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1. Introduction

Much work has been done during last years on the theory of integral transforms of func-
tions of one real variable and in particular on convolution and inversion theorems for
such transforms and their applications to integral equations (see, e.g. [1-7] and the bib-
liography cited therein). This paper is devoted to the Markov-Stieltjes transform S of
functions on (0, 1). The last transform was introduced in [8, Chapter 6] as a special case
of the Stieltjes transform of measures on general semigroups. The terminology goes back
to approximation theory, see, e.g. [9, p. 14, 10, 11]. We give inverse formulas for this trans-
form and formulate its operational properties. The main goal of this paper is to study
the Markov-Stieltjes transform as an operator on Hardy spaces H? for p € (1,00] and
Lebesgue spaces LP(0, 1) for p € (1, 00). We prove that S is a bounded non-compact Han-
kel operator on Hardy space H? with Hilbert matrix with respect to the standard Schauder
basis of H? for p € (1,00), a bounded non compact operator from H* to BMOA, and a
bounded operator in E‘Z and give estimates for the norm of S in this cases. We show also
that S is a bounded non compact operator on Lebesgue space LP(0, 1) for p € (1,00) and
obtain estimates for its norm in this spaces, too. It is shown also that the Markov-Stieltjes
transform on L(0, 1) is unitary equivalent to the Markov-Stieltjes transform on H?. As a
corollary the norm and the spectrum of S as an operator on L2(0,1) are obtained.

CONTACT A.R. Mirotin @ amirotin@yandex.ru
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Definition 1.1 (8, Chapter 6, 7): The Markov-Stieltjes transform of a function f €
L'(0, 1) is defined by the formula

0]
0 1—1tz

Sf(z) = dt (1.1)
(we write also S, .{f (t)} instead of Sf (z)). Obviously, for z ¢ [1, 00) this Lebesgue integral
exists and represents an analytic function f* in the domain C \ [1, 00). For z € [1, 00) the
integral in (1.1) is understood as a Cauchy principle value integral, i.e.

—{z e=>0+ Jite(0,1):|t—1/2|>¢} 1 — 12

The limit in the right-hand side of (1.2) exists for almost all z € [1,00). In fact, Sf(z) =
(/z)(Hf1)(1/z), where Hf; stands for the Hilbert transform of the function f; (x) := f(x)
forx € (0,1) and f1 (x) := 0 otherwise. So, the application of Loomis theorem (see, e.g. [12,
p. 239]) proves the assertion.

The following example shows that in general C \ [1, 00) is the domain of holomorphy
of §f.

Sf(z) == V.P. / dr. (12)
0

Example 1.2: Putting t = x?/(1 + x?) it is easy to verify that S;_, ,{(t(1 — )~1/2) equals
tom(1 —2z)"/2forz ¢ [1,00) and equals to zero otherwise.

As was mentioned above the study of Markov-Stieltjes transform as a function is
important in approximation theory ([9, p. 226, 11]).

This transform is useful in solving some singular integral equations, too. In [7] for f €
LP(0,1),g € L1(0,1) (1 < p,q < 00,1/p+1/g < 1) the following binary operation was
considered (this operation was introduced for the first time in [1, p. 220, formula (24.38)])

f@g(t)—tf(t)f f()d +t<t>/ g()

where the integrals are understood as their Cauchy principal values, and using meth-
ods developed by Srivastava and Vu Kim Tuan [2] a convolution theorem for the
Markov-Stieltjes transform in the form

S ®g) = (S)-(Sg)

was proved. Arguing as in [2] it was also shown in [7] that the equation

x(t)-l—)»/ t( “) du=g() (A#0)
0

where g is prescribed and x is an unknown function to be determined has (for appropriate
¢) the unique solution

x(u) = COS((XT[)SS*)M {(1 - S)aSt—>s {%}} ’

o being a (unique) root of the equation tan(amw) = Am, 0 < Rear < 1 (for inversion
formulas for the Markov-Stieltjes transform see the following section).
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2. Inversion formulas

A complex inversion formula for the Markov-Stieltjes transform looks as follows.

