
but gives not very good results for the phase shifts. 
In figure 4.2 the results of calculations of partial 
cross section also are represented corresponding to 
the phase shift in figure 4.1 for different values of 
energy. 

 
Figure 4.1 – Phase shifts in degrees dependence on 

energy (MeV) :  the experimental values are denoted 
by dots, calculated values by solid line 

 

 
Figure 4.2 – Scattering cross section in 2(Fm )  

dependence on energy (MeV)  for 3j =  equation  
 

We do not represent figures with the results of 
calculations of the phase shifts and scattering cross 
sections for the other cases since they have similar 

behavior and other phase shifts do not give better 
correspondence with experiment. 

 
Conclusion 
In this paper we found numerical solutions of 

the relativistic equations of quantum field theory 
describing the scattering s -states of two scalar par-
ticles with a variant of one-boson exchange potential 
and the Yukawa potential in the relativistic configu-
rational representation. The scattering amplitudes, 
phase shifts and scattering lengths are calculated on 
the basis of the solutions obtained. It is shown that 
all numerical values of the scattering amplitudes 
found satisfy the unitarity condition. A comparison 
of the results obtained in this simple model with the 
experimental measurements for the triplet neutron-
proton scattering was carried out. Comparison dem-
onstrated good correspondence with the experimen-
tal results for the scattering length. 
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