Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

Г. А. БАЕВИЧ, М. Т. БАРАНОВ, И. В. СЕМЧЕНКО Т. А. БАЕВИЧ, М. Т. БАРАНОВ, И. В. СЕМЧЕНКО Т. А. БАЕВИЧ, М. Т. БАРАНОВ, И. В. СЕМЧЕНКО общая физи ПРАКТИЧЕСКОЕ ПОСОБИЕ по электричеству и магнетизму для студентов PEHO3MOPH зических специальностей

Гомель УО «ГГУ им. Ф. Скорины» 2010

УДК 537(075.8) ББК 22.33я73 Б 158

Рецензенты:

Г. С. Митюрич, проректор по научной работе УО «Белорусский торгово-экономический университет потребительской кооперации», доктор физ.-мат. наук, профессор;

кафедра общей физики учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Рекомендовано к изданию научно-методических советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Баевич, Г. А.

Б 158 Общая физика : практическое посебне по электричеству и магнетизму для студентов физических специальностей университета / Г. А. Баевич, М. Т. Баранов, И. В. Семченко; М-во образования РБ, Гомельский государственный университет им. Ф.Скорины. – Гомель ТУ им. Ф. Скорины, 2010. – 148 с. ISBN 978–985–439–440 ф

Практическое пособке ставит целью оказание помощи студентам физических специальностей в изучении основных явлений электромагнетизма и методов проведения физического эксперимента в ходе лабораторного практикума.

> УДК 537(075.8) ББК 22.33я73

261103111081

© Баевич Г. А., Баранов М. Т., Семченко И. В., 2010

© УО «Гомельский государственный университет имени Франциска Скорины», 2010

ISBN 978-985-439-440-4

Содержание

Введение	9	4		
Тема 1	Изучение электроизмерительных приборов	5		
Тема 2	Изучение сегнетоэлектриков	23		
Тема 3	Определение удельного заряда электрона	33		
Тема 4	Изучение распределения магнитного поля внутри соленоида	41		
Тема 5	Изучение явлений взаимной индукции	50		
Тема 6	Изучение вакуумного диода	56		
Тема 7	Изучение явления магнитного гистерезиса	69		
Тема 8	Изучение работы конденсатора	79		
Тема 9	Изучение работы простых цепей	86		
Тема 10	Изучение затухающих колебаний	96		
Тема 11	Изучение вынужденных колебаний	104		
Тема 12	Изучение релаксационных колебаний	112		
Тема 13	Исследование связанных колебательных контуров	118		
Тема 14	Изучение электростатических полей.	125		
Тема 15	Определение горизонтальной составляющей индукции магнит-			
	ного поля Земли	131		
Тема 16	Изучение работы биполярного транзистора	137		
Литература 14				
•••••••••		1.0		
	\sim			
$\mathcal{R}^{\mathbf{v}}$				
$(\mathbf{\hat{O}}^{\mathbf{\hat{D}}^{\mathbf{Y}}})$				
ov,				
Υ, '				

Введение

В соответствии с учебным планом специальностей 1-31 04 01-02 «Физика (производственная деятельность)», 1-31 04 01-03 «Физика (научно-педагогическая деятельность)» и 1-31 04 01-04 «Физика (управленческая деятельность)» изучение курса «Электричество и магнетизм» сопровождается лабораторными работами. Для проведения работ в практикуме используется типовое оборудование, разработанное ВНПО «Союзвузприбо», а также разработанное в лаборатории нашего вуза.

Описание и методика проведения этих работ даны в настоянием практическом пособии. Каждая работа содержит краткое изложение сущности изучаемых явлений, сведения об экспериментальной методике, положенной в основу лабораторной работы, подробное описание проведения измерений, дается описание используемых приборов.

Выполнение каждой лабораторной работы связано с необходимостью предварительного изучения определенной теоретической части курса. Необходимо помимо данного пособия ознакомиться с соответствующим разделом учебника и конспектом лекций, т. с разобраться в том, какое явление изучается, какие величины измеряются:

С первых задач практикума студент вучает современные измерительные приборы: цифровые комбинированные вольтметры, низкочастотные генераторы синусоидального и крямоугольного сигналов, двухканальные осциллографы.

Работа в лаборатории является одним из основных элементов процесса изучения физики, поскольку учит самостоятельно воспроизводить и анализировать важнейшие физические явления, получать правильные числовые значения измеряемых величин, сопоставлять их с имеющимися теоретическими соотношениями.

Каждая лабораторная работа рассчитана на одно занятие продолжительностью четыре академических часа, а первая работа «Изучение электроизмерительных приборов» – на два занятия такой же продолжительности.

Канное практическое пособие написано авторами на основании многолето опыта проведения лабораторных работ по курсу «Электричество и магнетизм».

Тема 1 Изучение электроизмерительных приборов

1 Классификация и принцип действия электроизмерительных приборов

- 2 Устройство и принцип работы приборов комбинированного типа
- 3 Устройство и принцип работы электронного осциллографа
- 4 Устройство низкочастотного генератора

Основные понятия по теме

KOPMHD Электроизмерительным прибором называется устройство, предназначенное для измерения электрических величин ска, напряжения, сопротивления и т. п. Электроизмерительные приборы подразделяются на приборы непосредственной оценки и приборы сравнения. В приборах первого типа измеряемая величина оточитывается по показаниям предварительно проградуированных приборов, в приборах второго типа в процессе измерения производ бу прямое сравнение с эталонной мерой.

Электроизмерительные прикоры классифицируются по следующим основным признакам:

- по роду измеряемой величины: амперметры, вольтметры, омметры, счетчики, ваттметры и др.;

- по роду тока: приборы постоянного тока, переменного тока, приборы постоянного и переменного тока;

 по приними действия: магнитоэлектрические, электромагнитные, индукционные, тепловые, электростатические, электродинамические и др. (таблица 1.1);

постепени точности: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0 классов. Приборы кнасса точности 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными.

В соответствии с классификацией и принципом действия на шкалах приборов наносятся следующие обозначения:

– символ, указывающий род измеряемой величины: А – амперметр, V- вольтметр, W - ваттметр и т. д.;

- символ рода тока: постоянный (-) или переменный (~);

– символ способа установки прибора: \bot – вертикально, Π – горизонтально;

- пробивное напряжение изоляции;

- класс точности 0,1; ...; 4,0.

Таблица 1.1 – Принцип действия электроизмерительных приборов

Система прибора	Условное обозначение прибора	Знак на шкале прибора
Электромагнитная		Ток: – постоянный ——
Магнитоэлектрическая		– переменный – трехфазный
Электродинамическая		Зажим:
Индукционная	O ar	с корпусом
Вибрационная		Установка прибора:
Выпрямительная		– вертикальная – горизонтальная
Термоэлектричекая		– под углом 🥢
Ферродинамическая		Измерительная цепь изолирована от корпуса и испытана напряжением 2кВ
Электростатическая		$\sum_{i=1}^{n}$

Из основных технических требований, предъявляемых к электроизмерительным приборам, следует указать на следующее: необходимо, чтобы прибор потреблял малую мощность и не вносил заметных изменений в электрическую цепь.

Электроизмерительные приборы состоят из неподвижной и подвижной частей. При измерениях вращающий момент подвижной части уравновешивается противодействующим моментом пружины или какого-либо другого устройства. При таком равновесии показатель прибора фиксирует определенный угол поворота. Устанавливая однозначную зависимость между углом поворота указателя прибора и численным значением измеряемой величины, можно построков шкалу, по которой производится отсчет измеряемой величины. Трение в опорах деталей влияет на показания прибора, т. е. вносит погрешность. Поправки к показанию прибора могут быть заранее обределены путем соответствующей проверки данного прибора.

Величина, численно равная отношению приранения угла поворота подвижной части прибора к приращению измеряемой величины, называется чувствительностью прибора.

Чем больше приращение угла откранения при одном и том же приращении измеряемой величины, от меньшие величины можно измерять прибором и тем выше чувствительность. Если, например, приращение угла $d\varphi$ вызвано приращением тока dI, то чувствительность определяется как

$$S = \frac{d\varphi}{dI}.$$

Величина С называется ценой деления прибора. Она определяет значения электрической величины, вызывающей отклонение на одно деление. Например, имеем прибор, который может измерять напряжение 0... 250 В, шкала этого прибора разделена на 50 мелких делении. Чувствительность этого прибора

$$S = \frac{50}{250} = 0.2 \frac{\ddot{a}\ddot{a}\ddot{e}}{\hat{A}}.$$

Цена деления

$$C = \frac{1}{S} = \frac{250}{50} = 5\frac{B}{\ddot{a}\ddot{a}\ddot{e}}.$$

Шкала прибора служит для проведения отсчета измеряемой величины. Цифры возле делений обозначают либо число делений от

нуля шкалы, либо непосредственное значение измеряемой величины. В первом случае для получения значения измеряемой величины в практических единицах нужно определить цену деления шкалы прибора (иногда называемой постоянной прибора) и умножить ее на число отсчитанных делений. При отсчете луч зрения должен быть перпендикулярен шкале, иначе возможна погрешность от параллакса. При отсчете по зеркальной шкале глаз наблюдателя должен быть расположен так, чтобы конец стрелки покрывал свое изображение в зеркале. Зеркальные шкалы позволяют избежать параллакса. В целях сокращения промежутка времени, необходимого для успокоения полякиюй части прибора (после включения), имеются специальные тормозящие устройства (демпферы).

Приборы магнитоэлектрической системы

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с током, протекающим по обмотке легкой подвижной катушки (рамки).

Рисунок 1. К Хема прибора магнитоэлектрической системы

На рихике 1.1 показана схема устройства приборов этой системы. Неподчижный подковообразный магнит A имеет выполненные из мяского железа полюса B, которые охватывают сплошной железный сордечник C. Между сердечником и полюсами магнита имеется кольцевой зазор. На одной оси с сердечником находится подвижная легкая прямоугольная рамка, имеющая обмотку из тонкого изолированного провода. Эта рамка может свободно вращаться в воздушном зазоре между сердечником и полюсами магнита. Рамка представляет собой основную часть подвижной системы, которая включает и указатель-стрелку S. Подвижная система с основным механическим приспособлением состоит из спиральных пружин, выполненных из немагнитного материала, которые и служат для подвода тока к концам обмотки на рамке и для оказания противодействия вращению рамки.

В результате взаимодействия магнитного поля магнита с током возникает вращающий момент, под действием которого подвижная часть приборов поворачивается вокруг оси. Противодействующий момент создается пружинами, через которые подводится ток к обмотке.

В приборах магнитоэлектрической системы вращающий момент пропорционален величине проходящего тока $M_1 = k_1 I$.

Так как противодействующий момент M_2 , создаваемый спиральными пружинами, пропорционален углу закручивания $M_2 = k_2 \alpha$, то уког отклонения катушки, а, следовательно, и скрепленной с нею стрежи, будет пропорционален величине протекающего по обмотке тока

$$\alpha = kI,$$

где $k = \frac{k_1}{k_2}$ – коэффициент пропорциональности зависящий от конструкции прибора.

Линейная зависимость между током и илом отклонения обеспечивает равномерность шкалы. Корректор позволяет изменить положение закрепленного конца одной из спиральных пружинок и тем самым производить установку стретки прибора на нуль. В силу того, что каркас подвижной катушки спелан из алюминия, то возникающие в нем при движении в магнитеем поле индуктивные токи создают тормозящий момент, что обусловливает быстрое успокоение.

Достоинствами магнитоэлектрических приборов являются: высокая чувствительность, то ность показаний, чувствительность к внешним магнитным полям, малое потребление энергии, равномерность шкалы, апериодичность (стрелка быстро устанавливается на соответствующее деление почть без колебаний). К недостаткам приборов этой системы относятся: возможность измерения только в цепи постоянного тока, чувствительность к перегрузкам.

Сотасть применения магнитоэлектрических приборов весьма обинича. Они применяются в качестве амперметров, вольтметров постоянного тока, как при технических измерениях, так и при контрольных лабораторных измерениях. При непосредственном включении миллиамперметры и амперметры магнитоэлектрической системы позволяют измерять токи от 1 до 1000 A, а с применением шунта – до нескольких тысяч ампер. Вольтметры этой системы при непосредственном включении дают возможность измерять напряжение от 0,1 до 600 B, а с применением дополнительного сопротивления – до 10 000 B и более.

9

Приборы электромагнитной системы

Принцип работы приборов электромагнитной системы основан на взаимодействии магнитного поля тока, протекающего по обмотке неподвижной катушки с подвижным железным сердечником, помещенным в это магнитное поле. На рисунке 1.2 показана схема устройства прибора электромагнитной системы.