Theorem 2.1: Letf € L'(0,1), 0 < t < 1, and f(t £ 0) exist. Iff* = Sf, then

f(t+0)+f(t—0)zi‘ hm( l.f*( 1' )_ 1.f*< 1. ))
2 2wi n—0+ \ t —in t—in t+in t+1in

Proof: 1t is easy to verify that

A B YRR
ﬁ<t—inf (t—in)_t+inf (t+in>>_;/o 9

Application of Widder [13, p. 338, Lemma 7.2] completes the proof. |

Now we shall formulate also a real inversion formula for the Markov-Stieltjes transform.

Theorem 2.2 ([7]): Letf € LP(0,1), 1 < p < oo. The Markov-Stieltjes transform f*(x) =
Sf (x) exists for a.e. x € R and

- —f* *) dx.

1
t) = —V.P.
f® w2 oo 1 —tx

Proof: 1t follows, e.g. from the above-mentioned equality Sf(z) = (r/z)(Hf1)(1/z) and
the inversion formula for the Hilbert transform (see [7] for details). |

3. Operational properties of the Markov-Stieltjes transforms

The following properties hold for the Markov-Stieltjes transform (cf., e.g. [3, p. 394]).
If f* = Sf, then

M
1
St—)Z{f(l - t)} = ITZ’f* (Zj 1) >
@
1
Self @) = ()@= 1y
a a
3)

1 1
St Atf (B} = B (f*(z) —/0 f@® dt) (f € L'(0,1)).

In particular, Si—{tf (1)} = (1/2)f*(2) if [ f(£) dt = 0;

(4)

1

Stﬁz{f(t)}= ©fr) - ! O 4 (ﬂ—t)eL1(0,1)>.
t+a 1+az 14+az )y t+a t+a

In particular, i {f(£)/(t + @)} = (z/(1 + a2)f*(2) if [} (f(1)/(t + a)) dt = 0;
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(5)

Stz {%f(t)} zf (z )+ f( ) —f(0) iff € C'[0,1], z ¢ [1,00).

In particular, S;_, . {(d/dt)f (1)} = —(d/dz)f* (z) if in addition f(0) = f(1) = 0;
(6)

t z 1 1
Stsz {/ f@) dt} = —/ ff(z)dz — </ f) dt) log(1 — 2) +/ (1 —t)f(r)de.
0 0 0 0

In particular, S;.{f3 f(t) dt} = — [ f*(2) dzif [, f(H) dt = [ tf(t)dt = 0.
We omit simple proofs of this properties.

4. Markov-Stieltjes transform as an operator on Hardy spaces

In this section we identify the Hardy spaces H? (D) and HP(T) (DD stands for the open unit
disk and T for the unit circle ; see, e.g. [14]) and frequently use the notation H? for this
space, we denote also by x,(z) := 2" (n € Z4) the standard (Schauder) basis of H? (D).

Definition 4.1: Following Béttcher and Silbermann [15, p. 52] for b € L>°(T) we define
the Hankel operator H(b) on HP(T) (1 < p < o0) by

H(b): H? — HF: f v PM(b)(I — P)Jf,

where

P Z ann = an)(na

n=—N
M(b) : IP(T) — IP(T) : f — bf,

1 1
J 3f(t) i ;f (?) = anX—n—l(t) tel),

nez

where f =3, 7 faxn-

The function b is called the symbol of the Hankel operator H(b).
The next theorem describes the properties of S as an operator on H?(ID) (this means
that S is defined by the formula (1.1), where f € H?(D), z € D).

