arXiv:1902.08583v2 [math.FA] 2 Sep 2019

Criteria for analyticity of subordinate semigroups
A. R. Mirotin ]
Abstract

Let ¢ be a Bernstein function. A. Carasso and T. Kato obtained necessary and sufficient conditions for
1 to have a property that ¥(A) generates a quasibounded holomorphic semigroup for every generator A of
a bounded Cy-semigroup in a Banach space, in terms of some convolution semigroup of measures associated
with 1. We give an alternative to Carasso-Kato’s criterium, and derive several sufficient conditions for v
to have the above-mentioned property.
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1. Introduction

The well known theorem due to Yosida [I7] states that for every generator A of a bounded Cjy-
semigroup on a Banach space X its fractional power —(—A)* 0 < a < 1 is a generator of a
holomorphic semigroup on X. The present paper is devoted to some generalizations and analogs
of Yosida’s Theorem in terms of so-called Bochner-Phillips calculus [I, [14] (see also [5, Chap.
XI11]; 8, A5 A1l 2]). Though the majority of works on Bochner-Phillips calculus use the class
B of (positive) Bernstein functions, we prefer the class 7 of negative one. The corresponding
reformulation of Bochner-Phillips calculus is trivial in view of the fact that ¢(z) € B if and only
if —p(—s)eT.

We say that the function ¢ : (—o0,0] — (—o0, 0] belongs to the class T of negative Bernstein
functions if ¢ € C=((—00,0))NC((—00,0]) and its derivative is absolutely monotonic, i.e. ¢(™ >
0 for all n € N. It is known that in this case 9 extends analytically to the left half-plane

II_ = {Rez < 0}, the extension is continuous on {Rez < 0}, and has the following integral
representation
P(z)=co+ /(ezu —Dutdp(u), Rez<0 (1)
R4

where ¢y = 1(0), the positive measure p on Ry is uniquely determined by 1 and f[o,l] dp <
00, f[l’oo) u~tdp(u) < oo; the integrand in (1) is defined for u = 0 to be equal to z .

Moreover, there is a convolution semigroup (14);>p of sub-probability measures on Ry with
the Laplace transform

gi(2) = ) = /ezudut(u), Rez <0 (2)
R4
(see [16], [5l Chap. XIII]).
The class 7T is a cone which is closed with respect to compositions and pointwise convergence
on (—o00,0], and contains a number of important functions, including (up to affine changes of

variable) fractional powers, the logarithm, the inverse hyperbolic cosine, and polylogarithms Li,
of all orders p € N [12].
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For a negative Bernstein function ¢ with integral representation (1) and a generator A of a
bounded Cp-semigroup 7" on a complex Banach space X the value of ¢ at A for x € D(A), the
domain of A, is defined by the Bochner integral

P(A)x = cox + /(T(u) — Dzutdp(u).

R4

The closure of this operator, which is also denoted by 1¥(A), is a generator of a bounded Cy-
semigroup g¢(A) on X (the "subordinate semigroup”), too. (For the multidimensional version of
this calculus see, e.g., [9], [10], [11].)

In the following, without loss of generality we shall assume that ¢y = 0. The corresponding
subclass of 7~ will be denoted by 7. We shall denote also by M?(R,, C)(M(R,,R,)) the space
of all bounded complex valued (respectively positive) measures on R, and by Cy(R) the space
of all continuous complex valued functions on R} which vanish at infinity; X stands for a complex
Banach space.

Another result by Yosida [I8] asserts that if the bounded Cy-semigroup 7' with generator A
on X satisfies

T(t)X Cc D(A),t >0, and limsup(t||AT(t)]) < oo, (Y)
tl0

then for any 3 > 0, e P'T (t) can be extended to a bounded holomorphic semigroup on X.