Прибор состоит из прямоугольной катушки a с узкой щелью. Сердечник B изготовлен из мягкого железа и укреплен эксцентрично на оси. С осью сердечника скреплены: стрелка S, поршень воздужного успокоителя d и спиральная пружина f, создающая противодействующий момент.

Ток, протекающий по катушке *a*, образует внутри нее магнитное поле, под действием которого железный сердечник, поворачиваясь вокруг оси, втяривается в щель катушки, и увеличивается намагничивание железного сердечника.

При поророте сердечника поршень встречает сопротивление воздуха, вспедствие чего колебания подвижной части быстро затухают. Маганкное поле катушки и намагничивание железного сердечника профорциональны току. Поэтому можно приближенно считать, что вращающий момент пропорционален квадрату тока $M_1 = k_1 I^2$, где k_1 – коэффициент пропорциональности, зависящий от конструкции прибора.

Противодействующий момент M_2 , создаваемый пружиной, пропорционален углу поворота подвижной части прибора: $M_2 = k_2 \alpha$, где k_2 – коэффициент пропорциональности, зависящий от упругих свойств пружины. Равновесие подвижной части прибора определяется равенством моментов, действующих на нее в противоположных направлениях, т. е.

$$M_1 = M_2$$
, откуда $\alpha = k_1 I^2$, где $k = \frac{k_1}{k_2}$.

Следовательно, шкала прибора неравномерная.

С изменением направления тока меняется одновременно как направление магнитного поля, так и полярность намагничивания сердечника, поэтому приборы электромагнитной системы применяются для измерения как на постоянном, так и на переменном токе низкой частоты.

Достоинствами приборов электромагнитной системы являются: возможность измерения переменного и постоянного тока, простота конструкции, выносливость в отношении перегрузок.

К недостаткам приборов этой системы относятся: неравномерность шкалы, меньшая точность, чем в магнитоэлектрических приборах, зависимость показаний от внешних магнитных полей. Электромагнитные амперметры и вольтметры получили широкое применение как щитовые приборы для переменного тока. Пределы измерения у амперметров от 6 до 200А, у вольтметров от 3 до 600 В.

Приборы электродинамической системы

Принцип действия электрохинамических приборов основан на взаимодействии токов, протекающих по двум рамкам (катушкам 1), из которых одна подвижная, другая неподвижная. На рисунке 1.3 показана схема устройства прибора электродинамической системы.

Рисунок 1.3 – Схема прибора электродинамической системы

Неподвижная катушка 1 состоит из двух разделенных небольшим зазором одинаковых частей, обмотки которых соединены последовательно между собой. Внутри неподвижно закрепленной катушки 1 может вращаться на оси подвижная катушка 2, с которой жестко связана стрелка 3, перемещающаяся над шкалой. Противодействующий момент создается спиральными пружинами 4. Измеряемый ток проходит через обе катушки. В результате взаимодействия магнитного поля неподвижной катушки и тока в подвижной создается вращающий момент M_1 , под влиянием которого подвижная катушка будет стремиться повернуться так, чтобы плоскость ее витков стала параллельна плоскости витков неподвижной катушки, а их магнитные поля совпадали бы по направлению.

Этому противодействуют пружины, вследствие чего подвожная катушка устанавливается в положение, когда вращающий момент становится равным противодействующему. Вращающий момент M_1 , обусловленный взаимодействием магнитных потоков, равон:

$$M_1 = k_1 I_1 I_2,$$

где: I_1 – величина тока, протекающего по ненодвижной катушке;

*I*₂ – величина тока, протекающего по полижной катушке;

 k_1 — коэффициент пропорциональноски, зависящий от конструкции прибора.

Под действием *M*₁ подвижная рамка повернется на угол α, тогда создаваемый пружиной противодействующий момент удовлетворяет соотношению

$$M_2 = k_2 \alpha.$$

Из условия равенства моментов получаем, что $\alpha = kI_1I_2$, где $k = \frac{k_1}{k_2}$.

Из формулы вихно, что шкала электродинамического прибора неравномерная. Орнако подбором конструкции катушек можно улучшить шкалу, т. е. приблизить к равномерной.

В зависимости от назначения приборов рамки соединяют или параллельно, или последовательно. Если катушки прибора соединены параллельно, то он может быть использован как амперметр. Если же катушки соединить последовательно и присоединить к ним добавочное сопротивление, то прибор может быть использован как вольтметр.

Электродинамические приборы применяют для измерения постоянного и переменного токов (амперметры, вольтметры, ваттметры).

Пригодность этих приборов для переменного тока обусловлена тем, что при одновременном изменении направления тока в обеих рамках направление вращения подвижной части остается неизменным.

Достоинствами приборов электродинамической системы являются: возможность измерения как на постоянном, так и на переменном токе,

достаточная точность. К недостаткам приборов этой системы относятся: неравномерность шкалы амперметров и вольтметров, чувствительность к перегрузкам.

Приборы других систем

Тепловая система – принцип действия приборов основан на изменении длины проводника при его нагревании. Приборы могут измерять и постоянные, и переменные токи.

Индукционная система – принцип действия приборов основан на взаимодействии токов, индуцируемых в подвижной части прибора магнитным потоком неподвижных электромагнитов. К индукционной системе принадлежат электрические счетчики переменного тока.

Вибрационная система основана на резонансе при совпадении частот собственных колебаний подвижной части прибора с частотой переменного тока. Приборы этой системы примененотся для измерения частоты тока.

Амперметры, вольтметры, гальватометры

Амперметрами называются криборы, служащие для измерения величины тока. При измерении амперметр включают в цепь последовательно, т. е. так, что весь измеряемый ток проходит через амперметр. Амперметры должны иметь малое сопротивление, чтобы включение их не изменяло заметно величины тока в цепи.

Слабые токи измеряют обычно амперметрами магнитоэлектрической системы, которые имеют высокую чувствительность. Такие приборы называют миллиамперметрами (токи до 10⁻³A) и микроамперметрами (токи до 10⁻⁶ A).

Вольтистрами называются приборы, служащие для измерения напряжения. При измерениях вольтметр включают параллельно к тому участку цепи, на концах которого хотят измерить напряжение.

кима цепи, сопротивление вольтметра не изменяло заметно режима цепи, сопротивление вольтметра должно быть очень велико по сравнению с сопротивлением участка цепи. Для расширения пределов измерения амперметров и вольтметров применяют шунты и добавочные сопротивления, а в случае измерения на переменном токе – измерительные трансформаторы тока.

Гальванометрами называют чувствительные приборы, служащие для измерения весьма малых токов, напряжений и количеств электричества (соответственно меньше 10⁻⁶ ампера, вольта или кулона).

По принципу действия и устройства гальванометры бывают магнитоэлектрическими с подвижной катушкой, магнитоэлектрическими с подвижным магнитом.

По роду измеряемого тока гальванометры разделяются на магнитоэлектрические и вибрационные (резонансные). Первые применяются для измерения тока и напряжения в цепи постоянного тока, вторые употребляются преимущественно в качестве указателей отсутствия тока при измерениях в цепях переменного тока по так называемому нулевому методу.

Приборы комбинированного типа

Стрелочные комбинированные приборы (рисунос 1.4). Действие данных приборов основано на том, что при пропускании тока через катушку, механически соединенную со стрелкой и помещённую в постоянное магнитное поле, создается вращающий момент, который поворачивает катушку на угол, прямо пропорциональный значению тока. При подключении к прибору соответствующим образом резисторов можно измерять напряжения и сопротивления.

Рисунок 1.4 Общий вид стрелочного комбинированного прибора

С полощью приборов данного типа можно измерить:

ока с пределами измерений 0, 10; 100; 500 мА;

- напряжение постоянного и переменного тока с пределами измерений 0,5; 2,5; 5; 25; 50; 250; 500 В;

сопротивление постоянному току с пределами измерений 0,1; 10;
 100; 1 000; 10 000 кОм.

Универсальные цифровые вольтметры и мультиметры (рисунок 1.5). Принцип действия вольтметра состоит в преобразовании измеряемой величины (переменного напряжения, постоянного тока,

переменного тока и сопротивления) в постоянное напряжение с последующим его измерением аналого-цифровым преобразователем (АЦП) интегрирующего типа (рисунок 1.6).

лектронный переключатель вначале находится в положении 1, подключая источник измеряемого напряжения U_x к интегратору (обычно это операционный усилитель с емкостной обратной связью). На выходе интегратора формируется линейно изменяющееся напряжение, скорость нарастания которого пропорциональна U_x . Как только сигнал на выходе интегратора составит несколько милливольт, включается компаратор напряжения. При этом на выходе логической схемы И возникает последовательность тактовых импульсов, число которых считается двойным счетчиком. Счет ведется до момента времени t_1 (рисунок 1.7), в который логический детектор счетчика переключает электронный ключ в положение 2.

При этом опорное напряжение U_{0n} , имеющее полярность, противоположную U_x , подается на интегратор, на выходе которого формируется линейно падающее напряжение. В момент времени t_2 напряжение упадет до нуля, и компаратор остановит счетчик. Если измеряемое напряжение за прошедшее время измение свое значение, счетчик выполняет новый отсчет.

Современные цифровые вольстеры обеспечивают точность измерений 0,01–0,001 %.

Технические данные вопытиетров отличаются в зависимости от реализации конкретной модели.

Генераторы сигналов (рисунок 1.8). Генератор сигналов низкочастотный представляет собой источник синусоидального (основной режим) и прямоугольного (дополнительный режим) сигналов и предназначен для исследований, настройки и испытания различных систем и приборов.

Рисунок 1.8 – Общий вид генератора сигналов

Генератор состоит из задающего генератора (ЗГ), формирователя прямоугольного сигнала (ФП), плавного регулятора напряжения (РН), усилителя мощности (УМ), аттенюатора (А) и стабилизированного источника питания (СИП).

Задающий генератор представляет собой перестраиваемый по частоте *RC*-генератор с автоматической стабилизацией амплитуды выходного сигнала. Через гнездо «синхр» генератор синхронизируется синусоидальным сигналом от внешнего источника.

Осциллографы (рисунок 1.9). Осциллограф предназначен така визуальных наблюдений и исследований электрических сисиалов во времени. С его помощью можно производить измерения напряжений, сдвига фаз, частоты, параметров импульсов и т. д.

Осциллограф костоит из трех основных узлов: осциллографической трубки совместно со схемой её питания, а также канала вертикального отклонения X, канала горизонтального отклонения X и канала управления яркостью Z (рисунок 1.10).

Отклонение луча по вертикали происходит при воздействии исследусмого сигнала на вертикально отклоняющие пластины электронно лучевой трубки. Канал вертикального отклонения включает входной делитель напряжения (аттенюатор), позволяющий уменьшить амплитуду исследуемого сигнала, и широкополосный усилитель *Y*, имеющий плавную регулировку усиления. Отклонение луча по горизонтали происходит при воздействии на горизонтально отклоняющие пластины электронно-лучевой трубки пилообразного напряжения развертки от внутреннего генератора развертки или любого внешнего напряжения, поданного на вход *X*. Канал горизонтального отклонения включает усилитель X и генератор развертки. Плавная регулировка усиления («Усиление» или «Ампл. синхр.») позволяет изменить уровень синхронизирующего напряжения. Генератор развертки имеет ступенчатую и плавную регулировки частоты. Для получения неподвижного изображения следует отрегулировать частоту развертки так, чтобы она стала равной частоте исследуемого сигнала или в n раз меньше ее (где n = 1, 2, 3 и т. д.). Частота развертки может самопроизвольно меняться, и фигура перестает быть неподвижной. Для сохранения неподвижности фигуры на генератор развертки подают синхронизирующее напряжение: используют исследуемый сигнал («Внутр»), напражение внешнего источника («Внешн») или сеть («От сети»).

Рисунок 1.10 – Структурная схема осциллографа

⁷Ждущий режим генератора развертки применяют для наблюдения кратковременных импульсов, которые при непрерывной развертке четко не наблюдаются. Исследуемый импульсный сигнал вызывает отклонение луча по вертикали и одновременно запускает генератор развертки. Подключая период ждущей развертки, можно менять скорость движения луча по горизонтали и наблюдать импульс в разном масштабе времени.

Вопросы для самоконтроля

1 Приведите классификацию и объясните принцип действия электроизмерительных приборов.

2 Опишите принцип действия приборов комбинированного типа.

3 Объясните принцип работы электронно-лучевой трубки.

4 В чем заключается назначение генератора развертки?

5 Как получить устойчивое изображение сигнала на экране осщил-KOPMHD лографа.

Лабораторная работа 1

Изучение принципа работы электроизмерил приборов

Цель работы: изучить электроизмерительный прибор комбинированного типа (авометр), цифровой вольтметр, низкочастотный генератор, осциллограф, получить навыки орактической работы с этими приборами.

Приборы и принадлежностих источник питания, авометр 43208, вольтметр цифровой В7-40, вольтметр цифровой В7-35, низкочастотные генераторы ГЗ-112/1 и 3, осциллограф С1-117.

