УДК 338(476):002

Б. В. Сорвиров

sorvirov@yandex.ru

Гомельский государственный университет им. Ф. Скорины, Беларусь

РАЗВИТИЕ ИНТЕЛЛЕКТУАЛЬНЫХ ТЕХНОЛОГИЙ

И МОДЕРНИЗАЦИЯ ИННОВАЦИОННОЙ ТЕХНОСФЕРЫ

В статье проанализирована проблема выявления технологической основы для взаимосвязи знания и коммуникации, учитывая своеобразие социокультурного статуса знания, рассматриваются основные этапы реа- лизации технологических инноваций в условиях интенсификации применения информационных технологий

В традиционной (как европейской, так и восточной) культуре знание носило созерца- тельный, спекулятивный характер и никогда не означало способности к действию. Знание, которое относилось к сфере конкретных умений и навыков, имевших практическую полез- ность, нельзя было объяснить словами ни в устной, ни в письменной форме; его можно было только показать. И только после того, как были открыты первые технические учебные заве- дения в XVIII веке, стало возможным не только накапливать знания для передачи их в форме внутрицеховой межличностной коммуникации (от мастера — к ученику, от отца — к сыну), но и транслировать на массовую аудиторию.

В результате между знанием и технологией постепенно сформировалось связующее звено в виде коммуникации, где знание стало выступать как продукт обмена в социальных взаимодействиях, а технология — способствовать оптимизации этих процессов. Объедине- ние знания и умения стало применяться для разработки орудий труда и новых видов продук- ции, а также анализа продуктивной деятельности и проектирования производственных про- цессов. Так знание стало одним из видов ресурсов и потребительской услугой, превратив- шись из частного товара в общественный. Это позволило создать условия для появления тех- нических изобретений и новшеств, привело к «промышленной революции» XVIII—XIX вв. и ра- дикальным общественным преобразованиям. Когда же возник и начал бурно развиваться информационный рынок, появились и информационные технологии — система организации и планирования деятельности по переработке, усвоению и хранению информации.

Информационные технологии позволяют максимально быстро и эффективно реализовы- вать инновации в общественной жизни, трудовой и бытовой деятельности людей. Инновации охватывают производственную и управленческую сферы, а также все области повседневной жизни в различных формах образования, общения, развлечения и т. д. Для их анализа могут использоваться следующие показатели технологического потенциала:

- 1) скорость передачи сообщений;
- 2) объём передаваемой информации;
- 3) ускорение процессов обработки информации;
- 4) рост использования обратных связей;

5) ускорение внедрения технических нововведений.

Данные параметры определяются функциональной спецификой самой технологии в про- цессе её использования для обработки различного рода информации. Так формируется информационная технология как способ оптимизации процессов обработки информации на базе соответствующего технического обеспечения (систем связи, вычислительной техники и пр.).

Выделяют следующие основные этапы реализации технологических инноваций:

- 1) техническая разработка (изобретение или усовершенствование более ранней технологии);
- 2) апробирование новой разработки на практике, ознакомление с предварительными результатами;
- 3) внедрение новой технологии в производство (её эксплуатация);
- 4) повсеместное её использование;
- 5) устаревание и необходимость модернизации технологии, после чего совершается обновление и переход к новому циклу технологических разработок.

Повсеместное распространение информационных технологий — закономерный итог первого этапа технологического развития общества, для которого характерно слияние зна- ния и умения, когда определённые результаты социальной практики стали фиксироваться в знаково-символической форме и транслироваться на массовую аудиторию.

На втором этапе происходит объединение науки и инженерии, которое привело к из- менению самой технологии и возникновению интеллектуальных разработок в области про- ектирования деятельности. Изменения как в технологии, так и в науке связаны с расшире- нием «поля отношений» теории и сферы её применения, вследствие чего становится воз- можным систематическая синергия в открытиях и разработках новых продуктов и теорий.

Определяя технологию как «инструментальный способ рационального действия», Д. Белл отмечает принципиально новые средства обработки и организации знания, которые он называет интеллектуальной технологией, поскольку они дают возможность поставить на место интуитивных суждений алгоритмы, то есть чёткие правила принятия решений: «Эти алгоритмы могут быть материализованы в автоматической машине, выражены в компьютер- ной программе или наборе инструкций, основанных на какой-либо статистической или ма- тематической формуле, представляющей собой способ формализации суждений и их стан- дартного применения во многих различных ситуациях». В итоге интеллектуальная техноло- гия становится на сегодняшний день основным инструментом управления организациями и предприятиями, приобретая столь же важное значение для «постиндустриального» общества, какое для общества «индустриального» имела технология машинная.

В качестве методологической основы инновационных процессов при получении нового зна- ния интеллектуальная технология реализуется как алгоритм, фиксирующий определённую последовательность действий, например: определение границ проблемного поля; разработка основ- ных понятий и системы отношений между ними; выявление противоречий в отношениях,

приво- дящее к проблематизации ситуации; постановка проблемы, которую требуется решить; построе- ние операциональной блок-схемы (топологического графа); конструктивное решение проблемы.

