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Criteria for analyticity of subordinate semigroups

A. R. Mirotin 1

Abstract

Let ψ be a Bernstein function. A. Carasso and T. Kato obtained necessary and sufficient conditions for
ψ to have a property that ψ(A) generates a quasibounded holomorphic semigroup for every generator A of
a bounded C0-semigroup in a Banach space, in terms of some convolution semigroup of measures associated
with ψ. We give an alternative to Carasso-Kato’s criterium, and derive several sufficient conditions for ψ
to have the above-mentioned property.
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1. Introduction

The well known theorem due to Yosida [17] states that for every generator A of a bounded C0-
semigroup on a Banach space X its fractional power −(−A)α, 0 < α < 1 is a generator of a
holomorphic semigroup on X. The present paper is devoted to some generalizations and analogs
of Yosida’s Theorem in terms of so-called Bochner-Phillips calculus [1, 14] (see also [5, Chap.
XIII]; [8, 15, 11, 2]). Though the majority of works on Bochner-Phillips calculus use the class
B of (positive) Bernstein functions, we prefer the class T of negative one. The corresponding
reformulation of Bochner-Phillips calculus is trivial in view of the fact that φ(x) ∈ B if and only
if −φ(−s) ∈ T .

We say that the function ψ : (−∞, 0] → (−∞, 0] belongs to the class T of negative Bernstein
functions if ψ ∈ C∞((−∞, 0))∩C((−∞, 0]) and its derivative is absolutely monotonic, i.e. ψ(n) ≥
0 for all n ∈ N. It is known that in this case ψ extends analytically to the left half-plane
Π− = {Rez < 0}, the extension is continuous on {Rez ≤ 0}, and has the following integral
representation

ψ(z) = c0 +

∫

R+

(ezu − 1)u−1dρ(u), Rez ≤ 0 (1)

where c0 = ψ(0), the positive measure ρ on R+ is uniquely determined by ψ and
∫

[0,1] dρ <

∞,
∫

[1,∞) u
−1dρ(u) <∞; the integrand in (1) is defined for u = 0 to be equal to z .

Moreover, there is a convolution semigroup (νt)t≥0 of sub-probability measures on R+ with
the Laplace transform

gt(z) := etψ(z) =

∫

R+

ezudνt(u), Rez ≤ 0 (2)

(see [16], [5, Chap. XIII]).
The class T is a cone which is closed with respect to compositions and pointwise convergence

on (−∞, 0], and contains a number of important functions, including (up to affine changes of
variable) fractional powers, the logarithm, the inverse hyperbolic cosine, and polylogarithms Lip
of all orders p ∈ N [12].

1The author was supported in part by the State Program of Fundamental Research of Republic of Belarus under

the contract number 20061473.
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For a negative Bernstein function ψ with integral representation (1) and a generator A of a
bounded C0-semigroup T on a complex Banach space X the value of ψ at A for x ∈ D(A), the
domain of A, is defined by the Bochner integral

ψ(A)x = c0x+

∫

R+

(T (u)− I)xu−1dρ(u).

The closure of this operator, which is also denoted by ψ(A), is a generator of a bounded C0-
semigroup gt(A) on X (the ”subordinate semigroup”), too. (For the multidimensional version of
this calculus see, e.g., [9], [10], [11].)

In the following, without loss of generality we shall assume that c0 = 0. The corresponding
subclass of T will be denoted by T0. We shall denote also by Mb(R+,C)(M(R+,R+)) the space
of all bounded complex valued (respectively positive) measures on R+, and by C0(R+) the space
of all continuous complex valued functions on R+ which vanish at infinity; X stands for a complex
Banach space.

Another result by Yosida [18] asserts that if the bounded C0-semigroup T with generator A
on X satisfies

T (t)X ⊂ D(A), t > 0, and lim sup
t↓0

(t‖AT (t)‖) <∞, (Y )

then for any β > 0, e−βtT (t) can be extended to a bounded holomorphic semigroup on X.
We shall denote by TY the set of all ψ ∈ T such that ψ(A) generates a bounded C0-semigroup

with property (Y) for every generator A of a bounded C0-semigroup in a Banach space. The class
TY is a cone [3, Theorem 6]. Moreover, it is clear that the composition ψ1 ◦ ψ2 ∈ TY if ψ1 ∈ TY ,
ψ2 ∈ T . But the class TY is not closed with respect to pointwise convergence.