Ход работы

вометром типа 43208. Запишите его технические 1 Ознакомы характеристики

омендации при измерениях. Обшие

Передузмерением переключатель диапазонов установить в полосоответствующее ожидаемому значению или максимальному жение значению измеряемой величины, затем кнопочным переключателем установить род измеряемого тока (« – » или « ~ »). После этого прибор можно подключать к исследуемой схеме. При измерении сопротивлений следует ручкой переменного резистора при разомкнутых входных зажимах установить стрелку прибора на отметку «∞» шкалы « Ω » и на отметку «0» шкалы «к Ω », « $M\Omega$ » при замкнутых входных зажимах. Особенно будьте внимательны при измерении тока, чтобы вместо тока не подать напряжение в измерительную цепь. Это может привести прибор в негодность, несмотря на наличие автоматической защиты. Никогда не измеряйте сопротивление резистора в схеме, находящейся под напряжением.

2 Ознакомьтесь с вольтметром цифровым В7-40. Запишите его технические характеристики.

3 Ознакомьтесь с вольтметром цифровым В7-35. Запишите его технические характеристики.

Общие рекомендации при измерениях цифровыми вольтметроми.

– Не допускать попадания на вход «I», «0» напряжения боле 0,6В!

– При измерении сопротивлений не допускать попадания напряжения на гнезда «U,R» и «0».

– При измерении постоянного и переменного накряжений вольтметр выдерживает нагрузку в течение одной минукы.

– Если вольтметр показывает перегрузку нигающее показание «0000» на индикаторном табло), отсоедините вольтметр от объекта измерений.

– Для проведения измерений нажоды клавишу «род работы» и клавишу «пределы» – «АВП».

4 Ознакомьтесь с генераторами сигналов ГЗ-112/1 и ГЗ-123. Запишите их технические характеристики.

Рекомендации при измерениях.

1 Для подсоединения генератора к исследуемой цепи следует «Выход» генератора сосоинить с исследуемой цепью. Будьте внимательны! Проводник генератора «земля» («⊥») необходимо соединить только с «землей» исследуемой цепи, а другой проводник выхода генератора (обычно крисного цвета) соединяется с входом исследуемой схемы.

2 При необходимости получить малые выходные напряжения (<1,255) ручкой «Ослабление, dB» установите одно из положений «45,20,30,40,50,60,70».

5 Ознакомьтесь с осциллографом С1-117. Запишите его технические характеристики.

Проведение измерений осциллографом С1-ІІ7.

1 Подайте на вход канала А (Б) исследуемый сигнал.

2 Переключатель СИНХР РЕЖИМ установите в положение А (Б).

3 Переключатель РЕЖИМ РАЗВЕРТКИ установите в положение ABT.

4 Переключатель режима синхронизации установите в положение *ВНУТР*.

5 Переключатель U/den канала A(E) и ручку « \ddagger » установите в положение, обеспечивающее получение удобного для наблюдения размера изображения на экране электронно-лучевой трубки (ЭЛТ).

6 Ручкой *УРОВ* установите неподвижное изображение на экране ЭЛТ, а ручкой *ВРЕМЯ/дел* – удобный для наблюдения период сигнала.

7 Определите визуально линейные размеры последующего сигнала и путем умножения на соответствующий коэффициент получите плитуду сигнала.

8 Аналогично измеряются и временные интервалы.

9 При измерении временных интервалов менее 1 мкс ручку «X10» установите в отжатое положение (коэффициент развёртки при этом уменьшается в 10 раз).

Цифровые измерения амплитуды сигнала.

1 Исследуемый сигнал подайте на вход качала В.

2 Переключатель СИНХР РЕЖИМ установите в положение В.

3 Переключатель режима развертки установите в положение *АВТ*.

4 Переключатель режима синхроновации установите в положение *ВНУТР*.

5 Ручку «TU» установите в коложение «U».

6 Ручкой «\$» совместите от у из точек измеряемого по амплитуде участка сигнала с горизонтальной линией шкалы ЭЛТ.

7 Ручкой «УСТ 0» хстановите нуль (с точностью единицы последнего разряда) на цифровом индикаторе.

8 Ручкой «[‡]» совместите вторую точку измеряемого по амплитуде участка изображения сигнала с той же горизонтальной линией шкалы ЭЛТ.

9 Проитите на цифровом индикаторе значение измеряемого параметра амплитуды сигнала.

Кекомендации при измерениях

С помощью осциллографа можно измерять сдвиг фаз между двумя синусоидальными напряжениями U_1 и U_2 . Изображение двух сигналов можно получить в двухлучевом осциллографе или поочередным подключением на вход Y сигналов U_1 и U_2 в однолучевом осциллографе. Но чаще всего однолучевой осциллограф (например C1-117) снабжается коммутатором, и он поочерёдно подключает сигналы U_1 и U_2 ко входу осциллографа. Если частота коммутации превышает частоту напряжений U_1 и U_2 , то на экране видны изображения исследуемых напряжений (рисунок 1.11).

Рисунок 1.11 – Измерение сдвига фаз осциллографом

Угол сдвига фаз между напряжением *U*₁ и *U* вычисляется по формуле:

$$\varphi = \frac{ab}{ac} 360^{\circ}$$

Отметим, что измерение угла слеига фаз методом эллипса приводит к большей погрешности.

6 Измерьте напряжение источника питания авометром, осциллографом и цифровым вольтметром.

7 Измерьте аминитуду и частоту калиброванного напряжения осциллографа, длочего с выхода калибратора подайте на вход *Y* сигнал.

8 Включите низкочастотный генератор и подайте с выхода генератора на вход *Y* осциллографа напряжение синусоидальной формы. Измерите амплитуду и частоту этого сигнала с помощью осциллографа. Сревните показания генератора сигналов и осциллографа.

9 Измерьте цифровым вольтметром и осциллографом напряжение источника питания ~6,3 В и сделайте вывод относительно действующего и амплитудного значения напряжения.

10 С выхода генератора подайте прямоугольные импульсы на вход осциллографа. Измерьте амплитуду импульсов, частоту, период длительности импульса.

Тема 2 Изучение сегнетоэлектриков

- 1 Понятие о сегнетоэлектриках
- 2 Основные свойства сегнетоэлектриков
- 3 Точка Кюри
- 4 Связь вектора индукции с вектором поляризации

Основные понятия по теме Сегнетоэлектрики – класс диэлектриков, которые объедают поляризованностью даже в отсутствии поля (спонтаниая поляризованность). Диэлектрическая проницаемость (ε) зависи от напряженности Е электрического поля, и при некоторых значениях напряженности относительная диэлектрическая проницаемость ε_r принимает очень большие значения ($\varepsilon_r \sim 10^4$). Характерными примерами сегнетоэлектриков являются такие химические содинения, как сегнетова соль $NaKC_4HO_6$ ·4 H_2O , титанат бария BaT_iO_{2} и другие.

Сегнетоэлектрики представляю собой разновидность полярных диэлектриков, молекулы которых вследствие асимметрии их строения обладают дипольными моментами даже в отсутствие внешнего электрического поля. В обычных полярных диэлектриках дипольные моменты различных молекул в отсутствие внешнего электрического поля ориентированы хаотически из-за теплового движения молекул. Поэтому суммарный ипольный момент молекул в любом физически бесконечно махом объеме равен нулю. В сегнетоэлектриках имеет место сильное взаимодействие между дипольными моментами молекул, характерная энергия которого превышает энергию хаотического теплово движения молекул. Вследствие этого взаимодействия, дипольные моменты близких молекул ориентируются в одном направлении, то есть происходит самопроизвольная поляризация сегнетоэлектрика в отсутствие внешнего электрического поля. Область сегнетоэлектрика, в пределах которой все дипольные моменты ориентированы в одном направлении, называется сегнетоэлектрическим доменом. Сильная спонтанная поляризация такого домена приводит к возникновению в окружающем пространстве электрического поля. Минимизация энергии внешнего электрического поля достигается благодаря поляризации доменов в различных направлениях. В этом случае суммарный дипольный момент всего сегнетоэлектрика и напряженность электрического поля в окружающем пространстве близки к нулю. Принимая во внимание доменную структуру сегнетоэлектриков, можно качественно объяснить их диэлектрические свойства. При помещении сегнетоэлектрика во внешнее электрическое поле возникает взаимодействие с этим полем. Поскольку потенциальная энергия дипольного момента \vec{p} в электрическом поле с напряженностью \vec{E} равна $W = -\vec{p}\vec{E}$ и имеет минимум при параллельной ориентации векторов \vec{p} и \vec{E} , то по мере возрастания напряженности поля будет происходить постепенная поляризация доменов в направлении внешнего электрического поля. Приблизительный график зависимости электрического поля показан на рисунке 2.1.

Рисунок 2.1 – График зависимости поляризации сегнетоэлектрика от напряженности электрического поля

На рисунке 24 К – поляризация сегнетоэлектрика, P_{hac} – насыщенное значение поляризации сегнетоэлектрика, ε_0 – электрическая постоянная, E – напряженность электрического поля, $E_{\kappa p}$ – критическое значение напряженности электрического поля, физический смысл которого будет выяснея ниже (рисунок 2.3). Рисунок 2.1 показывает, что в точке, соответствующей критическому значению напряженности электрического поля, касательная к кривой $P(\varepsilon_0 E)$ проходит через начало координат.

Кривая имеет горизонтальный участок, соответствующий состоянию насыщения поляризации $P = P_{_{Hac}}$. В этом состоянии весь объем сегнетоэлектрика поляризован в направлении внешнего электрического поля, и при возрастании напряженности не может происходить дальнейшее увеличение поляризации. Что касается электрической индукции

$$D = \varepsilon_o E + P , \qquad (2.1)$$

то состоянию насыщения поляризации сегнетоэлектрика (P = const) соответствует линейная зависимость между величинами D и E. Значение P_{hac} можно определить путем экстраполяции линейного участка кривой $D(\varepsilon_o E)$, образующего с осью абсцисс угол $\pi/4$, до пересечения с осью ординат. При этом длина отрезка, отсекаемого прямой на оси ординат, равна P_{hac} (рисунок 2.2).

Поскольку в общем случае имеет место нелинейная зависимость электрической индукции D от напряженности поля E, то относительная диэлектрическая проницаемость \mathcal{E}_r является функцией E. Из (2.1) следует зависимость

$$\varepsilon_r = \frac{D}{\varepsilon_o E} = 1 + \frac{P}{\varepsilon_o E}, \qquad (2.2)$$

график которой представлен на рисунке 2.3.

Рисунок 2.3 – График зависимости относительной диэлектрической проницаемости от напряженности поля

В соответствии с рисунком 2.1, при малых значениях E поляризация быстро растет, а относительная диэлектрическая проницаемость увеличивается. При больших напряжённостях рост поляризации замедляется, и ε_r , достигнув максимального значения, начинает монотонно убывать. После перехода сегнетоэлектрика в состояние насыщения поляризации относительная диэлектрическая проницаемость стремится к единице по гиперболическому закону

$$\varepsilon_r = 1 + \frac{const}{E}$$
.

Таким образом, эффективное использование больших знанний ε_r возможно только при определенных напряженностях электрического поля, когда сегнетоэлектрик еще не находится в состояник насыщения поляризации. Напряженность $E_{\kappa p}$, при которой относительная диэлектрическая проницаемость ε_r имеет максимальное значение, можно определить из условия $\frac{d\varepsilon_r}{d(\varepsilon_0 E)} = 0$. Используя выражение (2.1), (2.2), получаем соотношения:

$$\frac{P}{\varepsilon_0 E} = \frac{dP}{d(\varepsilon_0 E)}, \quad \underbrace{P}_{\varepsilon_0 E} = \frac{dP}{d(\varepsilon_0 E)},$$

означающие, что в точке, состретствующей критическому значению напряженности электрического поля, касательные к кривым $P(\varepsilon_o E)$ и $D(\varepsilon_o E)$ проходят через начало координат. При уменьшении напряженности значения электрической индукции поляризованного сегнетоэлектрика изменяются медленнее, чем это происходило при первоначальной поляривации образца (рисунок 2.4).

Это связано со свойством доменов частично сохранять прежнее направление поляризации. Значение *P_r* характеризует остаточную поляризацию сегнетоэлектрика при полном выключении электрического поля. Для того, чтобы ликвидировать остаточную поляризацию образиа, необходимо приложить электрическое поле в противоположном наяравлении.

Длина отрезка OE_c пропорциональна напряженности поля, необходимого для полной деполяризации сегнетоэлектрика. При дальнейшем увеличении *E* происходит поляризация образца в противоположном направлении, и в случае гармонического изменения напряженности поля зависимость *P*(*E*) имеет вид замкнутой кривой, изображенной на рисунке 2.4. Эта кривая называется петлей гистерезиса.