Приведём пример использования такого рода технологии, основанной на построении топологического графа как совокупности линий, соединённых в цепь того или иного вида. Применительно к области инновации такой технологией может служить предложенная А. В. Бондарёнком схема интеллектуальной системы переработки знаний, с помощью которой предполагается получать новые решения для поставленных задач (рисунок 1).

Рисунок 1 — Функциональная схема работы информационной системы решения инновационных задач

В качестве элементов данной системы могут использоваться семантический процессор, с помощью которого производится анализ естественного языка, словари, статистическая информация, наборы правил обработки текста и другие научные ресурсы. С их помощью в си- стеме переработки знаний анализируется представленная ей информацию и предлагается для рассмотрения исследователю уже в изменённом, структурированном виде. После внесения исследователем корректив в системе вновь перерабатывается информация. Этот процесс повторяется несколько раз. В итоге взаимодействия исследователя (пользователя системы) и самой системы появляется результат в виде нового решения или нового знания.

Осмысление накопленного опыта использования интеллектуальных технологий приво- дит к выводу — знание в слиянии с технологией становится уже не просто «знанием о тех- нологии», а «технологией знания», в результате чего складывается парадоксально- тавтологическая оценка сложившейся ситуации, при описании которой используют понятие

«добродетельного круга»: обработка информации сосредоточена на технологии улучшения обработки информации как источника производительности в «добродетельном круге» взаимодействия между знаниями как источниками технологии и применением технологии для улучшения генерирования знаний и обработки информации.

«Добродетельность» в данном случае проявляется в том, что переструктурирование по- лучаемой информации открывает дополнительные возможности её применения, а также оп- тимизации коммуникативных процессов, прогнозирования дальнейшего развития социаль- ных структур и общества в целом.

Экспликация сущностной взаимосвязи знания, коммуникации и технологии, таким обра- зом, приводит к их дальнейшей концептуальной инструментализации, главной целью которой становится освобождение технологии от своего «императивного» характера, почти полное превращение её в послушный инструмент. В итоге знание становится чисто инструменталь- ным, технологичным, ориентированным на его эффективное практическое применение.

Таким образом, знание неразрывно связано с технологией и может реализовываться только в коммуникации, будучи модульным по своей форме, то есть способным безболез- ненно встраиваться в любую систему, включаться в любой алгоритм деятельности.

С этой позиции новое знание всегда многофункционально (универсально) и операцио- нально, что способствует значительному увеличению и успешной реализации его инноваци- онного потенциала.

В самом общем виде информационную сферу общества можно рассматривать с пози- ции ресурсного или коммуникативного подхода.

При ресурсном подходе на первый план выступают представления об информационной среде прежде всего как о технической системе, предназначенной для накопления, хранения и использования информации в виде подробной и общедоступной базы данных, предоставляющей исчерпывающие сведения об окружающем мире.

При коммуникативном подходе информационная среда представляется как «среда обита- ния» человека, ориентированная на предоставление ему максимума возможностей для самореализации в процессе поддержания контактов с себе подобными в различных областях деятельности и группах по интересам. В таком случае информационные технологии рассматриваются прежде всего как средство передачи знаний и обмена сообщениями самого разного статуса, то есть как средство, позволяющее осуществлять прежде всего социокультурные функции.

Техносфера является одной из важнейшей составляющих информационной сферы со- временного общества и её материальной базой, без которой немыслима сама возможность организации данной области в качестве социальной подсистемы. Под ней принято понимать новую инструментально-техно-логическую среду в социальном пространстве, которая предстаёт как совокупность создаваемых человеком технических средств информатизации общества и информационных технологий, обеспечивающих возможности их использования. С их помощью населению могут предоставляться самые разнообразные информационные продукты и услуги (передача, сохранение и копирование данных, служба новостей и конфе- ренций, доступ к файлам и документам, удалённая обработка данных и т. п.).

В качестве основных компонентов информационной техносферы современного обще- ства можно выделить следующие: полиграфическая, копировальная и другая оргтехника, предназначенная для документирования и размножения информации; оптическая и проек- ционная кино- и фотоаппаратура, а также средства записи и воспроизведения звука; вычис- лительная техника и программные средства, обеспечивающие возможность получения, хра- нения и обработки информации для её представления в электронном виде; первичная сеть проводных, спутниковых, оптоволоконных, радиорелейных и других видов каналов связи, предназначенных для передачи информации; системы телевидения и радиовещания, теле- фонной, телеграфной и радиосвязи, а также локальные и глобальные сети электронной свя- зи.Таким образом, информационная техносфера представляет собой совокупность новых ин- струментальных средств, которые созданы человеком для овладения информацией и её ис- пользования в целях жизнеобеспечения и дальнейшего развития общества.