A. Carasso and T. Kato [3, Theorem 4] obtained necessary and sufficient conditions for a
function ψ to be in TY in terms of the semigroup (νt)t≥0. They also gave two necessary conditions
in terms of ψ itself. Y. Fujita [6] obtained sufficient conditions for ψ to be in TY in terms of
analytical continuation of ψ and regular variation.

We proceed as follows. First we prove the multiplication rule which connects the Bochner-
Phillips and Hille-Phillips calculi and then derive the alternative to [3] necessary and sufficient
conditions for the inclusion ψ ∈ TY (see Theorem 2 below; the variant of this theorem with
C00(R+) instead of E(R+) (for the definition of the last class see below) first appeared in [13]).
Then we deduce two theorems from this criterium that give sufficient conditions for ψ to be in
TY in terms of ψ. It should ne noted that the assumptions of Theorem 4 below contain necessary
conditions, obtained by Carasso and Kato (the idea to employ the Hausdorff-Young inequality
in this context belongs to Carasso and Kato, too). Finally, we give one more condition, that is
sufficient for the inclusion ψ ∈ TY . Several examples have been considered.

2. The multiplication rule for the Bochner-Phillips and Hille-Phillips calculi, and

the criterium for ψ to be in TY
In [7, Chap.XV] the functional calculus (the Hille-Phillips calculus) of generators of C0-
semigroups have been constructed. In particular let a ∈ Mb(R+,C) and

g(s) = La(s) :=

∫

R+

esuda(u) (s ≤ 0)

be the Laplace transform of a. Then for a generator A of a bounded C0-semigroup T on a complex
Banach space X the value of g at A is the bounded operator on X defined by the Bochner integral

g(A)x =

∫

R+

T (u)xda(u), x ∈ X.
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Our Theorem 1 connects the Bochner-Phillips and Hille-Phillips calculi. It is a generalization
of Lemma 1 in [13]. But first we need the following approximation lemma. We shall denote by
E(R+) the complex space of exponential polynomials of the form

p(t) =

n
∑

j=1

cje
sjt, cj ∈ C, sj < 0,

endowed with sup-norm on R+.

Lemma 1. For every bounded function q ∈ C1(R+) with bounded derivative there exists a
sequence qn ∈ E(R+) such that

1) qn → q, and q′n → q′ pointwise on R+;
2) (qn) and (q′n) are uniformly bounded on R+.

Proof. Let us pick a sequence q̃n ∈ C1(R+) such that q̃n(t) = q(t) for t ∈ [0, n], q̃n(t) = 0
for t ∈ [n + 1,∞), and (q̃n) and (q̃′n) are uniformly bounded, |q̃n| < C1, |q̃′n| < C1. Define
fn(x) = q̃n(− log x) for x ∈ [0, 1] (fn(0) = 0). Then fn ∈ C1([0, 1]), |fn(x)| < C1 for x ∈ [0, 1],
and |f ′n(x)| < C1x

−1 for x ∈ (0, 1]. It is well known (see, e. g., [4, Theorem 8.4.1]) that for every
natural n the algebraic polynomial pn exists such that

|fn(x)− pn(x)| < n−1, and |f ′n(x)− p′n(x)| < n−1, x ∈ [0, 1].

Then |pn(0)| < n−1, |pn(x)| < C1 + 1, and |p′n(x)| < C1x
−1 + 1 for x ∈ (0, 1]. Since

fn(x) = q(− log x) for x ∈ (0, 1], and n > − log x, we have

|q(− log x)− pn(x)| < n−1, x ∈ (0, 1], n > − log x.