Как следует из рисунка 2.4, зависимость индукции и относительной

диэлектрической проницаемости ε_r от напряженности поля является неоднозначной, и на состояние сегнетоэлектрика при некотором значении напряженности влияют предшествующие значения *E*. Явление гистерезиса можно наблюдать с помощью установки, принципиальная схема которой представлена на рисунке 2.5.

Рисунок 2.5 – Принципиальная схема установки

Переменное напряжение ~110 В подводится от источника питания на делитель, состоящий из сопротивлений R_1 и R_2 . Параллельно делителю включены две последовательно соединённые ёмкости: исследуемый конденсатор C_1 , заполненный сегнетоэлектриком, и эталонный C_2 .

Величина подаваемого переменного напряжения регулируется переменным резистором (ручка на лицевой панели кассеты). При подаче напряжения в электрическую цепь обеспечивается поляризуемость сегнетокерамического конденсатора *C*₁ – диэлектрический гистерезис.

Напряжение на сопротивлении R_2 , подаваемое на горизонтально отклоняющие пластины осциллографа (вход X), U_x является пропорциональным полному напряжению U

$$U_x = \frac{R_2}{R_1 + R_2} U.$$

На вертикально отклоняющие пластины осциллографа (вход Y) напряжение U_2 подается непосредственно с эталонного сонденсатора $C_2(U_y)$.

При синусоидальном изменении внешнего напряжения электронный луч прочертит на экране осциллографа кривую, абсцисса и ордината точек которой пропорциональны соответственно величинам *E* и *P*.

Используя определение емкости конденсатора

$$C = \frac{q}{V}$$

и учитывая, что при последовательном соединении конденсаторов их заряды одинаковы, получаем

Поскольку есть эталонного конденсатора C_2 значительно превышает емкость конденсатора C_1 , заполненного сегнетоэлектриком, то выполняются соотношения

$$U_1 >> U_2,$$

$$U_1 = U - U_2 \approx U_2$$

Используя формулу для определения напряженности электрического поля, получим

$$E = \frac{U_1}{d} \approx \frac{U}{d},\tag{2.3}$$

ИЛИ

$$E = \frac{R_1 + R_2}{R_2} \frac{U_x}{d},$$
 (2.3.1)

где *d* – толщина сегнетоэлектрика.

Индукция D электрического поля определяется по формуле

$$D = \frac{C_2}{S} U_y \quad , \tag{2.4}$$

где *S* – площадь пластины сегнетоэлектрика.

Учитывая формулы (2.3) и (2.4), диэлектрическую проницаемость ε_r находим по формуле

$$\varepsilon_r = \frac{D}{\varepsilon_0 E} = \frac{C_2 dU_y}{\varepsilon_0 SU} = \frac{R_2}{R_1 + R_2} \frac{C_2 d}{\varepsilon_0 S} \frac{U_y}{U_x}, \qquad (2.5)$$

Рассмотренные свойства сегнетоэлектриков проявляются лишь при определенных температурах. При нагревании образца взаимодействие дипольных моментов молекул ослабляется, и при некоторой температуре T_0 , называемой температурой Кюри, происходит разрушение доменов. Спонтанная поляризация образца исчезает, и он из сегнетоэлектрика превращается в обычный диэлектрик. При температурах, незначительно превышающих температуру Кюри, диэлектрическая проницаемость образца быстро убывает в соответствии сожоном Кюри-Вейсса

где А – постоянная.

Некоторые образцы имеют также нижнюю точку Кюри T_0' , и их сегнетоэлектрические свойства проявляются только в интервале температур $T_0' < T$ T_0 . В этом случае зависимость диэлектрической проницаемости от температуры при $T < T_0'$ имеет следующий вид:

$$\varepsilon = 1 + \frac{A}{T_0' - T}.$$

айгнитные свойства ферромагнетиков – веществ, способных сильно намагничиваться, полностью аналогичны рассмотренным электрическим свойствам сегнетоэлектриков. Все результаты и выводы, полученные в данном разделе, остаются справедливыми также и для ферромагнетиков после формальной замены во всех соотношениях $\varepsilon_0 \rightarrow \mu_0$, $\varepsilon_r \rightarrow \mu_r$, $\vec{E} \rightarrow \vec{H}$, $\vec{P} \rightarrow \vec{M}$, $\vec{D} \rightarrow \vec{B}$, где μ_0 – магнитная постоянная, μ_r – относительная магнитная проницаемость вещества, \vec{M} – вектор намагниченности, \vec{H} и \vec{B} – векторы напряженности и индукции магнитного поля.

Вопросы для самоконтроля

1 Поясните механизм поляризуемости диэлектриков при наложении внешнего электрического поля.

2 Назовите свойства сегнетоэлектриков. Что такое домены?

3 Объясните диэлектрический гистерезис. Приведите определение диэлектрической проницаемости и других параметров сегнетоэлектриков.

4 Приведите зависимость поляризации, электрической индукции относительной диэлектрической проницаемости сегнетоэлек CKA CKOP напряженности электрического поля.

Лабораторная работа 2

Определение электрических параметр сегнетоэлектриков

ическую проницаемость се-Цель работы: определить диэлект гнетоэлектрика, остаточную индукцию, коэрцитивную силу и тангенс угла диэлектрических потерь.

Приборы и принадлежности: кассета ФПЭ-02/07, источник питания, вольтметр цифровой ВУ-27А, осциллограф С1-72.

Описание установ

7 содержит исследуемый диэлектрик – сегнето-Кассета ФП кристалл TTCe конденсатор C_1 , схема на рисунке 2.5).

Принцип работы установки основан на поляризации сегнетоэлектрика в зависимости от напряженности электрического поля, подаваемога на образец.

ссета соединяется кабелем с источником питания, к гнездам PV полключается вольтметр, а к гнездам Y и X – осциллограф. Потенциометром R_3 на лицевой панели ФПЭ-02/07 можно изменять напряжение, а, следовательно, и напряженность поля \vec{E} . При этом напряженность внешнего поля \vec{E} в обоих конденсаторах будет пропорциональна общему напряжению U. В свою очередь, заряд Q пропорционален вектору электрической индукции \vec{D} в исследуемом образце ($D \sim P$).

Итак, на горизонтальный вход Х осциллографа подается общее напряжение, т. е. величина, пропорциональная \vec{E} , а на вертикальный Y – напряжение, пропорциональное заряду Q и, следовательно, вектору электрической индукции \vec{D} .

Ход работы

1 Включив осциллограф, выключите генератор развертки. На экране отыщите луч в виде точки и поместите его в центре экрана осциллографа. Прокалибруйте X-вход осциллографа. Для этого на X-вход от этого же осциллографа подайте калибровочное напряжение (развемы на левой панели) и сопоставьте калибровочное напряжение с масштабной сеткой осциллографа.

2 Подключите через кабель к кассете ФПЭ-02/07 источник питания, предварительно выведя все потенциометры источника питания в крайнее левое положение. При этом ручка потенциометра «*Per U*» на кассете устанавливается в среднем положении. К соответствующим гнездам кассеты подключите вольтметр и осточнограф.

3 Получите на экране осциллографа петлю гистерезиса. Добейтесь путем изменения сопротивления потенциометра R_3 , чтобы петля гистерезиса занимала весь экран. Перерисуйте её на миллиметровку в осях *D* и *E*, используя формулы 2.3, 2.4. Уменьшая напряжение на сегнетоэлектрике потенциометром «*Per U*», зарисуйте на этом же рисунке еще две других петли систерезиса.

4 Используя рисунок на миллиметровке и формулу 2.5, рассчитайте относительного диэлектрическую проницаемость сегнетоэлектрика для различных напряженностей электрического поля *E* и сделайте соответствующие выводы.

5 определите для всех петель гистерезиса величину полной поляризации P и соответствующую ей напряженность E, а также остатопую индукцию D_{ocm} и коэрцитивную силу E (отрезки OP_r и OE_C , рисунок 2.4).

6 Определите величину максимального напряжения, подаваемого на сегнетоэлектрик, при котором еще не наблюдается петля гистерезиса, т. е. когда $P \sim E$, и соответствующую ему напряженность поля E.

7 Определите тангенс угла диэлектрических потерь по формуле (2.6)

$$tg\delta = 2\frac{s_n}{x_1 y_1},\tag{2.6}$$

где S_n – площадь петли гистерезиса, выраженная в единицах деления шкалы осциллографа, x_l , y_l – координаты вершины петли гистерезиса на экране осциллографа.

Примечание – Для получения симметричной петли гистерезиса в исследуемую электрическую цепь можно подавать через разъём постоянную составляющую напряжения, которая регулируется потенциометром «12-120 В» на лицевой панели источника питания. Помните, что это напряжение делено быть не более 40 В.

Используемые данные: $R_1 = 1$ МОм, $R_2 = 56$ кОм, $R_3 = 4,7$ кОм, $C_2 = 156$ нФ. Значения d и Sугочните у преподавателя.

Тема 3 Определение удельного заряда электрона

1 Движение заряженных частиц в однородном электрическом и магнитном поле

- 2 Устройство и принцип работы магнетрона
- 3 Сущность метода магнетрона
- 4 Вывод формулы для удельного заряда

Основные понятия по теме

CROPHID

В настоящей работе удельный заряд электрона или отношение e/m для электрона определяется с помощью «метода магнетрона». Это название связано с тем, что применяемая в работе конфигурация электрического и магнитного полей подобна конфигурации полей в магнетронах-генераторах электромагнитных колебаний СВЧ.

Установка содержит электронную с коаксиальными цилиндрическими электродами, помещённую внутри соленоида. При пропускании через соленоид электрического тока внутри лампы возникает магнитное поле, вектор индукти которого параллелен оси электрода. Термоэлектроны, испускаемые катодом, движутся под действием двух взаимно перпендикулярных полей: электрического поля анода, силовые линии которого направлены радиально, и магнитного поля, создаваемого соленридом. Проанализируем движение электронов в лампе, когда радих катода пренебрежимо мал по сравнению с радиусом анода. Пристом электрическое поле в лампе является сильно неоднородных тлотность силовых линий и, следовательно, напряжённость по быстро убывает по мере удаления от катода. Движение электронов в лампе можно разбить на два этапа: сначала быстрое ускорение электрическим полем в области, прилегающей к катоду, где восмовном происходит падение анодного напряжения, затем движение в магнитном поле с практически постоянной по модулю скоростью по траектории, близкой к окружности. Пренебрегая начальной скоростью испускаемых термоэлектронов, скорость их движения по окружности можно найти из закона сохранения энергии

$$\frac{mv^2}{2} = eU_a \quad , \tag{3.1}$$

где U_a – анодное напряжение. Центростремительное ускорение при движении по окружности сообщается электрону силой Лоренца $\vec{F} = q[\vec{v}\vec{B}]$. Используя уравнение движения электрона $\frac{mv^2}{r} = qvB$ и формулу (3.1), находим радиус траектории электрона

$$r = \frac{1}{B} \sqrt{2U_a \frac{m}{e}}.$$
(3.2)

Из выражения (3.2) следует, что по мере возрастания интукции магнитного поля происходит всё более сильное искривление траектории электронов. При некотором, так называемом критинском значении индукции $B_{\kappa p}$, траектории электронов будут касаться поверхности анода, то есть будет выполняться соотношение $r = R_a/2$, где R_a – радиус анода (рисунок 3.1).

Если при значениях индукции магнитного поля $B < B_{\kappa p}$ все испускаемые катодом термоэлектроны достигают анода, то при значениях индукции $B > B_{\kappa p}$ все электроны вследствие сильного искривления их траектории возвращаются к катоду. Поэтому ток должен резко исчезать при критическом значении индукции магнитного поля (штриховая линия на рисунке 3.2).

Однако вследствие того, что испускаемые катодом термоэлектроны имеют различные начальные скорости, уменьшение анодного тока при

росте индукции магнитного поля происходит более плавно (сплошная линия на рисунке 3.2). При этом наиболее быстрое уменьшение анодного тока по-прежнему соответствует критическому значению индукции магнитного поля.

позволяющее определить уделений заряд электрона методом магнетрона. Связь между индукцией магнитного поля внутри лампы и силой тока соленоида можно найти с помощью закона Био-Савара-Лапласа

$$d\vec{B}_0 = \frac{\mu_0}{4\pi} \cdot \frac{i_0 [d\vec{l} \, \vec{r}]}{r^3},$$

здесь $d\vec{B}_0$ – кектор индукции магнитного поля, создаваемого элементом $i_0 d\vec{l}$ кругового тока, i_0 – сила тока, $d\vec{l}$ – физически бесконечно малый невтор, касательный к окружности, направление которого совпадает с направлением тока, \vec{r} – радиус-вектор, проведённый от данного элемента тока в точку наблюдения (рисунок 3.3), квадратные скобки обозначают векторное произведение, μ_0 – магнитная постоянная.