С тех пор как в 1951 году в США была создана первая коммерческая ЭВМ коммерческого назначения UNIVAC, модернизация области информационных технологий стала осуществлять- ся всё более ускоряющимися темпами, охватывая все социальные сферы. Так, до 60-х годов это были преимущественно разработки в рамках военно-промышленного комплекса (атомное и термоядерное оружие, ракетные и аэрокосмические системы и пр.), в 70-х годах информатизация и автоматизация всё больше охватывают промышленное производство (системы автоматизации проектирования и управления технологическими процессами, гибкие автоматизированные производства и пр.), в 80-х годах возникает необходимость перевода в электронную форму информационных ресурсов в финансово-экономической и деловой сфере, а к середине 90-х годов ло-

кальные корпоративные базы данных стали интегрироваться в региональные и глобальные сети, объединяясь в единую информационную систему. В настоящее время в сфере информационно- го производства отмечается устойчивая тенденция к доминированию информационных продук- тов и технологий (55%) над производством информационной техники (45%). В ближайшие годы эта тенденция, безусловно, сохранится. Соответственно в развитии связи и телекоммуникаций доля производства технических средств составляет сегодня не более 20%, в то время как доля информационных услуг уже достигла 80% и продолжает возрастать.

Таким образом, возможности различных государств формировать информационные ре- сурсы и эффективно использовать их в процессе своего развития существенным образом за- висят от уровня развития информационной техносферы, использования в ней последних до- стижений в области наукоёмкого производства и интеллектуальных технологий. Поэтому наиболее эффективной стратегией инновационного развития инфосферы в современном об- ществе можно считать ту, которая направлена на актуализацию информационного потенциа- ла страны в целях наиболее полного использования имеющихся в её распоряжении ресурсов на основе цифровой вычислительной техники и системы информационных коммуникаций (телефонная и радиосвязь, телевидение и компьютерные телекоммуникационные системы).

При этом в формально-организационном отношении информационные ресурсы и информационный потенциал общества также могут рассматриваться под несколько иным углом зре- ния – как две составные части в структуре информационной техносферы, где под ресурсами принято понимать уже сложившуюся на данный момент информационную инфраструктуру, рынок и услуги, а в качестве потенциала выступает система интеллектуальных технологий как средств возможной реализации и эффективного использования информационных ресурсов. В таком случае информационный потенциал предстает в качестве возможности, ориентирован- ной на будущее, которая может реализоваться в виде различных технологических проектов в инфосфере, и поэтому может рассматриваться как источник инноваций, в том числе и в об- ласти модернизации информационной техносферы. Другими словами, информационный по- тенциал есть потенциал инновационного развития социума в условиях его интенсивной ин- форматизации – становления и развития информационного пространства современного об- щества. Поэтому в данном случае для более удобной детализации и различения понятий

«ресурсы» и «потенциал» будут использоваться категории «информационные ресурсы», «инновационный потенциал общества».

Для реализации инновационного потенциала в области информационной техносферы необходимо решить ряд крупномасштабных задач:

- □ проведение системных исследований для определения оптимальной структуры и стратегии развития национального парка средств вычислительной техники и информатики, которые необходимы для решения задач социально-экономического, научного и культурного развития конкретной страны, её регионов и сфер деятельности людей;
- организация автоматизированного проектирования и массового промышленного производства высоконадёжных средств вычислительной техники, персональной информати- ки и связи, а также их программного обеспечения;

□ создание и развитие интегрированной телекоммуникационной среды общества на основе спутниковых и оптиковолоконных систем связи и перспективных информационных технологий их использования, обеспечивающих информационное взаимодействие с соответ- ствующими международными системами;

Результатом осуществления данной стратегии реализации инновационного потенциала в современном обществе должно стать интенсивное модернизационное развитие техносфе- ры и децентрализация информационной инфраструктуры, что в дальнейшем приводит к закономерной трансформации самой социальной структуры. Метафорой этого процесса стал образ «сети», то есть разветвлённой децентрализованной системы, воспроизводящей в своей конфигурации специфику пространственного взаиморасположения и функционального согласования элементов информационной инфраструктуры.

Литература

- 1. Romer P. M. Growth Based on Increasing Returns Due to Specialization . American Economic Review. 1987. –
- 2. Russo R., Clara M., Gulati M. Cluster Development and Promotion of Business Development Services: UNIDO's Experience in India // The United Nations Industrial Development Organization. URL: http://www.unido.org/fileadmin/import/userfiles/puffk/psd_twp6.pdf (дата обращения: 18.08.2009).
- Shannon C. A. Mathematical Theory of Communication // Bell System Technical Journal. 1948.
 Nº 27. P. 379–423, 623–656.
- 4. Simmie J. Innovative Cities. N.Y.: Routledge. 2001. 272 p.
- 5. Smith P. An Introduction to Godel's Theorems. Cambridge: Cambridge University Press, 2007.

376 p.

6. Solow R. Comments on Papers by Saint-Paul, Aghion, and Bhide // Capitalism and Society. – 2007. – № 1. – P. 3.