УДК 512.542

О СВЕРХРАЗРЕШИМОМ КОРАДИКАЛЕ ВЗАИМНО ПЕРЕСТАНОВОЧНЫХ ПОДГРУПП

В.С. Монахов

Гомельский государственный университет им. Ф. Скорины

ON THE SUPERSOLUBLE RESIDUAL OF MUTUALLY PERMUTABLE PRODUCTS

V.S. Monakhov

F. Scorina Gomel State University

Доказывается, что если группа G = AB является произведением взаимно перестановочных сверхразрешимых подгрупп A и B, то сверхразрешимый корадикал группы G совпадает с нильпотентным корадикалом коммутанта G'.

Ключевые слова: конечная группа, сверхрарешимая подгруппа, взаимно перестановочные подгруппы, корадикал.

We prove that if a group G = AB is the mutually permutable product of the supersoluble subgroups A and B, then the supersoluble residual of G coincides with the nilpotent residual of the derived subgroup G'.

Keywords: finite group, supersoluble subgroup, mutually permutable product, residual.

1 Preliminaries

All groups in this paper are finite. Formations of all abelian, nilpotent and supersoluble groups is denoted by \mathfrak{A} , \mathfrak{N} and \mathfrak{U} respectively. If \mathfrak{F} is a formation and G is a group, then $G^{\mathfrak{F}}$ is the \mathfrak{F} -residual of G, i. e., the smallest normal subgroup of G with quotient in \mathfrak{F} . If \mathfrak{X} and \mathfrak{F} are hereditary formations, then, according to [1, p. 337-338], the product

$$\mathfrak{XF} = \{ G \in \mathfrak{E} \mid G^{\mathfrak{F}} \in \mathfrak{X} \}$$

is also a hereditary formation. A Fitting class which is also a formation is called a Fitting formation.

We need the following lemmas.

Lemma 1.1 [2, 4.8]. Let G = AB be the product of two subgroups A and B. Then

- $(1) [A,B] = \langle [a,b] | a \in A, b \in B \rangle \triangleleft G;$
- (2) if $A_1 \triangleleft A$, then $A_1[A,B] \triangleleft G$;
- (3) G' = A'B'[A, B].

Lemma 1.2 [1, IV.11.7]. Let \mathfrak{F} and \mathfrak{H} be formations, G be a group and $K \triangleleft G$. Then

- (1) $(G/K)^{\mathfrak{F}} = G^{\mathfrak{F}}K/K$;
- (2) $G^{\mathfrak{F}_{5}} = (G^{\mathfrak{H}})^{\mathfrak{F}};$
- (3) if $\mathfrak{H} \subseteq \mathfrak{F}$, then $G^{\mathfrak{F}} \subseteq G^{\mathfrak{H}}$.

If H is a subgroup of a group G, then H^G denotes the smallest normal subgroup of G containing H.

Lemma 1.3 [2, 5.31]. Let H be a subnormal subgroup of a group G. If H belongs to a Fitting class \mathfrak{F} , then $H^G \in \mathfrak{F}$. In particular,

(1) if H is nilpotent, then H^G is also nilpotent;

(2) if H is p-nilpotent, then H^G is also p-nilpotent.

Lemma 1.4. Let G = AB be the product of the supersoluble subgroups A and B. Then $G^{\mathfrak{U}} \leq [A, B]$.

Proof. By Lemma 1.1 (1,3) and Lemma 1.2 (1),
$$(G/[A,B])' = G'[A,B]/[A,B] = = A'B'[A,B]/[A,B]/[A,B] = = (A'[A,B]/[A,B])(B'[A,B]/[A,B]).$$

The subgroups

$$(A'[A,B])/[A,B] \simeq A'/(A' \cap [A,B]),$$

 $(B'[A,B])/[A,B] \simeq B'/(B' \cap [A,B])$

are nilpotent [3, VI.9.1] and normal in G/[A,B] by Lemma 1.1 (3), so (G/[A,B])' is nilpotent. By Lemma 1.1 (3), A[A,B] and B[A,B] are normal in G. In view of the Baer Theorem [4], G/[A,B] is supersoluble. Hence, $G^{\mathfrak{U}} \leq [A,B]$.