We shall denote by Ty the set of all ¢ € T such that ¢)(A) generates a bounded Cy-semigroup
with property (Y) for every generator A of a bounded Cy-semigroup in a Banach space. The class
Ty is a cone [3| Theorem 6]. Moreover, it is clear that the composition 11 o 1y € Ty if Yy € Ty,
1y € T. But the class Ty is not closed with respect to pointwise convergence.

A. Carasso and T. Kato [3, Theorem 4] obtained necessary and sufficient conditions for a
function 1 to be in Ty in terms of the semigroup (4)¢>0. They also gave two necessary conditions
in terms of v itself. Y. Fujita [6] obtained sufficient conditions for ¢ to be in 7y in terms of
analytical continuation of ¢ and regular variation.

We proceed as follows. First we prove the multiplication rule which connects the Bochner-
Phillips and Hille-Phillips calculi and then derive the alternative to [3] necessary and sufficient
conditions for the inclusion ¢ € Ty (see Theorem 2 below; the variant of this theorem with
Coo(R4) instead of E(R4) (for the definition of the last class see below) first appeared in [13]).
Then we deduce two theorems from this criterium that give sufficient conditions for ¢ to be in
Ty in terms of ¢. It should ne noted that the assumptions of Theorem 4 below contain necessary
conditions, obtained by Carasso and Kato (the idea to employ the Hausdorff-Young inequality
in this context belongs to Carasso and Kato, too). Finally, we give one more condition, that is
sufficient for the inclusion @ € Ty-. Several examples have been considered.

2. The multiplication rule for the Bochner-Phillips and Hille-Phillips calculi, and
the criterium for v to be in Ty

In [7, Chap.XV] the functional calculus (the Hille-Phillips calculus) of generators of Cp-
semigroups have been constructed. In particular let a € M?(R,,C) and

g(s) = La(s) := /es“da(u) (s <0)
R4

be the Laplace transform of a. Then for a generator A of a bounded Cy-semigroup 1" on a complex
Banach space X the value of g at A is the bounded operator on X defined by the Bochner integral

g(A)x = /T(u)a:da(u), r e X.
Ry



Our Theorem 1 connects the Bochner-Phillips and Hille-Phillips calculi. It is a generalization
of Lemma 1 in [I3]. But first we need the following approximation lemma. We shall denote by
E(R.) the complex space of exponential polynomials of the form

n
p(t) = chesjt, c; €C,55 <0,
j=1

endowed with sup-norm on R .

Lemma 1. For every bounded function ¢ € CY(R,) with bounded derivative there exists a
sequence qn, € E(Ry) such that

1) gn — q, and ¢}, — ¢’ pointwise on Ry ;

2) (qn) and (q),) are uniformly bounded on R .

Proof. Let us pick a sequence ¢, € C'(R,) such that §,(t) = q(t) for t € [0,n], G,(t) = 0
for t € [n+ 1,00), and (¢,) and (g,) are uniformly bounded, |g,| < C1, |¢,|] < Cy. Define
fn(z) = Gu(—logz) for x € [0,1]  (f,(0) = 0). Then f, € C*([0,1]), |fn(z)| < C; for z € [0,1],
and |f/ (x)] < Ciz~! for z € (0,1]. It is well known (see, e. g., [4, Theorem 8.4.1]) that for every
natural n the algebraic polynomial p,, exists such that

[fa(@) = pu(@)| <n7', and |fy(x) —pl(e)] <n”!, x€[0,1].

Then |p,(0)] < n7L|pn(z)] < Cy +1, and |p,(z)] < Chiz=t +1 for z € (0,1]. Since
fn(x) = q(—log z) for z € (0,1], and n > — log z, we have

’q(_ log‘r) _pn(‘r)’ < n_17 T € (07 1]7 n > —lOg.Z'.

Let ¢, (t) := pn(e™t)—pp(0). Then g, € E(Ry),q, —¢q on Ry, and (g,)and (¢,,) are uniformly
bounded on R, . Finally

¢/ (—logz)(—2~") = p,(z)] <n~', z€(0,1],n>—loga.
Putting hear = e~! we have for all natural n >t (¢t € Ry) that |¢/(t) — ¢}, (t)] < n~!. This
completes the proof.

