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ABSTRACT
Weprove that theMarkov–Stieltjes transform is a boundednon com-
pact Hankel operator on Hardy space Hp with Hilbert matrix with
respect to the standard Schauder basis of Hp and a bounded non-
compact operator on Lebesgue space Lp[0, 1] for p ∈ (1,∞) and
obtain estimates for its norm in this spaces. It is shown that the
Markov–Stieltjes transform on L2(0, 1) is unitary equivalent to the
Markov–Stieltjes transform on H2. Inverse formulas and operational
properties for this transform are obtained.
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1. Introduction

Much work has been done during last years on the theory of integral transforms of func-
tions of one real variable and in particular on convolution and inversion theorems for
such transforms and their applications to integral equations (see, e.g. [1–7] and the bib-
liography cited therein). This paper is devoted to the Markov–Stieltjes transform S of
functions on (0, 1). The last transform was introduced in [8, Chapter 6] as a special case
of the Stieltjes transform of measures on general semigroups. The terminology goes back
to approximation theory, see, e.g. [9, p. 14, 10, 11]. We give inverse formulas for this trans-
form and formulate its operational properties. The main goal of this paper is to study
the Markov–Stieltjes transform as an operator on Hardy spaces Hp for p ∈ (1,∞] and
Lebesgue spaces Lp(0, 1) for p ∈ (1,∞). We prove that S is a bounded non-compact Han-
kel operator on Hardy spaceHp with Hilbert matrix with respect to the standard Schauder
basis of Hp for p ∈ (1,∞), a bounded non compact operator from H∞ to BMOA, and a
bounded operator in �

p
A and give estimates for the norm of S in this cases. We show also

that S is a bounded non compact operator on Lebesgue space Lp(0, 1) for p ∈ (1,∞) and
obtain estimates for its norm in this spaces, too. It is shown also that the Markov–Stieltjes
transform on L2(0, 1) is unitary equivalent to the Markov–Stieltjes transform on H2. As a
corollary the norm and the spectrum of S as an operator on L2(0, 1) are obtained.

CONTACT A. R. Mirotin amirotin@yandex.ru

© 2016 Informa UK Limited, trading as Taylor & Francis Group
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2 A. R. MIROTIN AND I. S. KOVALYOVA

Definition 1.1 (8, Chapter 6, 7): The Markov–Stieltjes transform of a function f ∈
L1(0, 1) is defined by the formula

Sf (z) :=
∫ 1

0

f (t)
1 − tz

dt (1.1)

(we write also St→z{f (t)} instead of Sf (z)). Obviously, for z /∈ [1,∞) this Lebesgue integral
exists and represents an analytic function f ∗ in the domain C \ [1,∞). For z ∈ [1,∞) the
integral in (1.1) is understood as a Cauchy principle value integral, i.e.

Sf (z) := V .P.
∫ 1

0

f (t)
1 − tz

dt := lim
ε→0+

∫
{t∈(0,1):|t−1/z|>ε}

f (t)
1 − tz

dt. (1.2)

The limit in the right-hand side of (1.2) exists for almost all z ∈ [1,∞). In fact, Sf (z) =
(π/z)(Hf1)(1/z), whereHf1 stands for the Hilbert transform of the function f1(x) := f (x)
for x ∈ (0, 1) and f1(x) := 0 otherwise. So, the application of Loomis theorem (see, e.g. [12,
p. 239]) proves the assertion.

The following example shows that in general C \ [1,∞) is the domain of holomorphy
of Sf.

Example 1.2: Putting t = x2/(1 + x2) it is easy to verify that St→z{(t(1 − t))−1/2} equals
to π(1 − z)−1/2 for z /∈ [1,∞) and equals to zero otherwise.

As was mentioned above the study of Markov–Stieltjes transform as a function is
important in approximation theory ([9, p. 226, 11]).