Let qn(t) := pn(e
−t)−pn(0). Then qn ∈ E(R+), qn → q on R+, and (qn) and (q′n) are uniformly

bounded on R+. Finally

|q′(− log x)(−x−1)− p′n(x)| < n−1, x ∈ (0, 1], n > − log x.

Putting hear x = e−t we have for all natural n > t (t ∈ R+) that |q′(t) − q′n(t)| < n−1. This
completes the proof.

For measures a ∈ Mb(R+,C), and ρ ∈ M(R+,R+) let

K(a, ρ) = sup
φ∈S

∣

∣

∣

∣

∣

∣

∣

∫

R+

∫

R+

φ(r)dr(a(r − u)− a(r))u−1dρ(u)

∣

∣

∣

∣

∣

∣

∣

(if the right hand side exists), where S is the unit sphere of the space E(R+) with respect to
sup-norm on R+ . Here we assume that a = 0 on (−∞; 0). See the proof of Theorem 5 for an
estimate for K(a, ρ) with bounded positive measure a, but K(δ, δ) = ∞.

Theorem 1. Let g = La, a ∈ Mb(R+,C), and ψ ∈ T0 has integral representation (1).
If K(a, ρ) <∞, then

1) the function h := ψg has the form h = Lb, where b ∈ Mb(R+,C), ‖b‖ = K(a, ρ);
2) g(A)X ⊂ D(ψ(A)), h(A) = ψ(A)g(A), and ‖h(A)‖ ≤ MK(a, ρ) for every operator A in a

Banach space X, which generates a bounded C0-semigroup T with ‖T (t)‖ ≤M .

Proof. Let a(r) denotes the distribution function for a, a(r) = 0 for r ∈ (−∞, 0]. Then for
s < 0

g(s) =

∫

R+

esrda(r) = (−s)
∫

R+

esra(r)dr.
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Thus for u ≥ 0 and s < 0 we have

(esu−1)g(s) = (esu−1)(−s)
∫

R+

esra(r)dr

= (−s)







∫

R+

es(r+u)a(r)dr −
∫

R+

esra(r)dr






= (−s)

∫

R+

esr(a(r−u)−a(r))dr = Lbu(s),

where bu(r) = a(r − u) − a(r) has bounded variation and is concentrated on R+. Therefore for
ψ ∈ T0 with integral representation (1) we get

h(s) =

∫

R+

(esu − 1)g(s)u−1dρ(u) =

∫

R+

∫

R+

esrdbu(r)u−1dρ(u). (3)

For φ ∈ E(R+) let

b(φ) :=

∫

R+

bu(φ)u−1dρ(u) =

∫

R+

∫

R+

φ(r)dr(a(r − u)− a(r))u−1dρ(u)

be the linear functional on E(R+) (we use the notation bu(φ) for
∫

φdbu). By the hypothesis
of the theorem ‖b‖ = K(a, ρ) < ∞, and since E(R+) is dense in C0(R+) by Stone-Weierstrass
Theorem, b extends to a measure b ∈ Mb(R+,C). Furthermore,

b =

∫

R+

buu−1dρ(u)

(the weak integral; Mb(R+,C) is endowed with vague topology).
We claim that for every bounded function q ∈ C1(R+) with bounded derivative the following

equality holds (we write b(q) instead of
∫

R+
qdb in the rest of the proof)

b(q) =

∫

R+

bu(q)u−1dρ(u). (4)

In fact, let (qn) be as in Lemma 1, and |qn| < C, |q′n| < C for some constant C > 0. Putting
pn(u) := bu(qn) we have

pn(u) =

∫

R+

qn(r)dr(a(r − u)− a(r)) =

∫

R+

(qn(r + u)− qn(r))da(r). (5)

Now let p(u) := bu(q). Then pn(u) → p(u) (n→ ∞) pointwise by Lebesgue Theorem. We have
|qn(r + u) − qn(r)| ≤ Cu, and ≤ 2C. If we take w(u) = min{u, 1}, then w ∈ L1(u−1dρ(u)) and
(5) implies that |pn(u)| ≤ 2‖a‖w(u). Thus by the Lebesgue Theorem

∫

R+

pn(u)u
−1dρ(u) →

∫

R+

p(u)u−1dρ(u)(n → ∞).