For measures a € M*(R,,C), and pe M(R;,R,) let

K(a,p) =sup| [ [ or)ds(alr ~ ) = a(r))udp(u)
oe + Ry

(if the right hand side exists), where S is the unit sphere of the space F(R4) with respect to
sup-norm on Ry . Here we assume that a = 0 on (—o0;0). See the proof of Theorem 5 for an
estimate for K (a, p) with bounded positive measure a, but K(,) = oo.

Theorem 1. Let g = La, a € MPR,,C), and 1 € Ty has integral representation (1).
If K(a,p) < oo, then

1) the function h := g has the form h = Lb, where b € M*(R,,C), ||b|| = K(a, p);

2) g(A)X C D(¢(A)), h(A) =¢(A)g(A), and ||h(A)|| < MK(a,p) for every operator A in a
Banach space X, which generates a bounded Cy-semigroup T with | T(t)|| < M.

Proof. Let a(r) denotes the distribution function for a, a(r) = 0 for r € (—o00,0]. Then for
5 <0

g(s) = /esrda(r) = (—s)/esra(r)dr.



Thus for © > 0 and s < 0 we have

(e®“—=1)g(s) = (e —1)(—s) /esra(r)dr

Ry

=(—s) /es(”“)a(r)dr — /es’"a(r)dr = (—s) / e’ (a(r—u)—a(r))dr = Lb"(s),
+ Ry Ry

where b"(r) = a(r — u) — a(r) has bounded variation and is concentrated on R . Therefore for
¥ € To with integral representation (1) we get

hs) = [ = Doy dptu) = [ [ emavryutdptw) (3)

R, Ry Ry

For ¢ € E(Ry) let

b6)i= [ (@ tdp(w) = [ [ or)dr(atr )~ al)udp(a)

Ry Ry Ry

be the linear functional on E(R;) (we use the notation b%(¢) for [ ¢db*). By the hypothesis
of the theorem ||b]] = K(a,p) < oo, and since E(Ry) is dense in Cy(R4) by Stone-Weierstrass
Theorem, b extends to a measure b € M°(R,, C). Furthermore,

b= /b“u_ldp(u)

Ry

(the weak integral; M®(R_, C) is endowed with vague topology).
We claim that for every bounded function ¢ € C'(R, ) with bounded derivative the following
equality holds (we write b(q) instead of fR+ qdb in the rest of the proof)

b(q) = / b(q)u~ dp(u). (1)

R4

In fact, let (¢,) be as in Lemma 1, and |¢,| < C, |¢,,| < C for some constant C > 0. Putting
pn(u) = b%(g,) we have

Plt) = / 4o () (a(r — u) — a(r)) = / (o + 1) — gu(r))da(r). (5)
R, R,

Now let p(u) := b*(q). Then p,(u) — p(u) (n — oo) pointwise by Lebesgue Theorem. We have
|gn(r +u) — qu(r)] < Cu, and < 2C. If we take w(u) = min{u, 1}, then w € L'(u=1dp(u)) and
(5) implies that |py,(u)| < 2||a||w(u). Thus by the Lebesgue Theorem

/( “Ldp(u) %/ utdp(u)(n — o).

Ry

On the other hand,

[t dp(w) = [ ¥ (g0 o) = ban) > ba) (0 ).

Ry R



Then b(q) = fR+ p(u)u~tdp(u), i. e. (4) holds. In particular, for ¢(r) = " (s < 0) (4) and (3)
imply the equality h = Lb which proves the first statement of the theorem.