This transform is useful in solving some singular integral equations, too. In [7] for f ∈
Lp(0, 1), g ∈ Lq(0, 1) (1 < p, q < ∞, 1/p + 1/q < 1) the following binary operation was
considered (this operation was introduced for the first time in [1, p. 220, formula (24.38)])

f � g(t) = tf (t)
∫ 1

0

f (u)
t − u

du + tg(t)
∫ 1

0

g(u)
t − u

du,

where the integrals are understood as their Cauchy principal values, and using meth-
ods developed by Srivastava and Vu Kim Tuan [2] a convolution theorem for the
Markov–Stieltjes transform in the form

S(f � g) = (Sf ) · (Sg)

was proved. Arguing as in [2] it was also shown in [7] that the equation

x(t) + λ

∫ 1

0

x(u)
t − u

du = g(t) (λ �= 0)

where g is prescribed and x is an unknown function to be determined has (for appropriate
g) the unique solution

x(u) = cos(απ)S−1
s→u

{
(1 − s)αSt→s

{
g(t)tα

(1 − t)α

}}
,

α being a (unique) root of the equation tan(απ) = λπ , 0 < Reα < 1 (for inversion
formulas for the Markov–Stieltjes transform see the following section).
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2. Inversion formulas

A complex inversion formula for the Markov–Stieltjes transform looks as follows.

Theorem 2.1: Let f ∈ L1(0, 1), 0 < t < 1, and f (t ± 0) exist. If f ∗ = Sf , then

f (t + 0) + f (t − 0)
2

= 1
2π i

lim
η→0+

(
1

t − iη
f ∗
(

1
t − iη

)
− 1

t + iη
f ∗
(

1
t + iη

))
.

Proof: It is easy to verify that

1
2π i

(
1

t − iη
f ∗
(

1
t − iη

)
− 1

t + iη
f ∗
(

1
t + iη

))
= 1

π

∫ 1

0

η

(t − s)2 + η2
f (s) ds.

Application of Widder [13, p. 338, Lemma 7.2] completes the proof. �

Nowwe shall formulate also a real inversion formula for theMarkov–Stieltjes transform.

Theorem 2.2 ([7]): Let f ∈ Lp(0, 1), 1 < p < ∞. The Markov–Stieltjes transform f ∗(x) =
Sf (x) exists for a.e. x ∈ R and

f (t) = 1
π2V .P.

∫ ∞

−∞
f ∗(x)
1 − tx

dx.

Proof: It follows, e.g. from the above-mentioned equality Sf (z) = (π/z)(Hf1)(1/z) and
the inversion formula for the Hilbert transform (see [7] for details). �

3. Operational properties of theMarkov–Stieltjes transforms

The following properties hold for the Markov–Stieltjes transform (cf., e.g. [3, p. 394]).
If f ∗ = Sf , then

(1)

St→z{f (1 − t)} = 1
1 − z

f ∗
(

z
z − 1

)
;

(2)

St→z{f (at)} = 1
a
f ∗
( z
a

)
(a > 1);

(3)

St→z{tf (t)} = 1
z

(
f ∗(z) −

∫ 1

0
f (t) dt

)
(f ∈ L1(0, 1)).

In particular, St→z{tf (t)} = (1/z)f ∗(z) if
∫ 1
0 f (t) dt = 0;

(4)

St→z

{
f (t)
t + a

}
= z

1 + az
f ∗(z) − 1

1 + az

∫ 1

0

f (t)
t + a

dt
(

f (t)
t + a

∈ L1(0, 1)
)
.

In particular, St→z{f (t)/(t + a)} = (z/(1 + az))f ∗(z) if
∫ 1
0 (f (t)/(t + a)) dt = 0;
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(5)

St→z

{
d
dt
f (t)

}
= − d

dz
f ∗(z) + f (1)

1 − z
− f (0) if f ∈ C1[0, 1], z /∈ [1,∞).

In particular, St→z{(d/dt)f (t)} = −(d/dz)f ∗(z) if in addition f (0) = f (1) = 0;
(6)

St→z

{∫ t

0
f (t) dt

}
= −

∫ z

0
f ∗(z) dz −

(∫ 1

0
f (t) dt

)
log(1 − z) +

∫ 1

0
(1 − t)f (t) dt.

In particular, St→z{
∫ t
0 f (t) dt} = − ∫ z

0 f ∗(z) dz if
∫ 1
0 f (t) dt = ∫ 1

0 tf (t) dt = 0.
We omit simple proofs of this properties.