On the other hand,
∫

R+

pn(u)u
−1dρ(u) =

∫

R+

bu(qn)u
−1dρ(u) = b(qn) → b(q) (n→ ∞).
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Then b(q) =
∫

R+
p(u)u−1dρ(u), i. e. (4) holds. In particular, for q(r) = esr (s ≤ 0) (4) and (3)

imply the equality h = Lb which proves the first statement of the theorem.
To prove the second one, fix a bounded linear functional f ∈ X ′, vector x ∈ D(A), and

let q(r) = f(T (r)x). Then q ∈ C1(R+) and q is bounded together with the derivative q′(r) =
f(T (r)Ax) (r ≥ 0). For such q equation (4) implies that

f







∫

R+

Txdb






=

∫

R+

f(T (r)x)db(r) =

∫

R+

f







∫

R+

T (r)xdbu(r)






u−1dρ(u).

So by the definition of the weak integral

∫

R+







∫

R+

T (r)xdbu(r)






u−1dρ(u) =

∫

R+

Txdb.

In addition, the interior integral in the left hand side here exists in the sense of Bochner, and
∫

R+

T (r)xdbu(r) =

∫

[u,∞)

T (r)xdra(r − u)−
∫

R+

T (r)xda(r)

=

∫

R+

T (r + u)xda(r)−
∫

R+

T (r)xda(r) = (T (u)− I)g(A)x.

Therefore for x ∈ D(A) we have

h(A)x =

∫

R+

T (r)xdb(r) =

∫

R+

(T (u)− I)g(A)xu−1dρ(u) = ψ(A)g(A)x.

Since the operator h(A) is bounded, and, on the other hand, the operator ψ(A)g(A) is closed
(as the product of a closed and a bounded operators), the last equality holds for all x ∈ X. In
particular, g(A)X ⊂ D(ψ(A)). Finally

‖h(A)‖ ≤
∫

R+

‖T (r)‖d|b|(r) ≤M‖b‖ =MK(a, ρ).

The theorem is proved.

Theorem 2. Let ψ ∈ T0. Then ψ ∈ TY if and only if

K(νt, ρ) = O(t−1), t ↓ 0 (6)

holds (see formulas (1) and (2) for the definitions of ρ and νt).

Proof. Let (6) holds. Putting a = νt in Theorem 1 we get that for sufficiently small t > 0 the
function ht = ψgt has the form ht = Lbt, where bt is a bounded measure on R+, ‖bt‖ = K(νt, ρ).
In addition, gt(A)X ⊂ D(ψ(A)) for all t > 0 (ψ(A) = generator of the semigroup gt(A)) and

‖ht(A)‖ = ‖ψ(A)gt(A)‖ ≤MK(νt, ρ).

Now (6) implies (Y) with gt(A) instead of T (t).
To prove the converse, consider X = C0(R+) with sup-norm, let ψ ∈ TY , and let T be the

C0-semigroup of shifts on X, (T (r)x)(v) = x(v + r) (in this concrete situation A is a derivation
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with appropriate domain). Then, for each x ∈ C1(R+) ∩ C0(R+), t > 0 integration by parts
gives

y(v) := gt(A)x(v) =

∫

R+

x(v + r)dνt(r) = −
∫

R+

x′(v + r)νt(r)dr.

Therefore

ψ(A)gt(A)x(v) =

∫

R+

(y(v + u)− y(v))u−1dρ(u)

=

∫

R+






−
∫

R+

x′(v + u+ r)νt(r)dr +

∫

R+

x′(v + r)νt(r)dr






u−1dρ(u).

Since νt is concentrated on R+, we get

∫

R+

x′(v + u+ r)νt(r)dr =

∫

R+

x′(v + r)νt(r − u)dr,

and thus

ψ(A)gt(A)x(v) =

∫

R+







∫

R+

(νt(r)− νt(r − u))x′(v + r)dr






u−1dρ(u).