Векторы $d\vec{B}_0$, соответствующие различным элементам кругового тока, образуют коническую поверхность с вершиной в точке наблюдения, и суммарный вектор индукции магнитного поля кругового тока направлен вдоль оси Z. Вычисляя проекцию вектора $d\vec{B}_0$ на ось Z $dB_{0z} = dB_0 \sin \alpha$, учитывая, что векторы $d\vec{l}$ и \vec{r} взаимно ортогональны и интегрируя по окружности, получаем

35

$$B_{0z} = \frac{\mu_0 i_0 R_0^2}{2(z^2 + R_0^2)^{3/2}},$$
(3.4)

где z – координата центра витка тока, R_0 – радиус витка.

Рисунок 3.3 – Определение индукций на оси соленоида

Небольшой отрезок соленоида тийной dz (рисунок 3.4) эквивалентен круговому току $i_0 = IdN$, кде I – сила тока в соленоиде, dN = ndz – количество витков на выбранном участке соленоида, n – линейная плотность витков. Производя замену переменной $z = R_0 ctg \alpha$ и интегрируя соотношение (3.4) по всему соленоиду, находим индукцию магнитного поля в произвольной точке O на оси соленоида:

$$B = \frac{\mu_0 In}{2} \left(\cos \alpha_1 - \cos \alpha_2 \right). \tag{3.5}$$

Здест a_1 и a_2 – углы относительно положительного направления оси *z*, под которыми из точки наблюдения видны радиусы соленоида у его концов.

Для точки, находящейся в центре соленоида, выражение (3.5) примет следующий вид:

$$B = \frac{\mu_0 IN}{\sqrt{D^2 + L^2}} , \qquad (3.6)$$

где μ_0 – магнитная постоянная, D – диаметр соленоида, L – его длина, N = nL – полное число витков.

Используя формулы (3.3), (3.6), получа шение для удельного заряда электрона

$$\frac{e}{m} = \frac{8(Q^2 + L^2)}{R_a^2 \mu_0^2 N^2} \cdot \frac{U_a}{I_{\kappa p}^2} , \qquad (3.7)$$

где *I_{кр}* – критическая тока соленоида, которой соответствует значение индукции магнитного поля $B_{\kappa p}$, то есть наиболее быстрое уменьшение ано о тока.

ков характер движения заряженных частиц в электрических и митных полях?

В чем заключается сущность метода магнетрона?

- 3 Как определить критическое значение тока соленоида?
- 4 Что такое сбросовые характеристики?
- 5 Как повлияет на результат изменение тока в соленоиде?

6 Объясните взаимодействие элементов электрической цепи, используемой в работе.

Лабораторная работа 3

Определение удельного заряда электрона методом магнетрона

Цель работы: изучить движение заряженных частиц в магнитном поле и измерить удельный заряд методом магнетрона.

Приборы и принадлежности: кассета ФПЭ-03, источник питания (амперметр), цифровой вольтметр (миллиамперметр).

Описание установки

Кассета ФПЭ-03 состоит из соленоида, в центре которого расположена лампа 6Ф6С. Анодная цепь лампы имеет следующие характеристики:

120B;

 $R_a = 4.2$ MM.

U < 24B: I = 0 - 2.5 A;

N = 2500;

L = 171 мм;

D = 79,89 мм;

- напряжение питания постоянного тока
- допустимая нагрузка
- радиус анода усреднённый

Параметры цепи соленоида:

- напряжение питания постоянног
- допустимая нагрузка по то
- число витков соленоида
- длина намотки
- диаметр намотки
- L = 170 мГн. - индуктивность Питание анодной чепи и соленоида осуществляется через разъём блока питания. Кринципиальная схема установки для определения удельного заржа электрона методом магнетрона приведена на рисунке 3.5

одключите к кассете ФПЭ-03 источник питания через специаль́ный разъём, к клеммам РА кассеты подключите цифровой вольтметр в режиме миллиамперметра.

2 Потенциометрами на передней панели блока питания установите напряжение накала в пределах $(3 \div 5)$ В, а напряжение анода в пределах $(40 \div 90)$ B.

Рисунок 3.5 – Принципиальная схема устройства

3 Реостатом блока питания постепенно увелить силу тока соленоида I_c (через 0,1А), отсчитывая по амперистру на панели блока питания; одновременно следите за уменьшением величины анодного тока I_a по миллиамперметру в цепи анода. Посазания занесите в таблицу 3.1.

Таблица 3.1 – Данные измерений

			\mathbf{N}			
І с , А	0,05	0,1	\$0,2	0,3	•••	1,5
Іа, мА						
$\Delta I_{a, MA}$		N.V.				

В третью строку таблицы 3.1 запишите разность ΔI_a двух соседних отсчётов анодного тока I_a , соответствующих двум соседним значениям тока соленоидах.

Величина M_a характеризует крутизну уменьшения анодного тока под действием магнитного поля, создаваемого током соленоида. Наибоцыпая величина уменьшения анодного тока ΔI_a соответствует критическому току $I_{\kappa p. c}$, значение которого берётся из первой строки таолицы 3.1

4 Не изменяя напряжения накала, для двух других значений напряжения анода повторите п. 3 и результаты занесите в соответствующие таблицы.

5 Измените напряжение накала и повторите измерения при трёх различных постоянных напряжениях *U*_a. Результаты занесите в таблицу.

39

6 В формулу 3.7 подставьте значения U_a и $I_{\kappa p}$, а также другие постоянные и определите удельный заряд электрона e/m для трех опытов. Определите среднее значение удельного заряда электрона $\overline{e/m}$, оцените погрешность измерения и сделайте соответствующие выводы.

7 По результатам измерений каждого опыта постройте сбросовые характеристики лампы – зависимости анодного тока I_a от тока I_c соленоида при U = const. Для нахождения критического значения силы тока $I_{\kappa p.\ c}$ в соленоиде проведите до взаимного пересечения касательную к точке перегиба сбросовой характеристики (на участке ее спада) и прямую, соответствующую изменению минимальных знатений силы анодного тока (рисунок 3.6). Сравните полученные значения с расчетными.

Тема 4 Изучение распределения магнитного поля внутри соленоида

- 1 Магнитное поле соленоида
- 2 Закон Био-Савара-Лапласа
- 3 Эффект Холла

Основные понятия по теме

Соленоидом называется длинная катушка с большим числом витков в обмотке. На рисунке 4.1 показана катушка в разрезе плоскости чертежа. Ток в верхних сечениях витков катушки направлен к читателю, а в нижних – от читателя.

Магнияная стрелка, помещённая внутри катушки, показывает своим северким полюсом направление магнитного поля внутри катушки. Покарность магнитного поля определяется по правилу правой руки: если ладонь правой руки наложить на витки катушки так, чтобы четыре пальца указывали направление тока в витках катушки, то отставленный на 90° (по отношению к указательному) большой палец укажет северный магнитный полюс катушки. В центре соленоида магнитные поля складываются, и возникает почти однородное поле.

Соленоид, витки которого расположены вплотную друг к другу, эквивалентен системе круговых токов, одинаковых по радиусу и имеющих общую ось. На основании закона Био–Савара–Лапласа и

принципа суперпозиции индукция магнитного поля на оси кругового тока *i* радиуса *r* равна:

$$B = \frac{\mu_0 i r^2}{2 \left(r^2 + m^2 \right)^{3/2}},$$
(4.1)

где *m* – расстояние от центра кругового тока до точки, в которой определяется индукция.

Для нахождения индукции магнитного поля всего соленоида со делят на такие элементы, каждый из которых можно считать круговым витком, а затем применяют принцип суперпозиции. Такой мемент толщины dx показан на рисунке 4.2 и содержит $dN = \begin{pmatrix} N \\ M \end{pmatrix} dx$ витков. Сила тока в нём:

$$dI = IdN = \left(\frac{IN}{L}\right)dx.$$
(4.2)

В соответствии с формулами (4.1) и (2.2) индукция магнитного поля, созданного таким элементом, разна:

$$dB = \frac{1Ndx}{(r^2 + m^2)^{3/2}L}.$$
 (4.3)

Поскольку все элементарные векторы $d\vec{B}$ коллинеарные, индукция результирующего подя находится интегрированием выражения (4.3) по всей длине соленсила. Магнитная индукция зависит от диаметра соленоида D = 2r, его длины L и расстояния X_C . Как будет показано ниже, в центре соленоида магнитная индукция для бесконечно длинного соленоида определяется по приближённой формуле

$$B_{\rm приб} = \frac{\mu \mu_0 I N}{L},\tag{4.4}$$

 $\mu_0 = 4\pi \cdot 10^{-7} \frac{\Gamma_H}{M}$ – магнитная постоянная вакуума, μ – относительная магнитная проницаемость сердечника соленоида (для неферромагнитных материалов, таких как воздух, дерево, медь, алюминий $\mu \approx 1$), I – ток соленоида, N – количество витков соленоида, L – длина соленоида.

Найдём индукцию магнитного поля соленоида в точке C, лежащей на оси соленоида на расстоянии $m = X_c - X$ от его середины.

Для проведения расчёта введём координатную ось ОХ. Начало

координат поместим в середину соленоида (рисунок 4.2), тогда X_C – координата точки *C*. Произвольный элементарный виток толщины dx с координатой *X* находится от точки *C* на расстоянии $m = X_c - X$.

Подставим это выражение в формулу (4.3):

Рисунок 4.2 – Элемент расчета индукции соленоида

При суммировании индукции полей, созданных всеми элементами, координата хименится от $-\frac{L}{2}$ до $+\frac{L}{2}$.

Для упощения интегрирования введём в качестве переменной интегрирования угол φ , умножив предварительно числитель и знаменатель выражения (4.5) на *г*. При подстановке учтём, что $\frac{r^3}{[r^2 + (x_c - x)^2]^{3/2}} = \sin^3 \varphi; x = -rctg \varphi, dx = \frac{rd\varphi}{\sin^2 \varphi},$

тогда выражение (4.5) примет вид:

$$dB = \frac{\mu_0 IN \sin \varphi \cdot d\varphi}{2L}$$

Поскольку на рисунке 4.2 вектор $d\vec{B}$, а значит и вектор \vec{B} направлен

по оси *OX*, введём окончательно в качестве переменной интегрирования угол $\alpha = \pi - \varphi$, тогда $d\varphi = -d\alpha$, причём угол изменяется для точки *C* от α_1 до α_2 (рисунок 4.3).

Если длина соленоида значительно превышает его диаметр (D << L), то из формулы (4.7) следует приближённое выражение (4.4) для магнитной индукции на оси бесконечно длинного соленоида.

При использовании формулы (4.4) относительная погрешность равна:

$$\delta B = \frac{\left| B - B_{npu\delta} \right|}{B_{npu\delta}} = 1 - \frac{L}{\sqrt{D^2 + L^2}} = 1 - \frac{1}{\sqrt{1 + \frac{D^2}{L^2}}}$$

Разложив $\left(1 + \frac{D^2}{L^2}\right)^{1/2}$ в степенной ряд по переменной $\frac{D}{L}$ и, отбрасывая члены, содержащие $\frac{D}{L}$ в степени больше двух, получим:

$$\delta B = \frac{D^2}{2L^2}.$$
 (4.8)

Задавая относительную погрешность измерения магнитной индукции δB , можно найти соотношение между длиной и диаметром соленоида:

$$\frac{L}{D} \ge \sqrt{\frac{1}{230}}$$
(4.9)

Принимая поле внутри катушки однородным, а линии магнитного поля параллельными её оси, находим магнитный поток Φ внутри катушки:

$$\Phi = \mu_0 HS = BS ,$$

где *H* – напряжённость поля, $S = \frac{\pi D^2}{4}$.

Итак, используя формулы (4.4), (4.6), (4.7), можно определить магнитную индукцию поля в зависимости от координаты вдоль оси соленоита расчётным путём. В данной работе для определения магнитной индукции поля внутри соленоида опытным путём используется датчик Холла, работа которого основана на эффекте Холла. Эффектом Холла называется явление возникновения Э.Д.С. между

ХЭффектом Холла называется явление возникновения Э.Д.С. между боковыми гранями пластинки с током, помещённой в поперечное магнитное поле.

Эффект Холла объясняется действием силы Лоренца на движущиеся в пластине заряженные частицы. Величина этой силы определяется формулой:

$$\vec{F} = e \left[\vec{V} \cdot \vec{B} \right],$$

где e – заряд частицы, \vec{V} – скорость ее движения; \vec{B} – вектор магнитной индукции поля, квадратные скобки означают векторное произведение.

Если к граням 1 и 2 полупроводника, имеющего форму пластины, приложить постоянное напряжение (рисунок 4.4), то в цепи возникает ток.