4. Markov–Stieltjes transform as an operator on Hardy spaces

In this section we identify the Hardy spacesHp(D) andHp(T) (D stands for the open unit
disk and T for the unit circle ; see, e.g. [14]) and frequently use the notation Hp for this
space, we denote also by χn(z) := zn (n ∈ Z+) the standard (Schauder) basis of Hp(D).

Definition 4.1: Following Böttcher and Silbermann [15, p. 52] for b ∈ L∞(T) we define
the Hankel operator H(b) on Hp(T) (1 < p < ∞) by

H(b) : Hp → Hp : f �→ PM(b)(I − P)Jf ,

where

P :
N∑

n=−N
fnχn �→

N∑
n=0

fnχn,

M(b) : Lp(T) → Lp(T) : f �→ bf ,

J : f (t) �→ 1
t
f
(
1
t

)
=
∑
n∈Z

fnχ−n−1(t) (t ∈ T),

where f = ∑
n∈Z

fnχn.

The function b is called the symbol of the Hankel operator H(b).
The next theorem describes the properties of S as an operator on Hp(D) (this means

that S is defined by the formula (1.1), where f ∈ Hp(D), z ∈ D).

Theorem 4.2:

(1) The Markov–Stieltjes transform S is a bounded non-compact Hankel operator on
Hp(D) (1 < p < ∞) and has Hilbert matrix with respect to the standard basis. More-
over, the following estimates hold:

π ≤ ‖S‖Hp→Hp ≤ π

sin π
max{p,q}

. (4.1)

In particular, if p=2 then the norm and the essential norm of S equal to π , and the
spectrum and the essential spectrum of S equal to [0,π].
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(2) The Markov–Stieltjes transform S is a bounded non compact Hankel operator from
H∞(T) to BMOA(T), and

‖S‖H∞→BMOA ≤ π‖P‖L∞→BMOA.

Proof: (1) First note, that for f ∈ Hp(D) the Fejer–Riesz inequality (see, e.g. [14, Theorem
3.13]) implies that

‖f |(0, 1)‖Lp(0,1) ≤ π1/p‖f ‖Hp . (4.2)

It follows that the restriction f |(0, 1) belongs to Lp(0, 1) and therefore the Lebesgue integral
in (1) exists for all p ∈ (1,∞) and z ∈ D.

Next, since for all z ∈ D

(Sχn)(z) =
∫ 1

0

tn

1 − tz
dt =

∞∑
m=0

zm
∫ 1

0
tn+m dt =

∞∑
m=0

χm(z)
n + m + 1

, (4.3)

operator S is Hankel and has Hilbert matrix 	 = (1/n + m + 1)∞m,n=0 with respect to the
standard basis (χn)n∈Z+ of Hp(D). Indeed, by formula (4.3) and Parceval’s formula,

∥∥∥∥∥Sχn −
M∑

m=0

χm

n + m + 1

∥∥∥∥∥
2

H2

=
∥∥∥∥∥

∞∑
m=M+1

χm

n + m + 1

∥∥∥∥∥
2

H2

=
∞∑

m=M+1

1
(n + m + 1)2

→ 0 (M → ∞).

This implies that Sχn = ∑∞
m=0 χm/(n + m + 1) in the sense of H2 and therefore

〈Sχj,χk〉 = 1/(j + k + 1) for all j, k ≥ 0 where 〈·, ·〉 denotes the inner product in H2.
Now we use the following remark to the Nehari theorem. If the nth Fourier coefficient

of a function a ∈ Hp(D) equals to an for n ∈ N, and the operator A in Hp(T) satisfies
〈Aχj,χk〉 = aj+k+1 for all j, k ≥ 0 then A is bounded on Hp(T) if (and only if) a ∈ BMO,
the space of functions of bounded mean oscillation on T [15, p. 55]. But

− log(1 − z) =
∞∑
n=1

1
n
χn(z),

and the function a(z) := − log(1 − z) belongs toBMO (a is analytic inD and its imaginary
part belongs to L∞(T), thus, a has the form f + g̃, where f , g ∈ L∞(T) and g̃ is the har-
monic conjugate of g). It follows that a ∈ Hp(D), sinceBMO ⊂ Lp(T). Nowby the previous
remark to the Nehari theorem, S is bounded on Hp(D).