But integration by parts gives since νt(0) = νt(−u) = 0,

∫

R+

(νt(r)− νt(r − u))x′(v + r)dr =

∫

R+

x(v + r)dr(νt(r − u)− νt(r)).

Finally, for each x ∈ C1(R+) ∩ C0(R+), v ≥ 0

ψ(A)gt(A)x(v) =

∫

R+







∫

R+

x(v + r)dr(νt(r − u)− νt(r))






u−1dρ(u).

Taking into account that t‖ψ(A)gt(A)‖ ≤ C for some C > 0 and all t ∈ (0, 1] we have for our x
with ‖x‖ = 1 that |ψ(A)gt(A)x(v)| ≤ Ct−1. So for each v ≥ 0, t ∈ (0, 1]

∣

∣

∣

∣

∣

∣

∣

∫

R+







∫

R+

x(v + r)dr(νt(r − u)− νt(r))






u−1dρ(u)

∣

∣

∣

∣

∣

∣

∣

≤ Ct−1.

Since C1(R+)∩C0(R+) is dense in C0(R+), it follows for v = 0 that K(νt, ρ) = O(t−1), t ↓ 0,
as desired.

3. Sufficient conditions for ψ to be in TY in terms of ψ

In the following we shall denote by F the Fourier transform on R,

Ff(λ) = 1√
2π

∫

R

e−iλtf(t)dt,
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and by F−1 the inverse of F . Let

Ft(λ) = etψ(iλ)ψ(iλ) (Imλ ≥ 0, t > 0).

The restriction Ft|R will be also denoted by Ft.

Theorem 3. Let ψ ∈ T0. Assume that
(i) the derivative ∂/∂yFt(y) exists for a.e. y ∈ R and each sufficiently small t > 0;
(ii) for some p ∈ (1, 2] functions Ft and ∂/∂yFt both belong to Lp(R) for each sufficiently

small t > 0;
(iii) FFt is concentrated on R+ for each sufficiently small t > 0;

(iv) ‖Ft‖1/qp ‖∂/∂yFt‖1/pp = O(t−1) as t ↓ 0 (p−1 + q−1 = 1).
Then ψ ∈ TY .
Proof. First we prove that ft := FFt ∈ L1(R+), and Ft = F−1ft. Indeed, ft ∈ Lq(R), and

F(∂/∂yFt)(y) = iyft(y) ∈ Lq(R). By Hölder’s inequality ft(y) = (iyft(y))(iy)
−1 ∈ L1({|y| > 1}),

and so ft ∈ L1(R). Now by the Inverse Theorem for the Fourier transform, Ft(y) = F−1ft(y)
a.e. y ∈ R, and by the continuity the last equality holds for all y ∈ R. Therefore we have for the
Laplace transform

Lft(z) =

∫

R+

ezrft(r)dr =
√
2πetψ(z)ψ(z), Rez ≤ 0,

because both sides here are analytic on the left half-plane Π−, continuous on its closure, and
coincide on its boundary iR. In particular, Lft(s) =

√
2πetψ(s)ψ(s) for all s ≤ 0. It follows that

for an arbitrary exponential polynomial φ ∈ E(R+), φ(r) =
∑

j cje
sjr (cj ∈ C, sj < 0) we

have
∫

R+

φ(r)ft(r)dr =
√
2π

∑

j

cje
tψ(sj )ψ(sj).

On the other hand,

∫

R+

φ(r)dr(νt(r − u)− νt(r)) =

∫

[−u,∞)

φ(r + u)dνt(r)−
∫

R+

φ(r)dνt(r)

=

∫

R+

(φ(r + u)− φ(r))dνt(r) =
∑

j

cj(e
sju − 1)etψ(sj ),

and thus
∫

R+

∫

R+

φ(r)dr(νt(r − u)− νt(r))u
−1dρ(u) =

∑

j

cje
tψ(sj )ψ(sj).

Now we conclude that (E(R+) is dense in C0(R+))

K(νt, ρ) =
1√
2π

sup
φ∈S

∣

∣

∣

∣

∣

∣

∣

∫

R+

φ(r)ft(r)dr

∣

∣

∣

∣

∣

∣

∣

=
1√
2π

‖ft‖1.