Theorem 4.2:

(1) The Markov-Stieltjes transform S is a bounded non-compact Hankel operator on
HP(D) (1 < p < 00) and has Hilbert matrix with respect to the standard basis. More-
ovet, the following estimates hold:

T
7 < Slppsmp < —— (4.1)

N nax(pa)

In particular, if p=2 then the norm and the essential norm of S equal to w, and the
spectrum and the essential spectrum of S equal to [0, 7T ].
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(2) The Markov-Stieltjes transform S is a bounded non compact Hankel operator from
H®(T) to BMOA(T), and

S|z BMOA < T||P||12¢—BMOA-
Proof: (1) First note, that for f € HP (D) the Fejer-Riesz inequality (see, e.g. [14, Theorem
3.13]) implies that

IF10, Dllzrry < 7 2Nf e (4.2)

It follows that the restriction f|(0, 1) belongs to LP (0, 1) and therefore the Lebesgue integral
in (1) exists for all p € (1,00) and z € D.
Next, since forallz € D

(Sxn) (@) / QA i m / L gy i Xon(2) (4.3)
zZ) = = zZ = _—, .
X 0o 1—tz —" Jy n+m+1

m=0

operator S is Hankel and has Hilbert matrix I' = (1/n + m + 1);7, _, with respect to the
standard basis (x,)nez, of H? (D). Indeed, by formula (4.3) and Parceval’s formula,

M X 2 00 X 2
=Y e -y e
m=0n+m—i—1 - szHn—i—m—i—l i

> 1
> I 0 (M — o0).
m=M+1

This implies that Sy, = Y vy xm/(n+m+1) in the sense of H? and therefore
(Sxj> xk) = 1/(j + k+ 1) for all j, k > 0 where (-, -) denotes the inner product in H?.

Now we use the following remark to the Nehari theorem. If the nth Fourier coefficient
of a function a € HP (D) equals to a, for n € N, and the operator A in HP(T) satisfies
(AXj> xk) = @jrk+1 forall j,k > 0 then A is bounded on H?(T) if (and only if) a € BMO,
the space of functions of bounded mean oscillation on T [15, p. 55]. But

o 1
—log1—2) =) _ ~xn(2),
n=1
and the function a(z) := —log(1 — z) belongs to BMO (a is analytic in ) and its imaginary

part belongs to L°°(T), thus, a has the form f + g, where f,g € L°(T) and g is the har-
monic conjugate of ¢). It follows thata € HP (D), since BMO C LP(T). Now by the previous
remark to the Nehari theorem, S is bounded on H? (D).

Moreover, if b is the symbol of S the Nehari theorem [15, Theorem 2.11] implies

distyoc (b, H®) < |[Sllpp— i < cpdistzoe (b, H®),

where

N N 1
distyo (b, H®) = inf{||b —f||Loo :f € H°°}, Cp =

g
max(p.q)

sin
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(see, e.g. [15, p. 32]). But the symbol of the Hankel operator S on H? does not depend of p
(see the proof of the Nehari theorem in [15]). So for p =2, we have

18Il g2 pr2 = distzoo (b, H®).

On the other hand, it is known that the norm and the essential norm of the Hankel operator
on the space H?(T) with Hilbert matrix with respect to the standard basis equal to 7 (and
therefore dist;~ (b, H®) = 7; see, e.g. [16, p. 36]), and its spectrum and essential spectrum
equal to [0, 7] (see, e.g. [16, p. 575, Theorem 1.7]).

To prove (1) it remains to show that S is non compact on H? (1 < p < 00). For this
we recall that the symbol of the Hankel operator on the space H?(T) with Hilbert matrix
with respect to the standard basis is b(e’) = ie™" (7 — t), 0 < t < 27 (see, e.g. [16, p. 6]).
According to the Hartman theorem [15, p. 80] if the operator S = H(b) is compact then
b € C(T) + H. But this inclusion contradicts the Lindel6f theorem on one-sided limits
of H*-functions (see, e.g. [17, Corollary 5.3.5]). This completes the proof of the first part
of the theorem.

(2) As it was shown above Sf = PM(b)(I — P)]f for f € HP. Since ] : H® — (H»H1, it
follows that Sf = PM(b)]f for f € H*. Moreover,

J:H* - L%, |Jllgesi= =1,
and
M) : L — L, [IM)|lx-1e = [|blre = .