Moreover, if b is the symbol of S the Nehari theorem [15, Theorem 2.11] implies

distL∞(b,H∞) ≤ ‖S‖Hp→Hp ≤ cpdistL∞(b,H∞),

where

distL∞(b,H∞) = inf{‖b − f ‖L∞ : f ∈ H∞}, cp = 1
sin π

max{p,q}
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(see, e.g. [15, p. 32]). But the symbol of the Hankel operator S onHp does not depend of p
(see the proof of the Nehari theorem in [15]). So for p=2, we have

‖S‖H2→H2 = distL∞(b,H∞).

On the other hand, it is known that the norm and the essential normof theHankel operator
on the spaceH2(T) with Hilbert matrix with respect to the standard basis equal to π (and
therefore distL∞(b,H∞) = π ; see, e.g. [16, p. 36]), and its spectrum and essential spectrum
equal to [0,π] (see, e.g. [16, p. 575, Theorem 1.7]).

To prove (1) it remains to show that S is non compact on Hp (1 < p < ∞). For this
we recall that the symbol of the Hankel operator on the space H2(T) with Hilbert matrix
with respect to the standard basis is b(eit) = ie−it(π − t), 0 ≤ t < 2π (see, e.g. [16, p. 6]).
According to the Hartman theorem [15, p. 80] if the operator S = H(b) is compact then
b ∈ C(T) + H∞. But this inclusion contradicts the Lindelöf theorem on one-sided limits
of H∞-functions (see, e.g. [17, Corollary 5.3.5]). This completes the proof of the first part
of the theorem.

(2) As it was shown above Sf = PM(b)(I − P)Jf for f ∈ Hp. Since J : H∞ → (H2)⊥, it
follows that Sf = PM(b)Jf for f ∈ H∞. Moreover,

J : H∞ → L∞, ‖J‖H∞→L∞ = 1,

and

M(b) : L∞ → L∞, ‖M(b)‖L∞→L∞ = ‖b‖L∞ = π .

It is also known (see, e.g. [18, Theorem 8.3.10]) that P is a bounded operator from L∞ to
BMOA. This implies that S is a bounded operator from H∞ to BMOA and

‖S‖H∞→BMOA ≤ ‖P‖L∞→BMOA‖M(b)‖L∞→L∞‖J‖H∞→L∞ = π‖P‖L∞→BMOA.

Finally, since b /∈ C(T) + H∞, the operator S : H∞(T) → BMOA(T) is non compact
by the main result of the paper [19]. �

Results like the previous theoremmay have applications to approximation theory. Let rn
be the set of rational functions of order at most nwhose poles lies outside ofD, X a Banach
space of functions defined on some set E ⊆ D and XRn(f ) = inf r∈rn ‖f − r‖X the degree
of approximation of a function f from X by rationals from rn. By the triangle inequality,

|XRn(f ) − XRn(g)| ≤ ‖f − g‖X (f , g ∈ X). (4.4)

Corollary 4.3: The map f �→ HpRn(Sf ) is continuous on Hp.

Proof: Indeed, the map g �→ HpRng is continuous on Hp by the inequality (4.4). �

The following corollary is a generalization (for aHausdorffmoment problem) of a result
due to Zhu [20, p. 372, Proposition 9].
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Corollary 4.4: Let 1 < p ≤ 2. For f ∈ Hp we let Tf be the sequence (cn) defined by

cn =
∫ 1

0
f (t)tn dt, n ∈ Z+.

Then T is a bounded linear operator from Hp to �q (1/p + 1/q = 1) and ‖T‖Hp→�q ≤
π/ sin(π/q).

Proof: Since

Sf (z) =
∫ 1

0
f (t)

∞∑
n=0

(tz)n dt =
∞∑
n=0

cnzn,

Theorem 6.1 from [14] and Theorem 4.2 imply that

‖Tf ‖�q ≤ ‖Sf ‖Hp ≤ π

sin π
q

‖f ‖Hp .

�

For the following corollary recalls that the Bergman space L2a consists of such functions
f (z) = ∑∞

m=0 fmz
m that are holomorphic in D and

‖f ‖L2a :=
( ∞∑
m=0

|fm|2
m + 1

)1/2

< ∞,

the sequence ξn := √
n + 1χn forms an orthonormal basis for L2a (see, e.g. [18]).