Let kt(u) := iuft(u). Then kt = F(∂/∂yFt), and using the Hausdorff-Young inequality we
obtain

‖ft‖q ≤ ‖Ft‖p, ‖kt‖q ≤ ‖∂/∂yFt‖p.
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Next, for any v > 0 Hölder’s inequality gives
∫

[0,v]

|ft(u)|du ≤ ‖ft‖qv1/p,

∫

[v,∞)

(u|ft(u)|)u−1du ≤ ‖kt‖q(p− 1)−1/pv−1/q.

Then for any v > 0

‖ft‖1 ≤ ‖ft‖qv1/p + ‖kt‖q(p− 1)−1/pv−1/q ≤ ‖Ft‖pv1/p + ‖∂/∂yFt‖p(p− 1)−1/pv−1/q.

Therefore, on choosing v = (p − 1)1/q‖∂/∂yFt‖p/‖Ft‖p, it follows that

K(νt, ρ) =
1√
2π

‖ft‖1 ≤ const‖Ft‖1/qp ‖∂/∂yFt‖1/pp = O(t−1) as t ↓ 0.

Application of Theorem 2 completes the proof.

Before formulating the next theorem we note that by [3, Theorem 4] every ψ ∈ TY ∩T0 maps
Π− into a truncated sector

S(θ, β) := (β + {| arg(−z)| < θ}) ∩Π−

for some β ≥ 0, θ ∈ (0, π/2), and there exist constants k, k > 0, and γ, γ ∈ (0, 1), such that
|ψ(z)| ≤ k|z|γ , |z| ≥ 1, Rez ≤ 0. The problem is what one can add to this conditions to
obtain (necessary and) sufficient conditions for ψ to be in TY . Now we shall deduce the partial
answer to this question from Theorem 3.

Theorem 4. Let ψ ∈ T0, and assume that the following conditions hold:
(i) ψ : Π− → S(θ, β) for some β ≥ 0, θ ∈ (0, π/2);
there exist such positive constants k, b, α, γ and R, that α ≤ γ < 1, R ≥ 1, and
(ii) b|z|α ≤ |ψ(z)| ≤ k|z|γ for z ∈ Π−, |z| ≥ R;
(iii) the function y 7→ ψ(iy) is differentiable for a. e. y ∈ R and

|ψ′(iy)| ≤ k|y|δ, a.e. y ∈ R, |y| ≥ R,

for some δ ∈ (α − γ − 1, 2α − γ − 1) if α < γ, and δ = γ − 1 if α = γ;
(iv) ψ′(iy) ∈ Lp([0, R]) for some p ∈ (1, 2] such that p = min{2, (α−γ−δ)−1, (α−δ−1)/(γ−α)}

if α < γ, and p < min{2, (1 − γ)−1} if α = γ.
Then ψ ∈ TY .
Proof. We shall verify all the conditions of Theorem 3 for ψ. Let a1 = max{|ψ(z)||z ∈

Π−, |z| ≤ R}, m1 = min{|ψ(z)| − b|z|α|z ∈ Π−, |z| ≤ R}. Then b|z|α + a2 ≤ |ψ(z)| ≤ k|z|γ + a1
for z ∈ Π−, where a2 = min{0,m1}. Since ψ(iy) − β ∈ S(θ, 0), we have −Reψ(iy) + β ≥
cos θ(|ψ(iy)| − β), and Reψ(iy) ≤ −c1|y|α + c2, where c1 = b cos θ > 0, c2 ∈ R. It follows that

|Ft(y)| ≤ ec2te−c1t|y|
α
(k|y|γ + a1),

and (p ≥ 1)

‖Ft‖p ≤ ec2t21/p







∫

R+

e−c1pt|y|
α
(k|y|γ + a1)

pdy







1/p

.