It is also known (see, e.g. [18, Theorem 8.3.10]) that P is a bounded operator from L* to
BMOA. This implies that S is a bounded operator from H* to BMOA and

IS oo s BMOA =< [IPl|roe—BMOA M (D) || 100 1o || oo 100 = 7| P|| 120 - BMOA.-

Finally, since b ¢ C(T) + H®, the operator S : H*(T) — BMOA(T) is non compact
by the main result of the paper [19]. |

Results like the previous theorem may have applications to approximation theory. Let r,,
be the set of rational functions of order at most n whose poles lies outside of D, X a Banach
space of functions defined on some set E C D and XR,(f) = inf,<;, ||f — rllx the degree
of approximation of a function f from X by rationals from r,,. By the triangle inequality,

IXR,(f) — XRu (@1 < IIf —glx (f.g € X). (4.4)
Corollary 4.3: The map f — HPR,(Sf) is continuous on HP.

Proof: Indeed, the map ¢ — HPR,g is continuous on H? by the inequality (4.4). |

The following corollary is a generalization (for a Hausdorff moment problem) of a result
due to Zhu [20, p. 372, Proposition 9].
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Corollary 4.4: Let 1 < p < 2. For f € HP we let Tf be the sequence (c,) defined by

1
Cn =/ ftdt, nelZs.
0

Then T is a bounded linear operator from HF to €1 (1/p+1/q=1) and ||T||gp—ea <
7/ sin(mw/q).

Proof: Since

1 00 o0
Sf(z) = /O fO) ()" dt =" cu,
n=0 n=0

Theorem 6.1 from [14] and Theorem 4.2 imply that

T

I Tf llea < 1Sf lee < I Wl

ST
sin —
q

For the following corollary recalls that the Bergman space L2 consists of such functions
f(2) =Y oo fmz™ that are holomorphic in D and

00 lf|2 1/2
m
= < o0,
Ifllz2 (mX_%mH)

the sequence &, := /n + 1y, forms an orthonormal basis for Lﬁ (see, e.g. [18]).

Corollary 4.5: The Markov-Stieltjes transform S is an unbounded densely defined operator
on the Bergman space L2.

Proof: Indeed, by the formula (4.3)

00 1
) = 2 S

m=0

So, the matrix (ajx) of S with respect to the basis (§)) is

o EFI
N S (S R}

Since ZZC:)O |ajk|2 = 00, the operator S is unbounded. It remains to note that H? is dense
in 2. [ |

5. The Markov-Stieltjes transform as an operator on Lebesgue spaces

In the following theorem S denotes the Markov-Stieltjes transform on LF(0,1) (1 < p <
00). In other words, S is defined by the formula (1.1), where f € LF(0,1), z € (0,1).
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Theorem 5.1:

(1) The Markov-Stieltjes transform is a bounded non compact operator on LF(0,1) (1 <
p < 00). Moreover, the following estimates hold:

T
7= = ISllp—pp < weot -———.

inZ 2max(p.q)

(2) The Markov-Stieltjes transform on L*(0,1) is unitarily equivalent to the Markov-
Stieltjes transform on H*(D). In particular, the norm and the essential norm of S equal
to 7w, and the spectrum and the essential spectrum of S equal to [0, 7 ].

Proof: We begin with the case 1 < p < 2. As was mentioned in Section 1, Sf(z) =
ym Hfi (y) wherez = 1/y (y > 0), H stands for the Hilbert transform of functions on R, and

the function f1(¢) := f(¢) for t € (0,1) and f(t) := 0 for t € R\ (0, 1) belongs to L’ (RR).
Now the M. Riesz inequality for the Hilbert transform implies for 1 < p < 2 that

1 T 1 P l/P [e¢] 1 l/p
(/ —Hf (—) dz> = (/ S lymHA ()P d}’)
0 z Z I 4

< 1/p 00 1/p
4 < / —= HAOP dy) =7 ( / IHAG)I? dy)
Ly 1

< 7|Hfillr®) < wApllfllzr(0,1)-

1Sf lzr 0,1

Since (see, e.g. [12])

we have

S < t—————.
ISlp—1p < 7 coO > maxip, ]