To prove the second one, fix a bounded linear functional f € X', vector x € D(A), and
let q(r) = f(T(r)x). Then ¢ € C*(R;) and ¢ is bounded together with the derivative ¢/(r) =
f(T'(r)Axz) (r >0). For such ¢ equation (4) implies that

f /deb :/f(T(T)a:)db(r):/f /T(T)xdb“(r) utdp(u).
R

+ Ry +

So by the definition of the weak integral

/ /T(r)xdb“(r) utdp(u) = /Ta:db.

Ry Ry Ry

In addition, the interior integral in the left hand side here exists in the sense of Bochner, and

/ T () adb® (r) = / T()adsa(r —u) — / T(r)ada(r)

Ry [u,00) R+

= /T(r + u)xda(r) — /T(r):nda(r) = (T(u) — Ig(A)x.
R R
Therefore for x € D(A) we have

hA)z = [ T()abr) = [(20) - Dy Ao dp(u) = 6(A)g(A)a.

Ry Ry

Since the operator h(A) is bounded, and, on the other hand, the operator 1)(A)g(A) is closed
(as the product of a closed and a bounded operators), the last equality holds for all z € X. In
particular, g(A)X C D(¢(A)). Finally

Ay < [ 17 1dblr) < MIpl = MK ().
R4
The theorem is proved.

Theorem 2. Let v € Tg. Then ¥ € Ty if and only if
K(v,p)=0(™"), t10 (6)

holds (see formulas (1) and (2) for the definitions of p and vy).

Proof. Let (6) holds. Putting a = v4 in Theorem 1 we get that for sufficiently small ¢ > 0 the
function hy = 1g; has the form h; = Lb;, where b, is a bounded measure on R, ||b¢]| = K (14, p).
In addition, ¢:(A)X C D(¢(A)) for all t > 0 (¢(A) = generator of the semigroup g;(A)) and

[ (A)|| = [lo(A)ge(A) || < MK (v, p).-

Now (6) implies (Y) with ¢;(A) instead of T'(¢).
To prove the converse, consider X = Cy(R4) with sup-norm, let ¢» € Ty, and let T be the
Co-semigroup of shifts on X, (T'(r)z)(v) = z(v + r) (in this concrete situation A is a derivation



with appropriate domain). Then, for each z € C'(R;) N Cy(R,;), t > 0 integration by parts
gives

y(v) == g(A)x(v) = /x(v +r)dvy(r) = — / 2’ (v + r)v(r)dr.

Ry Ry

Therefore

B(A)gi(A)z(v) = / (w0 +u) — y())u"dp(u)

Ry

= / - / o' (v +u+ 1)y (r)dr + /x’(v +r)u(r)dr | wtdp(u).

R, Ry Ry

Since v4 is concentrated on Ry, we get
/ZE/(’U +u+ 1) (r)dr = /ZE/(’U + ) (r — w)dr,
Ry Ry
and thus
v (aw) = [ | [0 =l = w)a'te+ rdr | udptw).

Ry \R+

But integration by parts gives since 14(0) = v4(—u) = 0,
/(l/t(T‘) —v(r — )z (v +r)dr = /:E(v + 7)d (e (r — u) — v (r)).
Ry R

Finally, for each x € C*(R.) N Co(Ry), v >0

B(A)gi(A)z(v) = / / 20+ 1) (i — ) — my(r)) | udp(u).

Ry +

Taking into account that ¢||1(A)g:(A)|| < C for some C > 0 and all ¢ € (0, 1] we have for our x
with ||z|| = 1 that |(A)g:(A)z(v)] < Ct~. So for each v >0, t € (0, 1]

/ /x(v + 7)d, (v (r —u) — v (1)) | wtdp(u)| < Ct~L.

+ +

Since C*(R4)NCy(R, ) is dense in Cy(R ), it follows for v = 0 that K (v, p) = O(t™1), ¢ 10,
as desired.

3. Sufficient conditions for ) to be in 7y in terms of

In the following we shall denote by F the Fourier transform on R,

FIO) = %2_# / N f(t)dt,
R



and by F~! the inverse of F. Let
E,(\) = e?A)  (ImA > 0,¢ > 0).