Corollary 4.5: The Markov–Stieltjes transform S is an unbounded densely defined operator
on the Bergman space L2a.

Proof: Indeed, by the formula (4.3)

Sξn(z) =
∞∑

m=0

√
n + 1

m + n + 1
zm.

So, the matrix (ajk) of S with respect to the basis (ξj) is

ajk =
√
k + 1√

j + 1(k + j + 1)
.

Since
∑∞

k=0 |ajk|2 = ∞, the operator S is unbounded. It remains to note that H2 is dense
in L2a. �

5. TheMarkov–Stieltjes transform as an operator on Lebesgue spaces

In the following theorem S denotes the Markov–Stieltjes transform on Lp(0, 1) (1 < p <

∞). In other words, S is defined by the formula (1.1), where f ∈ Lp(0, 1), z ∈ (0, 1).
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Theorem 5.1:

(1) The Markov–Stieltjes transform is a bounded non compact operator on Lp(0, 1) (1 <

p < ∞). Moreover, the following estimates hold:

π

sin π
p

≤ ‖S‖Lp→Lp ≤ πcot
π

2max{p, q} .

(2) The Markov–Stieltjes transform on L2(0, 1) is unitarily equivalent to the Markov–
Stieltjes transform on H2(D). In particular, the norm and the essential norm of S equal
to π , and the spectrum and the essential spectrum of S equal to [0,π].

Proof: We begin with the case 1 < p ≤ 2. As was mentioned in Section 1, Sf (z) =
yπHf1(y)where z = 1/y (y > 0),H stands for theHilbert transformof functions onR, and
the function f1(t) := f (t) for t ∈ (0, 1) and f (t) := 0 for t ∈ R \ (0, 1) belongs to Lp(R).
Now the M. Riesz inequality for the Hilbert transform implies for 1 < p ≤ 2 that

‖Sf ‖Lp(0,1) =
(∫ 1

0

∣∣∣∣πz Hf1
(
1
z

)∣∣∣∣
p
dz
)1/p

=
(∫ ∞

1

1
y2

|yπHf1(y)|p dy
)1/p

= π

(∫ ∞

1

1
y2−p |Hf1(y)|p dy

)1/p
≤ π

(∫ ∞

1
|Hf1(y)|p dy

)1/p

≤ π‖Hf1‖Lp(R) ≤ πAp‖f ‖Lp(0,1).

Since (see, e.g. [12])

Ap =

⎧⎪⎪⎨
⎪⎪⎩
tan

π

2p
, 1 < p ≤ 2,

cot
π

2p
, p > 2,

we have

‖S‖Lp→Lp ≤ π cot
π

2max{p, q} .

In the case p>2 using standard duality arguments, this inequality, and the Hölder
inequality, we get (below for f , g ∈ Lp(0, 1), we put 〈f , g〉 := ∫ 1

0 f ḡ dt, Aq := Ap, 1/p +
1/q = 1)

‖Sf ‖Lp = sup{〈Sf , g〉 : g ∈ Lq, ‖g‖Lq ≤ 1} = sup{〈Sḡ, f̄ 〉 : g ∈ Lq, ‖g‖Lq ≤ 1}
≤ sup{‖Sḡ‖Lq‖f̄ ‖Lp : g ∈ Lq, ‖g‖Lq ≤ 1}
≤ sup{Aqπ‖g‖Lq‖f ‖Lp : g ∈ Lq, ‖g‖Lq ≤ 1} ≤ Aqπ‖f ‖Lp .

This proves the right-hand side of the desired inequality.
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To prove the left-hand side of this inequality, consider the function

fγ (t) :=
(

t
1 − t

)γ

, γ ∈
(

−1
p
,
1
p

)
.

Then

‖fγ ‖pLp =
∫ 1

0

∣∣∣∣ t
1 − t

∣∣∣∣
pγ

dt = B(1 + pγ , 1 − pγ ) = πpγ
sinπpγ

.

Using [21, Section 2.2.6, formula 5], we have

Sfγ (t) = − π

sinπγ

1
z

(
1 − 1

(1 − z)γ

)
.