Putting x = tyα we get for some constant c3 > 0

8



‖Ft‖p ≤ c3e
c2tt−γ/α−1/αp







∫

R+

e−c1px(kxγ/α + a1t
γ/α)px1/α−1dx







1/p

.

The integral converges for all t ≥ 0, p ≥ 1, and by B. Levi’s Theorem

‖Ft‖p = O(1)t−γ/α−1/αp as t ↓ 0. (7)

Let α < γ, p = min{2, (α − γ − δ)−1, (α− δ − 1)/(γ − α)}, δ ∈ (α− γ − 1, 2α − γ − 1). Since

|∂/∂yFt(y)| ≤ ec2te−c1t|y|
α
(tk|y|γ + ta1 + 1)|ψ′(iy)|,

we have

‖∂/∂yFt‖p ≤ ec2t21/p
(

∫

[0,R]

e−c1pt|y|
α
(tk|y|γ + ta1 + 1)p|ψ′(iy)|pdy

+kp
∫

[R,∞)

e−c1pt|y|
α
(tk|y|γ + ta1 + 1)pyδpdy

)1/p
.

Putting x = tyα in the second integral we get

‖∂/∂yFt‖p ≤ ec2t21/pt
− γ+δ

α
− 1

αp
+1

(

t
(γ+δ

α
+ 1

αp
−1)p

∫

[0,R]

e−c1pt|y|
α
(tk|y|γ + ta1 + 1)p|ψ′(iy)|pdy

+kpα−1

∫

[tRα,∞)

e−c1px(kx
γ
α + t

γ
α
−1(ta1 + 1))px

δp+1

α
−1dx

)1/p
. (8)

The second integral in (8) converges for all t ≥ 0 because (γ + δ)p/α + 1/α − 1 > −1 for our p
and δ. Note that (γ + δ)/α + 1/αp − 1 ≥ 0. Therefore (8) implies

‖∂/∂yFt‖p = O(1)t−(γ+δ)/α−1/αp+1 as t ↓ 0. (9)

It follows from (7) and (9) that for our δ we have

‖Ft‖1/qp ‖∂/∂yFt‖1/pp = O(1)t−γ/α−1/αp−(δ/α−1)/p = O(t−1) as t ↓ 0,

because γ/α + 1/αp + (δ/α − 1)/p ≤ 1.
The case γ = α, δ = γ − 1, 1 < p < min{2, (1 − γ)−1} can be examined in the same manner.
Finally since ψ(iλ) − β ∈ S(θ, 0) for λ ∈ C with Imλ ≥ 0, we have for such λ (as above)

|Ft(λ)| ≤ ec2te−c1t|λ|
α
(k|λ|γ + a1).

Then for t > 0 (λ = s+ iy, y > 0)

∫

R

|Ft(s+ iy)|ds ≤ 2ec2t
∫

R+

e−c1t(s
2+y2)α/2

(k(s2 + y2)γ/2 + a1)ds

[s2+y2=v]
= ec2t

∫

[y2,∞)

e−c1tv
α/2

(kvγ/2 + a1)(v − y2)−1/2dv.
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But
∫

[y2,y2+1]

e−c1tv
α/2

(kvγ/2 + a1)(v − y2)−1/2dv ≤ max
v≥0

e−c1tv
α/2

(kvγ/2 + a1)

∫

[0,1]

u−1/2du.

Furthermore
∫

[y2+1,∞)

e−c1tv
α/2

(kvγ/2 + a1)(v − y2)−1/2dv ≤
∫

[1,∞)

e−c1tv
α/2

(kvγ/2 + a1)dv.

Thus Ft belongs to the Hardy class H1({Imλ > 0}) for all t > 0 and therefore FFt is concentrated
on R+. This completes the proof.

Corollary 1. Let ψ ∈ T0, and assume that the following conditions hold:
(i) ψ : Π− → S(θ, β) for some β ≥ 0, θ ∈ (0, π/2);
(ii) ψ(z) ≍ zγ for some γ ∈ (0, 1) (z → ∞, z ∈ Π−);
(iii) the function y 7→ ψ(iy) is differentiable for a. e. y ∈ R and

|ψ′(iy)| ≤ k|y|γ−1, a.e. y ∈ R.