Lemma 1.5 [1, II.2.12]. Let \mathfrak{X} be a Fitting formation, and let G = AB be the product of normal subgroups A and B. Then $G^{\mathfrak{X}} = A^{\mathfrak{X}}B^{\mathfrak{X}}$.

2 On the $\,\mathfrak{U}\,\text{-residual}$ of mutually permutable product

A group G = AB is called the mutually permutable product of subgroups A and B if UB = BU and AV = VA for all $U \le A$ and $V \le B$. Such groups were studied in [5]–[8], see also [9].

We prove the following theorem.

Theorem 2.1. Let G = AB be the mutually permutable product of the supersoluble subgroups A and B. Then $G^{\mathfrak{U}} = (G')^{\mathfrak{N}} = [A, B]^{\mathfrak{N}}$.

69

Proof. By Lemma 1.4, $G^{\mathfrak{U}} \leq [A,B]$. Since $\mathfrak{U} \subseteq \mathfrak{M}\mathfrak{U}$ [3, VI.9.1], by Lemma 1.2 (2,3), we have $G^{(\mathfrak{M}\mathfrak{U})} = (G^{\mathfrak{U}})^{\mathfrak{N}} = (G')^{\mathfrak{M}} \leq G^{\mathfrak{U}}$.

Verify the reverse inclusion. Since

$$(G/(G')^{\mathfrak{N}})' = G'(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}} = G'/(G')^{\mathfrak{N}}$$
 is nilpotent,

 $G/(G')^{\mathfrak{N}} = A(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}} \cdot B(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}$ is supersoluble in view of [5, Theorem 3.8] and $G^{\mathfrak{U}} \leq (G')^{\mathfrak{N}}$. Thus, $G^{\mathfrak{U}} = (G')^{\mathfrak{N}}$.

By Lemma 1.1 (3),

$$G' = A'B'[A, B] = (A')^G (B')^G [A, B].$$

The subgroups A' and B' are subnormal in G by [8, Theorem 1] and nilpotent, therefore $(A')^G(B')^G$ is normal in G and nilpotent by Lemma 1.3 (1). In view of Lemma 1.5 with $\mathfrak{X} = \mathfrak{N}$, we get

$$G^{\mathfrak{U}} = (G')^{\mathfrak{N}} = ((A')^{G}(B')^{G})^{\mathfrak{N}} [A, B]^{\mathfrak{N}} = [A, B]^{\mathfrak{N}}. \quad \Box$$

Corollary 2.1.1 Let G = AB be the mutually permutable product of the supersoluble subgroups A and B. If [A,B] is nilpotent, then G is supersoluble.

The class of all p-nilpotent groups coincides with the product $\mathfrak{E}_{p'}\mathfrak{N}_p$, where \mathfrak{N}_p is the class of all p-groups and $\mathfrak{E}_{p'}$ is the class of all p'-groups. A group G is p-supersoluble if all chief factors of G having order divisible by the prime p are exactly of order p. The derived subgroup of a p-supersoluble group is p-nilpotent [3, VI.9.1. (a)]. The class of all p-supersoluble groups is denoted by $p\mathfrak{U}$. It's clear that $\mathfrak{E}_{p'}\mathfrak{N}_{p} \subseteq p\mathfrak{U} \subseteq \mathfrak{E}_{p'}\mathfrak{N}_{p}\mathfrak{A}$.

Theorem 2.2. Let G = AB be the mutually permutable product of the p-supersoluble subgroups A and B. Then $G^{p\mathfrak{U}} = (G')^{\mathfrak{E}_p,\mathfrak{N}_p} = [A,B]^{\mathfrak{E}_p,\mathfrak{N}_p}$.