Therefore

‖Sfγ ‖pLp =
∣∣∣∣ π

sinπγ

∣∣∣∣
p ∫ 1

0

1
zp

∣∣∣∣1 − 1
(1 − z)γ

∣∣∣∣
p
dz =

(
π

sinπγ

)p ∫ 1

0

(
1 − xγ

1 − x

)p dx
xpγ

.

Fix 0 < γ0 < 1/p. For every ε > 0 there exists such δ > 0 that (1 − xγ0)p(1 − x)−p > 1 −
ε for all x ∈ (0, δ). Then for γ > γ0 and x ∈ (0, δ), we have

(
1 − xγ

1 − x

)p
>

(
1 − xγ0

1 − x

)p
> 1 − ε.

It follows that(‖Sfγ ‖Lp
‖fγ ‖Lp

)p
= sinπpγ

πpγ

(
π

sinπγ

)p ∫ 1

0

(
1 − xγ

1 − x

)p dx
xpγ

≥ sinπpγ
πpγ

(
π

sinπγ

)p ∫ δ

0
(1 − ε)

dx
xpγ

= sinπpγ
πpγ

(
π

sinπγ

)p
δ1−pγ

1 − pγ
(1 − ε).

Since

lim
γ→1/p

sinπpγ
π(1 − pγ )

(
π

sinπγ

)p
δ1−pγ

pγ
=
(

π

sin π
p

)p

,

we get

‖S‖Lp→Lp ≥ π

sin π
p
.

To prove that S is non compact, assume the contrary. Then limmes(D)→0 ‖PDS‖Lp→Lp = 0,
where PDf := χDf (χD denotes the characteristic function of the subset D ⊂ [0, 1]) [22,
Theorem 3.1].
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On the other hand, letDa := [a, 1] and xa := (1/mes(Da)
1/p)χDa . Then ‖xa‖pLp = 1 and

Sxa = 1
mes(Da)1/p

∫
Da

dt
1 − tz

= 1
(1 − a)1/p

∫ 1

a

dt
1 − tz

≥ 1
(1 − a)1/p

1
1 − az

∫ 1

a
dt = (1 − a)1−1/p 1

1 − az
.

Therefore

‖PDaSxa‖pLp =
∫ 1

0
|χDa(z)|p|Sxa(z)|p dz ≥ (1 − a)p−1

∫ 1

a

dz
(1 − az)p

= 1
p − 1

1
a

(
1 − 1

(1 + a)p−1

)
.

It follows that

lim sup
a→1

‖PDaS‖pLp→Lp ≥ lim sup
a→1

‖PDaSxa‖pLp ≥ 1
p − 1

(
1 − 1

2p−1

)
> 0,

which is a contradiction. This completes the proof on noncompactness of the operator S.
To show that the Markov–Stieltjes transform on L2(0, 1) is unitarily equivalent to the

Markov–Stieltjes transform on H2(D), consider the restriction operator

j : H2(D) → L2(0, 1), f �→ f |(0, 1).
Let SL denotes the Markov–Stieltjes transform on L2(0, 1), and SH the Markov–Stieltjes
transform on H2(D). Note that jSH = SLj, i.e. j is an intertwining operator for SL and SH .
The operator j is bounded (see the formula (4.2)) and injective and has a dense range. By the
Putnam–Douglas theorem (see, e.g. [23, Theorem IX.6.10(c)]), SL is unitarily equivalent
to SH . Application of Theorem 4.2 completes the proof. �

Corollary 5.2: The Markov–Stieltjes transform S is a bounded operator from Hp to Lp(0, 1)
and

‖S‖Hp→Lp ≤ π1+1/p cot
π

2max{p, q} .

Proof: By the formula (4.2), if f ∈ Hp(D) then the restriction f |(0, 1) belongs to Lp(0, 1)
and the norm of the restriction operator jp : Hp → Lp(0, 1) : f �→ f |(0, 1) does not exceed
π1/p. Let SH denotes the Markov–Stieltjes operator inHp. Then S = jpSH : Hp → Lp(0, 1)
and

‖S‖Hp→Lp ≤ ‖jp‖Hp→Lp‖SH‖Hp→Hp ≤ π1+1/p cot
π

2max{p, q} .