При этом движущиеся носкледи зарядов полупроводника под действием силы Лоренца будут отклоняться в перпендикулярном направлении, и между точками 3'и 4 возникнет разность потенциалов, ε_x , называемая Э.Д.С. Холха.

Действие силь Поренца можно рассматривать как действие эффективной электростатической силы с напряжённостью

$$E_{g\phi\phi} = \frac{F}{e} = VB$$

Тогла разность потенциалов, возникающая между точками 3 и 4, равна с VBd,

где *d* – расстояние между поверхностями 3 и 4.

Введём в рассмотрение плотность тока

$$j = \frac{I}{S_c} = nVe,$$

где n – концентрация носителей заряда, $S_c = dh$ – площадь грани l (или 2), h – толщина пластинки. Теперь Э.Д.С. Холла можно записать в виде

$$\varepsilon_x = \frac{j}{ne} Bd = \frac{R_x I_{\mathcal{A}} B}{h}, \qquad (4.10)$$

где $R_x = \frac{1}{ne}$ – постоянная Холла, $I_{\mathcal{I}} = 0,09$ А – рабочий ток датчика.

Из уравнения (4.10) следует, что если I = const, то $\varepsilon_x = f(B)$.

Основными параметрами преобразователя Холла являются следующие параметры:

– номинальное значение управляющего тока Імакс (рабочий ток):

– входное сопротивление R_{10} . Измеряется между управляющими электродами преобразователя Холла. При B = 0 значение R_{10} жазывается в паспорте;

– выходное сопротивление *R*₂₀. В паспорте указывается значение *R*₂₀ между холловскими электродами при разомкнутой цепи и отсутствии магнитного потока;

- чувствительность к магнитной индукции одреляется выражением

$$S = \frac{\varepsilon_x}{IB} \left[\frac{B}{A \cdot T_{\pi}} \right]$$
(4.11)

Вопросы для самоконтроля

1 Поясните зависимость магнитной индукции от координаты вдоль оси соленоида. Приведите расчётные формулы.

2 Как определить полярность магнитного поля соленоида?

3 Сформулирунте закон Био-Савара-Лапласа.

4 Объяснито сущность метода измерения индукции магнитного поля при помощи датчика Холла.

5 Приведите примеры практического применения явления Холла.

Унабораторная работа 4

Изучение зависимости магнитного поля от координаты вдоль оси соленоида с помощью датчика Холла

Цель работы: измерение магнитной индукции внутри соленоида на его оси.

Приборы и принадлежности: кассета ФПЭ-04, источники питания, цифровой вольтметр (милливольтметр).

Описание установки

Установка состоит из рабочего устройства – кассеты ФПЭ-04. Кассета содержит соленоид, представляющий собой катушку, на которой намотано N = 2500 витков провода диаметром 1,06 мм. Длина намотки L = 167 мм, диаметр намотки D = 78,6 мм. Вдоль оси катушки перемещается шток. В штоке находится датчик Холла. На штоке через 10 мм нанесены деления, с помощью которых ведётся отсчёт перемещения датчика Холла от начала катушки. На передней панели кстановлены 2 гнезда, к которым подключается милливольтметр из измерения Э.Д.С. Холла ε_x (рисунок 4.5).

Рисунок 4.5 – Принципиальная схема установки

В нижней части передней панели расположен разъём, через который подаётся питание постоянного тока 90 мА на датчик Холла и на катушку постоянного напряжения ±24 В.

	Данные датчика Холла	гипа X501.
	Размеры, мм	1×1,5×0,2
2	\mathbf{B} ходное сопротивление R_{10} , Ом	2,1
Y]	Выходное сопротивление R_{20} , Ом	1,9
]	Рабочий ток, не более, А	0,09
1	Чувствительность <i>S</i> , В/(А·Тл)	0,56

Ход работы

1 К разъёму кассеты ФПЭ-04 подключите кабель (если не подключён) источника питания. Подключите к выходным гнёздам кассеты милливольтметр.

2 Установите с помощью источника питания в соленоиде силу тока 0,4 А и измерьте Э.Д.С. Холла в центре соленоида. Увеличивая силу тока соленоида через 0,1А до 1,6 А проведите аналогичные измерения Э.Д.С. Холла.

3 Повторите пункт 2, уменьшая силу тока соленоида от 1,6 A до 0,4 A.

4 Вычислите значение индукции для токов, перечис пункте 2, по формуле (4.4), и результаты занесите в таблиц

5 Постройте графики зависимостей $B = f(I_c), \varepsilon_x =$ градуировочный график $\mathcal{E}_x = f(B)$.

6 Используя выражение (4.10), определите центрацию носителей заряда *п* и постоянную Холла *R_x*.

7 Установите ток в соленоиде 0,6 07 11
8 Поместите -8 Поместите датчик в конец объеноида (L = 100 мм). Вынимая датчик, через каждые 10 мм измерте ε_x , определяя значения магнитной индукции В в зависимости от координаты вдоль оси соленоида из градуировочного графика (B). Сравните полученные результаты со значениями, вычисленными по формуле (4.10). Результаты занесите в таблицу.

данные пункта 8, постройте график зависимости 9 Испольку индукции В от расстояния относительно центра катушки магнит B = f

читывая, что относительная погрешность измерения магнитной индукции равна $\delta\beta = 2$ %, определите соотношение между длиной и диаметром *D* соленоида.

11 Определите магнитный поток Ф внутри катушки соленоида.

12 Повторите все измерения по пункту 8 для нескольких значений токов соленоида (1 А, 1,4 А).

Тема 5 Изучение явлений взаимной индукции

- 1 Взаимная индуктивность катушек
- 2 Способы взаимного включения катушек
- 3 Коэффициент связи двух индуктивно связанных катушек

Основные понятия по теме

Каждый из контуров, по которому течет переменный ток, создает в окружающем пространстве переменное магнитное поле. В соответствии с законом электромагнитной индукции Фарадея, в других контурах, находящихся в магнитном поле, индуцируются электродвижущие силы, которые влияют на силу тока в этих контурах.

Следовательно, контуры оказываются взакосвязанными посредством электромагнитной индукции.

Полный магнитный поток, пронизыстий *k*-й контур, можно записать в виде

$$\sum_{i=1}^{N} L_k I_i, \qquad (5.1)$$

где L_{ki} – индуктивность k то контура, L_{ki} при $k \neq i$ – взаимная индуктивность k-го контура, и i-го контура, общее число проводников равно N, I_i – сила тока в i-ом контуре. Для силы тока в k-ом контуре из закона Кирхгофа опедует уравнение

$$I_k R_k = \varepsilon_k - \frac{d\Phi_k}{dt}, \qquad (5.2)$$

где R_k активное сопротивление *k*-го контура, ε_{κ} – сторонняя Э.Д.С. в этох контуре.

Х Модставляя выражение (5.1) в (5.2), получаем систему уравнений

$$I_k R_k = \varepsilon_k - \sum_{i=1}^N L_{ki} \frac{dI_i}{dt} \quad .$$
(5.3)

Чтобы решить данную систему уравнений относительно токов I_k , необходимо знать собственные индуктивности L_{kk} и L_{ki} , которые играют роль постоянных коэффициентов в системе уравнений (5.3). Эти индуктивности зависят от формы, взаимного расположения и

геометрических параметров контуров. Определение индуктивностей представляет собой самостоятельную задачу.

В случае двух катушек, когда одна из них одета на другую, причем обе катушки имеют общую ось, система (5.3) принимает вид

$$I_{1}R_{1} = \varepsilon_{1} - L_{11}\frac{dI_{1}}{dt} - L_{12}\frac{dI_{2}}{dt}$$

$$I_{2}R_{2} = \varepsilon_{2} - L_{22}\frac{dI_{2}}{dt} - L_{21}\frac{dI_{1}}{dt}$$
(5.4)

Одна катушка подключена через активное сопротивление R_1 к внешнему источнику напряжения

$$\varepsilon_1 = \varepsilon_0 e^{-i\omega t} , \qquad (5.5)$$

где ε_0 – амплитуда входного напряжения, ω ево частота. Другая катушка подключена к измерительному прибору. Пренебрегая влиянием вторичной обмотки на ток в первичной обмотке, а также самоиндукцией контуров и учитывая, что во вроричной обмотке действует только Э.Д.С. индукции, из системы (5) получаем

$$I_1 R_1 = \varepsilon$$

$$I_2 R - L_{21} \frac{dI_1}{dt}$$
(5.6)

Решая систему уразноний (5.6), находим силу тока в первичной обмотке

$I_1 = \frac{\mathcal{E}_0}{R_1} e^{-i\omega t}$
--

и напряжение во вторичной обмотке

$$U_2 = I_2 R_2 = i\omega L_{21} \frac{\varepsilon_0}{R_1} e^{-i\omega t}$$

В свою очередь, напряжение в первичной обмотке равно $U_1 = I_1 R_1$. Это позволяет выразить коэффициент взаимной индуктивности катушек следующим образом:

$$M_{21} = L_{21} = \frac{R_1}{\omega} \left| \frac{U_2}{U_1} \right| = \frac{R_1}{2\pi f} \left| \frac{U_2}{U_1} \right| = \frac{R_1}{2\pi f} \left| \frac{\varepsilon_2}{U_1} \right| .$$
 (5.7)

Если поменять местами катушки L_1 и L_2 , то коэффициент взаимной индуктивности катушек, соответственно, будет равен

$$M_{12} = L_{12} = \frac{R_1}{2\pi f} \left| \frac{U_1}{U_2} \right| , \qquad (5.8)$$

где f – частота генератора, $|U_1|$ и $|U_2|$ – амплитуды напряжения на первой и второй катушках, измеренные осциллографом, M_{21} – коэффициент взаимной индуктивности катушки 2 по отношению к катушке 1, которий равен коэффициенту взаимной индуктивности катушки 1 по отношению к катушке 2 – M_{12} , т. е. $M = M_{21} = M_{12}$.

Взаимная индуктивность – коэффициент пропорциональности между током, протекающим по одной катушке, и магнитным потоком сквозь витки другой катушки.

Направление магнитных полей зависит от направления намотки катушки, поэтому на схемах начала обмотки оботначают звездочкой (*) или (.). Если токи в обеих обмотках направлены относительно помеченных зажимов, то такое включение катушки называется согласным, при этом магнитные потоки самоиндукции и взаимной индукции складываются, коэффициент взаимной индукции *M* является величиной положительной. Если катушки включены так, что потоки самоиндукции и взаимной индукции имеют различные знаки, то такое включение называется встречным. *M* при этом является величиной отрицательной.

Пусть длинный тонкий соленоид длиной l с площадью поперечного сечения S содержит M витков плотной намотки. Поверх него изолированным проводом плотно намотана катушка с N_2 витками. Вычислим взаимную индуктивность M.

взаимную индуктивность *M*. Индукция магнитного поля внутри соленоида $B = \mu_0 \frac{\mu N_1 I_1}{l}$. Магнитный ногок через каждый виток катушки 2 равен:

$$\mathcal{P}_{21} = BS = \mu_0 \mu \frac{N_1}{l} I_1 S$$
.

Теперь получаем:

$$M = \frac{N_2 \Phi_{21}}{I_1} = \frac{\mu_0 \mu N_1 N_2 S}{l}, \qquad (5.9)$$

Здесь $\mu_0 = 4\pi \cdot 10^{-7} \frac{\Gamma_H}{M}$ – магнитная постоянная, μ – относительная магнитная проницаемость сердечника.

Выясним соотношение между индуктивностями двух индуктивно

связанных катушек одинаковой длины, размещённых на тороидальном сердечнике, и их взаимной индуктивностью *М*. Первичная катушка имеет индуктивность

$$L_1 = \frac{\mu_0 \mu N_1^2 S}{l}, \qquad (5.10)$$

индуктивность второй катушки равна

$$L_2 = \frac{\mu_0 \mu N_2^2 S}{l} \,. \tag{1}$$

)

Перемножив равенства (5.10) и (5.11) и извлекая корень квазратный из полученного выражения, находим

$$M = \sqrt{L_1 L_2} = \frac{N_1 N_2 \mu S}{l} .$$
(5.12)

В общем случае, при наличии магнитного рассеяния,

$$M = K \sqrt{L_1} \chi_2, \tag{5.13}$$

где К – коэффициент связи двух инду Ойвно связанных катушек.

Найдём *К* опытным путём. За лаём произвольное напряжение на входе U_1 , измеряем напряжения на выходе U_2 и берём их отношение $K_1 = \frac{U_2}{U_1}$. Аналогичным образом находим коэффициент передачи $K_2 = \frac{U_1'}{U_2'}$. Затем коэффициент связи *К* находим из выражения

$$K = \sqrt{K_1 K_2} \ . \tag{5.14}$$

Вопросы для самоконтроля

Мапишите и объясните формулу закона Фарадея для соленоида, помещённого в изменяющееся магнитное поле.