The restriction F3|R will be also denoted by Fj.

Theorem 3. Let ¢ € Ty. Assume that

(i) the derivative 0/0yF;(y) exists for a.e. y € R and each sufficiently small t > 0;

(i) for some p € (1,2] functions Fy and 0/0yF; both belong to LP(R) for each sufficiently
small t > 0;

(iii) FFy is concentrated on Ry for each sufficiently small t > 0;

(iv) (B 910/0yFY = 0(t=Y) as t10 (p~'4q~L=1).
Then ¢ € Ty .

Proof. First we prove that f; := FF, € LY(R,), and F; = F~'f;. Indeed, f; € LY(R), and
F(/0yFy)(y) = iyfi(y) € LYR). By Hélder’s inequality f;(y) = (iyfi(y))(iy) " € L'({ly| > 1}),
and so f; € L'(R). Now by the Inverse Theorem for the Fourier transform, Fy(y) = F~1fi(y)
a.e. y € R, and by the continuity the last equality holds for all ¥ € R. Therefore we have for the
Laplace transform

Lfi(z) = /e”ft(r)dr = V2re"®(z), Rez <0,
Ry

because both sides here are analytic on the left half-plane II_, continuous on its closure, and
coincide on its boundary iR. In particular, Lf;(s) = v/2met¥(*)y(s) for all s < 0. It follows that
for an arbitrary exponential polynomial ¢ € E(Ry), o(r) = >_;ce’" (¢; € C,s; < 0) we

have
/ o(r) fe(r)dr = \/%Z cjew(sj)ip(sj).
R, J

On the other hand,

/¢ (i —u) — my(r / b (r + u)dvy(r /qb Ydvy(r

[~uw,00)

= /(@(T +u) — o(r))d(r) = Z Cj(esju _ 1)etw(8j)’

R, J

//¢ L — ) — vy (r))u~ L dp(u) Zce (53)g)

Ry Ry

Now we conclude that (E(R4) is dense in Cp(Ry))

and thus

1
Kl p) = s / o) Fr)ar| =~

Let ki(u) := dufi(u). Then ky = F(0/0yFi), and using the Hausdorff-Young inequality we
obtain
[fellg < 1Fellp,  Nkellq < 110/0y Eilp-



Next, for any v > 0 Holder’s inequality gives

/ Fi(w)ldu < | fill 0,

[0,0]

[ sl < o - )

[v,00)

Then for any v > 0
el < 1 Fellqo™? + [lkellg(p — 1) Po™ 9 < ||F o' ? + [0/ 0y Fi |l (p — 1)~ /Pu™ 4,

Therefore, on choosing v = (p — 1)'/9||0/0yFy||,/|| Fi|lp, it follows that

1
K(v, p) = Ellftlll < const||F

Application of Theorem 2 completes the proof.

I5/910/0uE Y = O(™) as t Lo,

Before formulating the next theorem we note that by [3, Theorem 4] every ¢ € Ty N Ty maps
II_ into a truncated sector

5(0,8) := (B +{larg(—2)[ < 0}) NIL

for some § > 0,0 € (0,7/2), and there exist constants k,k > 0, and ~,7 € (0,1), such that
[Y(z)| < k|z|Y, |z] > 1, Rez < 0. The problem is what one can add to this conditions to
obtain (necessary and) sufficient conditions for ¥ to be in Ty. Now we shall deduce the partial
answer to this question from Theorem 3.

Theorem 4. Let ¢ € Ty, and assume that the following conditions hold:

(i) v : - — S(0,5) for some B >0,0 € (0,7/2);

there exist such positive constants k,b,a,vy and R, that o <~y <1, R>1, and
(i) blz|* < [¢(2)| < klz|" for z € Il_, 2] > R;

(iii) the function y +— (iy) is differentiable for a. e. y € R and

W' (iy)| < klyl°, ae. yeR, |yl >R,

for somed € (a—v—12a—y—1)ifa<~vy,and =7 —1 if a = ~;

(iv) ¥'(iy) € LP(]0, R]) for some p € (1,2] such that p = min{2, (a—y—0)"!, (a—6—1)/(y—a)}
if a <7, and p < min{2, (1 — )71} if a = 7.