Proof. By Lemma 1.2,

$$(G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} = (G^{\mathfrak{A}})^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} = G^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} \cong G^{\mathfrak{p}\mathfrak{U}}.$$

Verify the reverse inclusion. The quotient group

$$G/(G')^{\mathfrak{E}_{p'}\mathfrak{N}_p}=$$

 $= (A(G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} / (G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}}) (B(G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} / (G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}})$ is the mutually permutable product of the *p*-supersoluble subgroups $A(G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} / (G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}}$ and $B(G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} / (G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}}$. The derived subgroup

$$(G/(G')^{\mathfrak{E}_{\rho}\mathfrak{N}_{\rho}})' = G'(G')^{\mathfrak{E}_{\rho}\mathfrak{N}_{\rho}}/(G')^{\mathfrak{E}_{\rho}\mathfrak{N}_{\rho}} =$$

$$= G'/(G')^{\mathfrak{E}_{\rho}\mathfrak{N}_{\rho}}$$

is *p*-nilpotent. By [8, Corollary 5], $G/(G')^{\mathfrak{E}_p,\mathfrak{N}_p}$ is *p*-supersoluble, consequently, $G^{p\mathfrak{U}} \leq (G')^{\mathfrak{E}_p,\mathfrak{N}_p}$. Thus, $G^{p\mathfrak{U}} = (G')^{\mathfrak{E}_p,\mathfrak{N}_p}$.

By Lemma 1.1 (3),

$$G' = A'B'[A, B] = (A')^G (B')^G [A, B].$$

The subgroups A' and B' are subnormal in group G [8, Theorem 1] and p-nilpotent [3, VI.9.1 (a)], hence $(A')^G(B')^G$ normal in G and p-nilpotent by Lemma 1.3 (2). In view of Lemma 1.5 with $\mathfrak{X} = \mathfrak{E}_{n'}\mathfrak{N}_n$, we get

$$G^{p\mathfrak{U}} = (G')^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} =$$

$$= ((A')^{G}(B')^{G})^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} [A, B]^{\mathfrak{E}_{p'}\mathfrak{N}_{p}} = [A, B]^{\mathfrak{E}_{p'}\mathfrak{N}_{p}}. \quad \Box$$

Corollary 2.2.1. Let G = AB be the mutually permutable product of the p-supersoluble subgroups A and B. If [A,B] is p-nilpotent, then G is p-supersoluble.

REFERENCES

- 1. *Doerk*, *K*. Finite soluble groups / K. Doerk, T. Hawkes. Berlin New York: Walter de Gruyter, 1992. 892 p.
- 2. *Monakhov*, *V. S.* Introduction to the Theory of Finite Groups and their Classes / V.S. Monakhov. Minsk: Vyshejshaja shkola, 2006. 207 p.
- 3. *Huppert*, *B*. Endliche Gruppen I / B. Huppert. Berlin Heidelberg New York: Springer, 1967. 796 p.
- 4. *Baer*, *R*. Classes of finite groups and their properties / R. Baer // Illinois J. Math. 1957. Vol. 1. P. 115–187.
- 5. Asaad, M. On the supersolubility of finite groups / M. Asaad, A. Shaalan // Arch. Math. 1989. Vol. 53. P. 318–326.
- 6. *Alejandre*, *M.J.* Permutable products of supersoluble groups / M.J. Alejandre, A. Ballester-Bolinches, J. Cossey // J. Algebra 2004. Vol. 276. P. 453–461.
- 7. *Ballester-Bolinches*, *A.* On products of supersoluble groups / A. Ballester-Bolinches, J. Cossey, M.C. Pedraza-Aguilera // Rev. Mat. Iberoamericana. 2004. Vol. 20. P. 413–425.
- 8. *Beidleman*, *J.C.* Mutually permutable subgroups and group classes / J.C. Beidleman, H. Heineken // Arch. Math. 2005. Vol. 85. P. 18–30.
- 9. *Ballester-Bolinches*, *A.* Products of Finite Groups / A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad. Berlin New York: Walter de Gruyter, 2010. 334 p.

Поступила в редакцию 12.06.17.