In the case p > 2 using standard duality arguments, this inequality, and the Holder
inequality, we get (below for f,g € LP(0,1), we put (f,g) := folfg dt, Ay == Ay, 1/p+
1/g=1)

IS 1o = sup{(Sf.g) : g € LY, lIgllza < 1} = sup{(Sg.f) : g € LY, ||gll1a < 1}
< sup{[[Sgllzallfllr : g € L%, ligla < 1}
< sup{Agmliglallfller : g € L% liglea < 1} < Agrllfllze-

This proves the right-hand side of the desired inequality.
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To prove the left-hand side of this inequality, consider the function

t \’ 11
ho=(75) e (55)
1
|mﬁ;=/
0

Using [21, Section 2.2.6, formula 5], we have

T 1 1
50 =g ()

Porlg 1 Pd 7 \ ' /1—=x"\FP dx
— 1 _—— = T .
_/(; zP 1-2)y ‘ <sinny> /0 <l—x> xPY
Fix0 < yp < 1/p. For every ¢ > 0 there exists such § > 0 that (1 — x")?(1 —x)™? > 1 —
¢ forall x € (0,6). Then for y > yp and x € (0, §), we have

1—xV\? 1 — x0\?
> >1—e¢.
(1—x> ( l—x)
It follows that

<||Sfy||LP)p_ sinmpy ( P )P/I (1_xy>l7 dx
Ify e apy \sinmy) Jo \1—x /) xb7

sinwpy ( b )P /5 dx
> . 1-e)—
Tpy sinmy 0 xPr

Then

py py
dt = B(1 ,1— = )
(I+py rY) sinpy

1—

Therefore

v

ISF, 1%, =

sinmwy

_ sinTpy ( ; ~ >P o (1—e).
Tpy sinty ) 1—py
Since
lim sin T py n \Ps [ om P
y—1/p(l —py) \sinty ) py sin ’
we get

T
I e
p
To prove that S is non compact, assume the contrary. Then limpyespy—o0 [IPpSlle—1r = 0,
where Ppf := xpf (xp denotes the characteristic function of the subset D C [0, 1]) [22,
Theorem 3.1].
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On the other hand, let D, := [a, 1] and x, := (l/mes(Da)l/p)XDa.Then ||Xg||11]p = land

B 1 / e 1 /1 dt
~ mes(D)YP Jp 1—tz (QA—a)VP ), 1—tz

1 1 1 1
> / dt=(1—-a)l7VP——,
(1—a)/P1—az ), 1—az

Therefore

IPp,Sxallf, = / |xD, (@) P|Sx4(2) P dz = (1 — a)f~ 1/ (
_Ln 1
_p—1£< a (1+a)P‘1)'

1 1
lim sup||Pp, || > lim sup||Pp, Sx, 1%, > —— (1 — —) > 0,
a—)lp =1 _>1p i p—1 2p—1

1— az)P

It follows that

which is a contradiction. This completes the proof on noncompactness of the operator S.
To show that the Markov-Stieltjes transform on L?(0, 1) is unitarily equivalent to the
Markov-Stieltjes transform on H 2(D), consider the restriction operator

jrHYD) — L*0,1), f > fI(0,1).