Then i € Ty.

Proof. We shall verify all the conditions of Theorem 3 for ¢. Let a; = max{|y(2)||z €
II_, |z| < R}, m; = min{|y)(2)| — b|z|*|z € II_, |z| < R}. Then b|z|* + a2 < [¢(2)] < k|z]” + a1
for z € TI_, where as = min{0,m1}. Since ¥(iy) — B € S(0,0), we have —Rey(iy) + 8 >
cos O(|¢(iy)| — B), and Reyp(iy) < —ci|y|® + c2, where ¢; = bcos > 0,co € R. It follows that

| (y)] < ee” W (kly[" + ar),

and (p > 1) y
p

Fill, < e2P | [ emer I (kjy|Y + ay)Pdy
p
+

Putting x = ty® we get for some constant c3 > 0



1/p
1|, < cyec2ty=v/a=1/ap /e—cmm(kxv/a + ayt/ Pt ey
+

The integral converges for all ¢ > 0,p > 1, and by B. Levi’s Theorem
|Fyll, = O)t~/e=ter a5 ¢ | 0. (7)
Let a <7, p=min{2,(a —y—8§) "L, (a—6-1)/(y —a)},d € (a =7 — 1,2 — v — 1). Since
0/0yFi(y)| < e W (tkly[" + tar + 1)y (iy)],

we have
10/0yFylp < eC2t21/P< / e P (tly[7 + tay + 1)P | (iy)[Pdy
0,7]

a 1/p
+kP / e~ PV (tk|y|Y + tay + 1)py5pdy> .
[R,00)
Putting x = ty“ in the second integral we get

1

+5 +5 o
oyl < <25 (O T e e+ oy 174 )y
[0,R]

1/
+kPa! / e~ (kra + o (tay + 1))pm6pa+1_1dm) g (8)
[tR™,00)

The second integral in (8) converges for all ¢ > 0 because (y + 0)p/a + 1/ —1 > —1 for our p
and . Note that (y+0)/a+ 1/ap —1 > 0. Therefore (8) implies

10/9yFlly = O~ 0FOa-terst g 4 |, o)
It follows from (7) and (9) that for our § we have
I}/ 9)10/0yFil,/» = Oyt /e-er=0/a=D/e = O(t~1) as ¢ |0,

because v/a+ 1/ap + (6/a —1)/p < 1.
The case v = a,d = — 1,1 < p <min{2, (1 — v)~!} can be examined in the same manner.
Finally since ¢ (i\) — 5 € S(6,0) for A € C with ImA > 0, we have for such A (as above)

[F (V)] < e2lem RN + ar).

Then for t >0 (A =s+iy,y > 0)

/’Ft(s_’_zy)’ds S2602t/e—clt(32+y2)a/2(k(82+y2)’y/2+al)d8
R R4+

82 2:'0 fe
=0 et / et /Q(k‘vw2 +a1)(v —y?) " 2dv.

[y2,00)



But

—cptv®/?

e (kv + ap) (v — y?)"V2dv < max e‘clﬁ’a/z(lfv”/2 +ap) / w2 du.

v>0
[y2,y2+1] [0,1]

Furthermore

/ e_cltva/Q (kwﬁ{/Q + al)(v . yz)_1/2dv < / e—cltva/2 (kv“{/2 + al)dv.

[y?+1,00) [1,00)

Thus F; belongs to the Hardy class H!({ImA > 0}) for all # > 0 and therefore FF; is concentrated
on R, . This completes the proof.