Then ψ ∈ TY .
Example 1 [17]. Let ψ(z) = cα− (c− z)α, α ∈ (0, 1), c ≥ 0. In this case, all the conditions

of Corollary 1 (and hence of Theorems 3 and 4) are clear.

Now we shall give an example of a function ψ ∈ T0 that satisfies all the conditions of Theorem
4, but conditions of the Theorem in [6] do not hold for −ψ(−x).

Example 2. Let 0 < α < β < 1, and

ψ(z) = −(−z)α + (e−(−z)β − 1).

Since the summands map Π− into a sector and into a truncated sector respectively, the condition
(i) of Theorem 4 holds. It is easy to verify that ψ(z) ∼ zα as z → ∞, z ∈ Π−, ψ

′(iy) ∼ α|y|α−1

as y → ∞. Finally (iv) holds for p ∈ (1,min{2, (1 − α)−1}). At the same time, −ψ(−x) is not
regularly varying.

4. Further sufficient conditions for ψ to be in TY
In this section, we shall deduce further conditions from Theorem 2, that are sufficient for

ψ ∈ TY .
Theorem 5. Let ψ ∈ T0 and the function r 7→ νt([r − u, r)) is monotone decreasing on

[u,+∞) (u ≥ 0) for each sufficiently small t > 0. If

∫

R+

νt([0, u))u
−1dρ(u) = O(t−1) as t ↓ 0,

then ψ ∈ TY .
Proof. Let a ∈ Mb(R+,R+), and the function r 7→ a([r − u, r)) is monotone decreasing on

[u,+∞) (u ≥ 0). Since limr→+∞ a([r − u, r)) = 0 for every u > 0, for all and φ ∈ E(R+) with
sup |φ| ≤ 1 we find (a(r) = a([0, r)) for r > 0, and a(r) = 0 for r ∈ (−∞, 0])

|
∫

R+

φ(r)dr(a(r − u)− a(r))| ≤ V arr∈R+
(a(r − u)− a(r)) =
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V arr∈[0,u)a(r) + V arr∈[u,+∞)(a(r − u)− a(r)) = 2a([0, u)).

Thus

K(a, ρ) ≤ 2

∫

R+

a([0, u))u−1dρ(u).

It remains to put here a = νt and to apply Theorem 2.

Example 3 (cf. [3, Example 1]). Let for b > 0

ψ(z) = log b− log(b− z).

It is well known that dρ(u) = e−budu and

etψ(s) = bt(b− s)−t = btΓ(t)−1

∫

R+

esrrt−1e−brdr.

So dνt(r) = btΓ(t)−1rt−1e−brdr, and νt has monotone decreasing density for t ∈ (0, 1). Therefore

∫

R+

νt([0, u))u
−1dρ(u) =

∫

R+







∫

[0,u)

btΓ(t)−1rt−1e−brdr






u−1e−budu ≤

btΓ(t)−1

∫

R+







∫

[0,u)

rt−1dr






u−1e−budu =

1

t
.

Thus ψ ∈ TY by Theorem 5.

Example 4 (cf. [13]). Let

ψ(s) = acoshb− acosh(b− s) (b ≥ 1, s ≤ 0).

Since ψ ∈ TY implies −ψ(−c) + ψ(s − c) ∈ TY for all c ≥ 0, one can to restrict ourselves to
the case b = 1. In this case, ψ ∈ T0 with dρ(u) = e−uI0(u)du (the corresponding integral
representation (1) can be verified by differentiation under the integral sign), and etψ(s) = Lft(s)
with ft(r) = tr−1e−rIt(r), r > 0 (It denotes the Bessel function of the first kind). Hence,
dνt(r) = ft(r)dr, and νt has monotone decreasing density for t ∈ (0, 1) (see [13]). The calculations
from Example 3 in [13] show, that the conditions of Theorem 5 hold. So, ψ ∈ TY .

Acknowledgement. The author is sincerely grateful to the referee for helpful comments and
suggestions.
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