�

Corollary 5.3: The map f �→ LpRn(Sf ) is continuous on Lp.

Proof: The proof is similar to the case of Hp. �
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Remark 5.1: The Markov–Stieltjes transform is an unbounded operator on L1(0, 1) and
L∞(0, 1), but it is bounded as an operator from Lp(0, 1) (1 < p < ∞) to L1(0, 1) [8, p. 187].
It is also a continuous map from L1(0, 1) to Lp(0, 1) for 0<p<1 because if f , g ∈ Lp(0, 1)
then

‖S(f − g)‖pLp(0,1) =
∫ 1

0

∣∣∣∣
∫ 1

0

f (t) − g(t)
1 − tz

dt
∣∣∣∣
p

dz ≤
∫ 1

0

(∫ 1

0

|f (t) − g(t)|
1 − tz

dt
)p

dz

≤
∫ 1

0

(∫ 1

0

|f (t) − g(t)|
1 − z

dt
)p

dz =
∫ 1

0

dz
(1 − z)p

‖f − g‖pL1(0,1)

= 1
1 − p

‖f − g‖pL1(0,1).

Recall that the Banach space �
p
A (1 < p ≤ ∞) consists of functions f that are holomor-

phic on the unit disc, f (z) = ∑∞
n=0 fnz

n(z ∈ D), and such that ‖f ‖p
�
p
A
:= ∑∞

n=0 |fn|p < ∞.

Obviously, the space �
p
A can be identified with �p. According to Böttcher and Silbermann

[15, p. 53], a Hankel operator H(a) on �
p
A associated with a sequence a = (an) is defined

by

H(a)f (z) =
∞∑
j=0

bjzj (z ∈ D),

where

bj =
∞∑
k=0

ak+j+1fk

(
f (z) =

∞∑
n=0

fnzn
)
.

In the following theorem,we consider S as an operator on �
p
A (thismeans that S is defined

by the formula (1.1), where f ∈ �
p
A, z ∈ D).

Theorem 5.4: The Markov–Stieltjes transform S is a bounded Hankel operator on �
p
A (1 <

p < ∞) and has Hilbert matrix with respect to the standard basis. Moreover,

‖S‖
�
p
A→�

p
A

= π

sin π
p
.

Proof: First note, that the Markov–Stieltjes transform exists for f ∈ �
p
A, since f |(0, 1) ∈

L1(0, 1). In fact, if f (t) = ∑∞
n=0 fnt

n then

∫ 1

0
|f (t)| dt ≤

∫ 1

0

∞∑
n=0

|fn|tn dt =
∞∑
n=0

|fn|
n + 1

,

the series converges by the Hölder inequality.
Arguing as in the proof of Theorem 4.2, we get that the Markov–Stieltjes transform

S is a Hankel operator on �
p
A and has Hilbert matrix with respect to the standard basis

{en : n ∈ Z+}, en(z) := zn of �pA.
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To compute the norm of S, note that the Hardy–Littlewood–Polya–Shur inequality [24,
Theorem 318] applied to the function K(x, y) = 1/(x + y) implies, that

‖Sf ‖p
�
p
A

=
∞∑
n=0

∣∣∣∣∣
∞∑

m=0

fm
n + m + 1

∣∣∣∣∣
p

≤ kp‖f ‖p
�
p
A
,

where the best possible constant k is [24, p. 229]

k =
∫ ∞

0

dx
x1/p(1 + x)

= π

sin π
p

(for the last equality see, e.g. [21, Section 2.2.4, formula 25]). �

Corollary 5.5: Let 1 < p ≤ 2. TheMarkov–Stieltjes transform S is a bounded operator from
�
p
A to Hq (1/p + 1/q = 1) and

‖S‖
�
p
A→Hq ≤ π

sin π
p
.

Proof: It follows from the above theorem, because by [14, Theorem 6.1, p. 94] �pA ⊂ Hq(D)

and the norm of the natural embedding of �pA into Hq(D) does not exceed 1. �

Corollary 5.6: The Markov–Stieltjes transform S is a bounded operator from �
p
A to Lq(0, 1)

and

‖S‖
�
p
A→Lq ≤ π1+1/q

sin π
q

.

Proof: The proof follows from formula (4.2) and Corollary 5.7. �
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