2 Объясните понятия «магнитный поток», «магнитный поток через площадь, ограниченную витком», «взаимная индуктивность катушек».

3 Отчего зависит взаимная индуктивность катушек?

4 Какое из соединений катушек называется согласным, а какое встречным?

5 Приведите примеры определения коэффициента связи в различных цепях.

Лабораторная работа 5

Определение коэффициента связи двух индуктивно связанных катушек

Цель работы: определить коэффициенты взаимной индуктивности двух, расположенных на общей оси, катушек для различных частот.

Приборы и принадлежности: кассета ФПЭ-05/06, генератор ГЗ-102, осциллограф С1-71.

Описание установки

Кассета ФПЭ-05/06 содержит две катушки. Короткая катушка одета на длинную, имеет с ней общую ось и может свободно перемещаться вдоль последней при помощи штока, выведенного на переднюю панель. На передней панели кассеты установлены две пары гнёзд: «*PQ*» – для подключения питающего генератора и PQ – для подключения осциллографа; два переключателя S_1 и S_2 , пля попеременного подключения катушек к входным и выходных гнёздам (рисунок 5.1).

Ход работы

1 Установите с помощью осциллографа выходное амплитудное значение напряжения генератора $U_I = 4$ B, f = 10-100 кГц.

2 Подключите генератор сигналов низкочастотный к входным гнёздам X1, X2 («PQ»), а осциллограф к выходным гнёздам X3, X4 («PO»). 3 Переключатель S_1 поставьте в положение «*PQ*», а S_2 в это время должен находиться в положении «*PO*». При этом катушка L_1 через активное сопротивление $R_1 = 10$ кОм подключается к входным гнёздам X1, X2, а катушка L_2 подключается к выходным гнёздам X3, X4.

4 Запишите в таблицу измеренное с помощью осциллографа амплитудное значение Э.Д.С. взаимоиндукции при всех положениях штока (от 0 до 100 мм). По формуле (5.7) рассчитайте M_{21} и по формулам (5.14) K_1 .

5 Переключатель S_1 поставьте в положение «*PO*», а перебночатель $S_2 - в$ положении «*PQ*». Повторите измерения по п. 4 при капряжении генератора, равном 4 В и другом значении частоты из интервала f = 10-100 кГц. По формуле (5.8) рассчитайте M_{12} и по формулам (5.14) K_2 .

6 Постройте графики зависимости *M*₂₁ и *М*₁ каќ функции координаты *x* (*x* расстояние между центрами катушск).

7 Поставьте катушку L_1 в среднее положение относительно катушки L_2 .

8 Установите частоту звукового сигнала по указанию преподавателя (например, 10⁴ Гц).

9 Изменяя напряжение U в цепи катушки L_1 , снимите зависимость амплитуды Э.Д.С. магнитной индукции от U в интервале $0 \div 5$ В через 0,5 В. По формулс (57) рассчитайте M_{21} .

10 Постаньте катушку L_1 в среднее положение относительно катушки L_2

катановите амплитуду напряжения звукового генератора по указанию преподавателя (например, 2В).

12 Изменяя частоту генератора от 5 до 20 кГц (не менее 10 точек), снимите зависимость амплитуды Э.Д.С. индукции от частоты подаваемого напряжения. По формуле (5.7) рассчитайте M_{21} .

13 По полученным результатам сделайте соответствующие выводы (пункты 4–6, 9, 12).

Тема 6 Изучение вакуумного диода

- 1 Устройство и принцип работы вакуумного диода
- 2 Явление термоэлектронной эмиссии
- 3 Вольтамперные характеристики вакуумного диода

Основные понятия по теме

Как свидетельствуют экспериментальные данные, электроны в металле могут иметь только некоторые, вполне определённые значения энергии. При этом состояние электрона в металле можно описать с помощью системы энергетических уровней или кретного энергетического спектра (рисунок 6.1).

кдому возможному состоянию электрона, характеризуемому определённой энергией Е₁, соответствует некоторый энергетический уровень и наоборот. Распределение электронов по возможным квантовым состояниям описывается статистикой Ферми–Дирака, согласно которой вероятность заполнения состояния с энергией Е определяется функцией

$$f = \frac{1}{1 + \mathring{a}^{-(E-F)/\kappa}},$$
 (6.1)

где k – постоянная Больцмана, T – абсолютная температура, F – некоторое характерное значение энергии, называемое электрохимическим потенциалом или уровнем Ферми. С целью выяснения физического смысла постоянной F рассмотрим поведение функции Ферми–Дирака при абсолютном нуле температур. Полагая T = 0 в выражении (6.1), получаем f = 1 при E < F и f = 0 при E > F. Зависимость f(E) (6.1) при T = 0 имеет вид разрывной ступенчатой функции и представлена на рисунке 6.2 кривой 1.

Таким образом, при абсолютном нуле температур все без исключения энергетические уровни, лежащие ниже уровня Ферми, заняты электронами. В то же время все квантовые состояния, энергичкоторых больше энергии Ферми, полностью свободны. Наличие такой резкой границы между занятыми и свободными энергетическими уровнями объясняется тем, что при T = 0 реализуется основное состояние твердого тела, т. е. состояние с наименьшей возможной энергией.

количество заполненных квантовых состояний равно количеству электронов в металле, поскольку в соответствии с принципом запрета Паули в каждом квантовом состоянии может находиться не более одного электрона.

Если температура металла отлична от нуля, то электроны вследствие хаотического теплового движения могут заполнять энергетические уровни, лежащие выше уровня Ферми. Функция распределения (6.1) становится непрерывной. График зависимости f(E) представлен на рисунке (6.2) кривой 2. При достаточно больших *E*, удовлетворяющих условию $E - F >> \kappa T$, функция (6.1) принимает вид

$$f \cong e^{\frac{F-E}{\kappa T}} = Ce^{\frac{-E}{\kappa T}}, \qquad (6.2)$$

т. е. распределение Ферми–Дирака переходит в классическое распределение Больцмана.

Выражение (6.2) справедливо также для электронов, покинувших металл и находящихся в термодинамическом равновесии с электронным газом, существующим внутри металла. Пусть электрон, покаящийся за пределами металла вблизи его поверхности, имеет онсргию *E*₀. Тогда с помощью функции (6.2) можно найти вероятност, выхода электрона за поверхность

$$f \cong e^{-\frac{E_0 - F}{\kappa T}}.$$
(6.3)

Как свидетельствует выражение (6.3), вередтность эмиссии электронов отлична от нуля и быстро увеличивается с ростом температуры. Образование электронного облака колизи поверхности металла вследствие теплового движения электронов называется термоэлектронной эмиссией. Основной величиной, характеризующей интенсивность термоэлектронной эмиссии, является так называемая работа выхода $A_0 = E_0 - F$. Это энергия, необходимая для перевода электрона с уровня Ферми за пределы металла. Для чистых металлов термоэлектронная работа выхода интенсивность термоэлектронной эмиссии и плотность электронного облака волизи поверхности металла резко уменьшается в соответствии с въражением (6.3).

Электрическое поле, существующее внутри вакуумного диода, в соответствии с принципом суперпозиции обусловлено, с одной стороны, разностью потенциалов между электронами, а с другой – наличием пространственного заряда в объеме электронной лампы. Распределение электрического потенциала ϕ между анодом и катодом можно описать с помощью уравнения Пуассона

$$\frac{d^2\phi}{dx^2} = -\frac{\rho}{\varepsilon_0} = \frac{ne}{\varepsilon_0}, \qquad (6.4)$$

где $\rho = -ne$ — объемная плотность пространственного заряда, n — концентрация электронов, e — элементарный электрический заряд. С целью упрощения задачи рассматриваются плоские электроды, ось X

направлена перпендикулярно их поверхности, начало координат совмещено с катодом. В этом случае зависимостью всех величин от координат Y и Z можно пренебречь, и поэтому уравнение (6.4) записано в одномерной форме. Объемная плотность электрического тока в любой точке внутри диода определяется выражением

$$j = n e v_g, \tag{6.5}$$

где v_g – скорость упорядоченного движения электрона от катода к аноду (скорость дрейфа). Эта скорость может быть найдена из закона сохранения энергии

$$\frac{mv_g^2}{2} = e\phi, \qquad (6.6)$$

согласно которому кинетическая энергия упорядоченного движения электронов обусловлена их ускорением в электрическом поле, существующем в пространстве между электродами. В результате использования соотношений (6.5), (6.6) уравнение Пуассона (6.4) можно переписать в виде

$$\frac{d^2\phi}{dx^2}\sqrt{\phi},$$
(6.7)

где
$$\alpha = \frac{j\sqrt{m}}{\varepsilon_0\sqrt{2e}}$$
. После умножения обеих частей уравнения (6.7) на $\frac{d\phi}{dx}$

получаем

$$\phi''\phi' = \frac{\alpha\phi'}{\sqrt{\phi}},\tag{6.8}$$

где штрихами обозначено дифференцирование по x. Учитывая, что

$$\phi''\phi' = \frac{1}{2}(\phi'^2), \frac{\phi'}{\sqrt{\phi}} = 2(\sqrt{\phi})',$$

запишем уравнение (6.8) в виде

$$\left(\phi^{\prime 2}\right)' = 4\alpha \left(\sqrt{\phi}\right)'. \tag{6.9}$$

При интегрировании уравнения (6.9) будем использовать граничные условия

$$\phi(0) = 0, \phi'(0) = 0$$
 (6.10)

Электростатический потенциал определён с точностью до произвольной постоянной, и ему можно приписать некоторое значение в любой точке пространства. Поэтому первое условие из (6.10) является фактически нормировкой потенциала. Что касается второго граничного условия, то оно означает равенство нулю напряжённости электрического поля $E = \phi'$ на поверхности катода. Справедливость этого условия можно обосновать исходя из физических соображений. В противном случае, при наличии электрического поля вблизи поверхности катода, все излучаемые термоэлектроны увлекались бы угим полем к аноду, и электрический ток достигал бы насыщения при кобых напряжениях на лампе. Последовательно интегрируя уравнение (6.9) с учетом граничных условий (6.10), получаем

$$j = \beta U^{\frac{3}{2}}$$
, (6.11)

где $\beta = \frac{4\varepsilon_0 \sqrt{2e}}{9d^2 \sqrt{m}}, U = \phi(d)$ – анодное напряжение – расстояние между электродами. Такая зависимость (6.11) между объемной плотностью

анодного тока и анодным напряжением называется законом Богуславского–Ленгмюра, или законом треовторых.

Сила анодного тока может быть найдена путём умножения плотности тока (6.11) на площадь анода *S*. Если электроды имеют форму коаксиальных цилиндров, то зависимость между током и напряжением также подчиняется закону токх вторых

$$I = \beta U^{\frac{3}{2}},$$
 (6.12)

где $\beta = \frac{8\pi\varepsilon_0 \sqrt{2el}}{9R^2 \sqrt{n^2}}$ и *l* – радиус и высота цилиндрического анода, γ –

некоторая функция отношения радиусов анода и катода R/r (например, при R/r = 0.98). В случае большего отношения R/r формулу (6.12) можно родучить из (6.11) в результате умножения на площадь анода $S = 2\pi R$ и использования приближенных соотношений d = R, $\gamma = 1$.

Соответствии с законом Богуславского–Ленгмюра график зависимости $I = f(U^{\frac{3}{2}})$, построенный на основании экспериментальных данных, должен иметь вид прямой линии (рисунок 6.3). Измеряя тангенс угла наклона прямой относительно оси абсцисс, можно определить удельный заряд электрона.

$$\frac{e}{m} = \left(\frac{9R^2}{8\sqrt{2\pi\varepsilon_0 l}} tg\,\delta\right)^2. \tag{6.13}$$

Закон трёх вторых выполняется только при значениях анодного напряжения, которым соответствует монотонное возрастание плотности анодного тока. При этом имеет место нелинейная зависимость потенциала от координаты (кривая *1* на рисунке 6.5).

Такое распределение потенциала в пространстве между электродами обусловлено действием отрицательного объёмного заряда, сосредоточенного возле катода. Этот пространственный заряд, согласно принципу суперпозиции, ослабляет электрическое поле возле катода и усиливает это поле в области, прилегающей к аноду (рисунок 6.6, где E_0 – напряжённость электрического поля, создаваемого разностью потенциалов между катодом и анодом, E' – напряжённость электрического поля объёмного заряда). В соответствии с таким изменением напряжённости электрического поля изменяется угол наклона кривой $\phi(x)$ к оси абсцисс (рисунок 6.5).