Corollary 1. Let ¢ € Ty, and assume that the following conditions hold:
(i) ¢ : I — S(0,B) for some > 0,0 € (0,7/2);

(ii) ¢¥(z) < 27 for some v € (0,1) (z = 00, ze€ll_);

(iii) the function y — 1 (iy) is differentiable for a. e. y € R and

1 (iy)| < kly["™t, ae. yeR.

Then v € Ty.

Ezample 1 [17]. Let ¢(2) = ¢ —(c—2)%, a € (0,1), ¢> 0. In this case, all the conditions
of Corollary 1 (and hence of Theorems 3 and 4) are clear.

Now we shall give an example of a function 1 € Ty that satisfies all the conditions of Theorem
4, but conditions of the Theorem in [6] do not hold for —¢(—x).
FEzample 2. Let 0 < o < B < 1, and

Y(z) = —(—2)* + (e — 1),

Since the summands map II_ into a sector and into a truncated sector respectively, the condition
(i) of Theorem 4 holds. It is easy to verify that ¢(z) ~ 2% as 2z — 00,2z € II_, ¢/ (iy) ~ aly|*?
as y — oo. Finally (iv) holds for p € (1, min{2, (1 — a)~'}). At the same time, —(—z) is not
regularly varying.

4. Further sufficient conditions for ¢ to be in 7y

In this section, we shall deduce further conditions from Theorem 2, that are sufficient for
P e Ty.

Theorem 5. Let ¢ € Ty and the function v — vi([r — u,r)) is monotone decreasing on
[u, +00) (u > 0) for each sufficiently small t > 0. If

/Vt([O,u))u_ld,o(u) —O0(tY) as t10,
Ry

then ¢ € Ty .

Proof. Let a € MP(R4,R,), and the function 7 + a([r — u,r)) is monotone decreasing on
[u,+00) (u > 0). Since lim, 4o a([r — u,r)) = 0 for every u > 0, for all and ¢ € E(R;) with
sup [¢| <1 we find (a(r) = a([0,7)) for r > 0, and a(r) = 0 for r € (—o0,0])

| /¢(7“)dr(a(7" —u) —a(r))| < Varrer, (a(r —u) —a(r)) =
Ry

10



Va?”re[o,u)a(r) + Varre[u,—l—oo)(a(r - u) - a(r)) = 2(1([0’ u))
Thus
K(a,p) < 2/@([O,u))u_1dp(u).

R4
It remains to put here a = v, and to apply Theorem 2.

Ezample 3 (cf. [3, Example 1]). Let for b > 0
P(z) = logb —log(b — z).
It is well known that dp(u) = e *du and
eV(s) = bi(b—s)"t =0'T(t) ! / et le b dr.,
R4

So duy(r) = b'T(t) "'t~ Le~bdr, and 14 has monotone decreasing density for ¢ € (0,1). Therefore

/ ui([0, 1))~ dp(u) = / / D)Ly | et <

Ry R4 0,u)

b'T(t) ! / / r e | e du = %
Ry \[0Ow)
Thus ¢ € Ty by Theorem 5.
Ezample 4 (cf. [13]). Let

Y (s) = acoshb — acosh(b—s) (b>1,5<0).

Since ¢ € Ty implies —9)(—c) + (s — ¢) € Ty for all ¢ > 0, one can to restrict ourselves to
the case b = 1. In this case, ¥ € Ty with dp(u) = e “Iy(u)du (the corresponding integral
representation (1) can be verified by differentiation under the integral sign), and e®¥(®) = Lf,(s)
with fi(r) = tr='e "I;(r), r > 0 (I; denotes the Bessel function of the first kind). Hence,
dvi(r) = fi(r)dr, and v; has monotone decreasing density for ¢ € (0,1) (see [13]). The calculations
from Example 3 in [I3] show, that the conditions of Theorem 5 hold. So, 1) € Ty-.

Acknowledgement. The author is sincerely grateful to the referee for helpful comments and
suggestions.
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