Let Sy denotes the Markov-Stieltjes transform on L?(0,1), and Sy the Markov-Stieltjes
transform on H?(ID). Note that jSy = Sy, i.e. j is an intertwining operator for S; and S.
The operator jis bounded (see the formula (4.2)) and injective and has a dense range. By the
Putnam-Douglas theorem (see, e.g. [23, Theorem IX.6.10(c)]), Sy is unitarily equivalent
to Sp. Application of Theorem 4.2 completes the proof. |

Corollary 5.2: The Markov-Stieltjes transform S is a bounded operator from HP to LP(0, 1)
and

ISl —rp < 7'V cot

2 max{p,q}’

Proof: By the formula (4.2), if f € HP (D) then the restriction f](0, 1) belongs to L?(0, 1)
and the norm of the restriction operator j,: H? — LF(0,1): f > f](0, 1) does not exceed
m!/P. Let Sy denotes the Markov-Stieltjes operator in H?. Then S = j,Sy : H? — LP(0,1)
and

1 1+1
IS0 < jpllre— 12 I1SE | o pp < 7' F1P cot

2 max{p, q}

Corollary 5.3: The map f + LPR,(Sf) is continuous on LP.

Proof: The proof is similar to the case of HP. |
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Remark 5.1: The Markov-Stieltjes transform is an unbounded operator on L' (0, 1) and
L>°(0, 1), but it is bounded as an operator from L (0, 1) (1 < p < co) to L1(0, 1) [8, p. 187].
It is also a continuous map from L!(0, 1) to LP(0, 1) for 0 < p < 1 because if f, g € LP(0, 1)
then

_ 1 1 _ p
L —g® dt‘ dz 5/ ( f@® g(t)ldt> d
0 0

IS¢ = 9150, = /

0 1—1tz 1—1z
If (1) — (D)
5/0 (O ro —sol dr) dz —/ T = 8l

Recall that the Banach space Z‘Z (1 < p < 00) consists of functions f that are holomor-

phic on the unit disc, f(z) = ) - fuz"(z € D), and such that |Lf||‘ZA =y 02 fulf < o0

Obviously, the space Ei can be identified with ¢P. According to Béttcher and Silbermann

[15, p. 53], a Hankel operator H(a) on E‘Z associated with a sequence a = (ay,) is defined
by

H(a)f(z) =Y b7 (zeD),

j=0
where
bj = Zak+j+1fk ( (2) = an )
k=0

In the following theorem, we consider S as an operator on Ei (this means that S is defined
by the formula (1.1), where f € *oze D).

Theorem 5.4: The Markov-Stieltjes transform S is a bounded Hankel operator on Z‘Z (1<
p < 00) and has Hilbert matrix with respect to the standard basis. Moreovet,

v

N = —.
| ”gi_)gi sin%

Proof: First note, that the Markov-Stieltjes transform exists for f € E‘Z, since f](0,1) €
L'(0,1). In fact, if f(t) = Y o2, fut" then

1 1 ©© o0
n lfﬂl
t)| dt nlt dt = E—
/0 £ s/o n§zojv| ;:o:”“

the series converges by the Holder inequality.

Arguing as in the proof of Theorem 4.2, we get that the Markov-Stieltjes transform
S is a Hankel operator on E‘Z and has Hilbert matrix with respect to the standard basis
{en:neZy}, en(z) i =2" ofﬁg.
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To compute the norm of S, note that the Hardy-Littlewood-Polya-Shur inequality [24,
Theorem 318] applied to the function K(x, y) = 1/(x + y) implies, that

00 00 P
fm p
ISFIIP, = — < KfI,,
fﬁi gr;)n-l-m-l-l fef;

where the best possible constant k is [24, p. 229]

/OO dx T
k = = —
o xVP(14x) sm%

(for the last equality see, e.g. [21, Section 2.2.4, formula 25]). |

Corollary 5.5: Let1 < p < 2. The Markov-Stieltjes transform S is a bounded operator from
Eﬁ toH1(1/p+1/q=1) and

1Sl oo < =z
P
Proof: It follows from the above theorem, because by [14, Theorem 6.1, p. 94] E‘Z C H1(D)

and the norm of the natural embedding of Zg into H4(ID) does not exceed 1. [ |

Corollary 5.6: The Markov-Stieltjes transform S is a bounded operator from Ei to L1(0,1)
and
71+1/q

S < —
[ “gi_)Lq_ Sil‘l%

Proof: The proof follows from formula (4.2) and Corollary 5.7. |
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