Помере возрастания анодного напряжения происходит уменьшение объёмной плотности пространственного заряда, и его действие не межет больше компенсировать электрическое поле на поверхности катода. Нарушается второе граничное условие из (6.10), при учёте которого выведен закон трёх вторых, и, следовательно, наблюдается отклонение от этого закона. При больших значениях анодного напряжения пространственный заряд полностью исчезает, и электрическое поле внутри анода становится однородным (линия 2 на рисунке 6.4). В этом случае все электроны, испускаемые катодом, достигают анода, и возникает насыщение анодного тока, при котором он практически не зависит от дальнейшего увеличения анодного напряжения (рисунок 6.4).

Сила анодного тока насыщения определяется испускательной способностью катода и может быть увеличена путём нагревания катода. Зависимость плотности анодного тока насыщения от температуры катода можно найти в результате учёта распределения термоэлектронов по скоростям. Для этого рассмотрим электронное облако, сосредоточенное при отсутствии анодного напряжения вблизи поверхности катода и находящееся в динамическом равновесии с электронным газом внутри катода. В соответствии с выражением (СС) равновесное распределение термоэлектронов по скоростям определение термоэлектронов по скоростам определение термоэле

$$dn = \frac{2}{h^3} e^{-\frac{E_0 - F}{\kappa T}} e^{\frac{-P_x^2 + P_y^2 + P_z^2}{2mkT}} dp_x dp_y dp_y$$

где dn — концентрация электронов, импулься которых лежат в интервале $dp_x dp_y dp_z$, а также учтено, что энергия электрона вблизи поверхности катода $E = E_0 + E_k$ складывается из потенциальной энергии E_0 и кинетической энергии $E_k = 2$. Из группы электронов, *х*-составляющие тепловых скоростей которых лежат в интервале от v_x до $v_x + dv_x$, пересечь повержность катода в течении промежутка времени dt могут только те электроны, которые находятся от катода не далее, чем на расстоянии $v_x dt$. Через элемент поверхности катода dSза время dt указанными электронами будет перенесён электрический заряд

$$dQ = edndV = edndSv_x dt,$$

сосредоточенный в объёме прямого цилиндра dV с основанием dS и высотой $v_x dt$. Вклад рассмотренной группы электронов в плотность точко определяется выражением

$$dj = \frac{dQ}{dSdt} = ev_x dn = e\frac{p_x}{m} dn.$$
(6.14)

Полную плотность тока можно найти в результате интегрирования соотношения (6.14) по всем возможным положительным значениям P_x (ось X направлена перпендикулярно поверхности вглубь катода). При этом составляющие импульсов электронов P_y и P_z могут принимать любые значения. Интегрируя выражение (6.14) в указанных пределах, находим

$$j = \frac{2e}{h^3m} e^{-\frac{E_0 - F}{\kappa T}} \int_0^{+\infty} \exp(-\frac{p_x^2}{2mkT}) p_x dp_x \int_{-\infty}^{+\infty} \exp(-\frac{p_y^2}{2mkT}) dp_y \int_{-\infty}^{+\infty} e(-\frac{p_z^2}{2mkT}) dp_z.$$
(6.15)

Каждый из интегралов по p_y и p_z в соответствии с формулой

равен $(2\pi mkT)^{\frac{1}{2}}$, а первый интеграл в (6.15) может быть вычислен после внесения p_x под знак дифференциала и равен mkT. Учитывая значения интегралов, входящих в (6.15), получает закон Ричардсона–Дешмена

$$j = AT^2 e^{-\frac{E_0 - F}{\kappa}}$$
(6.16)

где $A = \frac{4mek^2\pi}{h^3} = 6,02 \times 10^5 \frac{A}{m^2 I}$ Выражение (6.16) определяет полную плотность электрического тока, проходящего из электронного облака через поверхность катода. Поскольку электронное облако находится в динамическом равновесии с электронным газом внутри катода, то такой же электрический заряд пересекает поверхность катода в обратном направлении. Так как при больших значениях анодного напряжения все электроны, испускаемые катодом, достигают анода, то форкола (6.16), характеризующая испускательную способность катода, одновременно даёт зависимость тока насыщения от температуры. При этом сила анодного тока связана с плотностью тока насыщения соотношением I = jS, где S – площадь катода.

Попарифмируя (6.16), получаем

$$\ln(\frac{j}{T^2}) = \ln A - \frac{E_0 - F}{kT} \quad . \tag{6.17}$$

Согласно выражению (6.17), зависимость между величинами $\ln(\frac{j}{T^2})$ и *1/T* является прямо пропорциональной. Построив график зависимости $\ln(\frac{j}{T^2}) = f(\frac{1}{T})$, можно убедиться в справедливости фор-

мулы Ричардсона–Дешмена. Измерение тангенса угла наклона прямой позволяет определить работу выхода электрона из катода (рисунок 6.7):

$$A_0 = E_0 - F = ktg\psi.$$
(6.18)

Лабораторная работа 6

Изучение явления термоэлектронной эмиссии с помощью вакуумного диода

Цель работы: исследование вольтамперной характеристики вакуумного диода, проверка закона Богуславского–Ленгмюра и определение удельного заряда электрона. Экспериментальное изучение зависимости плотности тока насыщения от температуры катода и определение работы выхода электрона на основании ураниения Ричардсона–Дешмена.

Приборы и принадлежности: кассета ФПЭ-06, источник питания, цифровой вольтметр (миллиамперметр).

Описание установки

На рисунке 6.8 представлена электрическая схема установки. Принцип работы установки основан на техноэлектронных явлениях, возникающих в электровакуумной ламое 91Ц14С. Регулировка и контроль необходимых параметров выпозняется с помощью источника питания и цифрового вольтметра подключённых к рабочей кассете согласно схеме.

Рисунок 6.8 – Схема установки

Диапазон напряжений накала составляет (2,5-4,5) В, анодное

напряжение равно (12–100) В, ток накала можно изменять в пределах (1,2–1,75) А.

Ход работы

1 Измерьте цифровым прибором сопротивление (*R_k*) нити накала лампы ЧЦ14С при комнатной температуре.

2 Подключите к разъёму кассеты ФПЭ-06 кабель, идущий от теточника питания, подключите миллиамперметр к выходным тездам X1, X2 («PA»).

3 Снимите вольтамперную характеристику диода, изменяя анодное напряжение потенциометром в пределах (12–120) В, для трёх значений тока накала в интервале (1,5–1,75)А. При этом фиксируйте напряжение накала с помощью вольтметра. Анодный ток фиксируйте с шагом 0,01 мА, включая область насыщения

4 На основе показаний п.3 для каждого значения напряжения накала постройте вольтамперную характеристику и определите силу тока насыщения и $tg\delta$ (рисунок 6.3).

5 Для всех значений катоде $P_H = I_H U_H$.

6 Используя формулу 6.13, определите удельный заряд электрона (в формуле (6.13) $n^2/l = 0,23$).

7 Для трёх значений тока накала рассчитайте 1/T и $\ln(j/T^2)$. Температуру катода можно определить по формуле

$$t_n = \frac{R(t_n)}{R(t_k)} (\frac{1}{\alpha} + t_k) - \frac{1}{\alpha}$$

где t_k – комнатная температура, $R(t_k)$ – сопротивление катода при комнатной температуре, $\alpha = 4,2 \times 10^{-3}$ град⁻¹, $R(t_n)$ – сопротивление катода при рабочей температуре, равное

$$R(t_n) = \frac{U_n}{I_n},$$

где U_n – напряжение в цепи накала, I_n – ток накала.

Плотность анодного тока ј рассчитайте по формуле

$$j = \frac{I_H}{S}, \ S = 11 \cdot 10^{-6} \, m^2$$

8 Постройте график $\ln(\frac{j}{T^2}) = f(\frac{1}{T})$, убедитесь в его линейности.

По формуле 6.18 определите работу выхода электрона из вольфрах

Рассчитайте погрешность измерения, учитывая, уподля нити сала (вольфрам) $A_0 = 4,54$ эВ. 9 накала (вольфрам) $A_0 = 4,54$ эВ.

Примечание – Для лампы ЧЦІ4С диаметр нити Мулала $d = 3 \times 10^{-3} M$, длина $l = 13 \times 10^{-3} M$.

68

Тема 7 Изучение явления магнитного гистерезиса

- 1 Понятие о ферромагнетиках
- 2 Зависимость намагниченности от напряженности поля
- 3 Закон Кюри–Вейсса

Основные понятия по теме

Ферромагнетики – это класс магнетиков, для которых карактерны необычные свойства, проявляющиеся только в определенном интервале температур. Магнитная проницаемость ферромагнетиков зависит от напряженности магнитного поля, и при некоторых значениях напряженности относительная магнитная пронинаемость принимает очень большие значения ($\mu_r \sim 10^4$). Характерными примерами ферро-магнетиков являются такие металлы, как колезо, кобальт, никель, а также их сплавы. Ферромагнетики предотавляют собой разновидность магнетиков, которые обладают самото извольной намагниченностью даже в отсутствие магнитного поля в обычных магнетиках магнитные моменты различных атомов, в отсутствие внешнего магнитного поля, ориентированы хаотически из за теплового движения молекул. Поэтому суммарный магнитный момент молекул в любом физически бесконечно малом объеме равен нулю. В ферромагнетиках имеет место сильное взаимодействие между собственными магнитными моментами электронов, характерная энергия которого превышает энергию хаотического тепловою движения молекул. Вследствие этого взаимодействия магнияные моменты близких молекул ориентируется в одном направлении, то есть происходит самопроизвольное намагничивание образца в тсутствие внешнего магнитного поля. Область ферромагнетика в пределах которой все магнитные моменты ориентированы в одном направлении, называется ферромагнитным доменом. Сильная спонтанная намагниченность такого домена приводит к возникновению в окружающем пространстве магнитного поля. Минимизация энергии внешнего магнитного поля достигается благодаря намагничиванию доменов в различных направлениях. В этом случае суммарный магнитный момент всего ферромагнетика и напряженность магнитного поля в окружающем пространстве близки к нулю. Принимая во внимание доменную структуру ферромагнетиков, можно качественно объяснить их магнитные свойства.

При помещении ферромагнетика во внешнее магнитное поле возникает взаимодействие доменов с этим полем. Поскольку потенциальная энергия магнитного момента \vec{m} в магнитном поле с напряженностью \vec{H} имеет минимум при параллельной ориентации векторов \vec{m} и \vec{H} , то по мере возрастания напряженности поля будет происходить постепенное перемагничивание доменов в направлении внешнего магнитного поля. Приблизительный график зависимости намагниченности образца от напряженности магнитного поля показан на рисунке 7.1.

Кривая имсят торизонтальный участок, соответствующий состоянию насыщения намагниченности. В этом состоянии весь объем ферромагнетика намагничен в направлении внешнего магнитного поля, и при возрастании напряженности не может происходить дальнейшее увеличение намагниченности. Что касается магнитной индукции

$$\vec{B} = \mu_0 (\vec{H} + \vec{M}), \qquad (7.1)$$

то состоянию насыщения намагниченности (M = const) соответствует линейная зависимость между величинами B и H. Значение M_{hac} можно определить путем экстраполяции линейного участка кривой $B(\mu_0 H)$, образующего с осью абсцисс угол $\pi/4$, до пересечения с осью ординат (рисунок 7.2).

Поскольку в общем случае имеет месть нелинейная зависимость магнитной индукции B от напряженности поля H, то относительная магнитная проницаемость μ_r является рункцией H. Из формулы (7.1) следует зависимость

$$\frac{M}{\mu_0 H} = 1 + \frac{M}{H},$$
 (7.2)

график которой представлен на рисунке 7.3. В соответствии с рисунком 7.1 при малых значениях H намагниченность быстро растет, и относительная магнитная проницаемость увеличивается, при больших напряженностях рост намагниченности замедляется, и μ_r , достигнув максимального значения, начинает монотонно убывать. После перехода ферремагнетика в состояние насыщения намагниченности относительная магнитная проницаемость стремится к единице по гипербохическому закону $\mu_r = 1 + const/H$. Таким образом, эффективное усиление магнитных полей возможно только при определенных напряженностях магнитного поля, когда ферромагнетик еще не находится в состоянии насыщения намагниченности. Напряженность $H_{\kappa p}$, при которой относительная магнитная проницаемость из условия $\frac{d\mu_r}{d(\mu_0 H)} = 0$. Используя выражения (7.1) и (7.2), получаем:

$$\frac{B}{\mu_0 H} = \frac{dB}{d(\mu_0 H)}; \qquad \qquad \frac{M}{\mu_0 H} = \frac{dM}{d(\mu_0 H)},$$

означающие, что в точке, соответствующей критическому значению напряженности магнитного поля, касательные к кривым B(H) и M(H) проходят через начало координат. При уменьшении напряженности значения магнитной индукции намагниченного ферромагнетика изменяются медленнее, чем это происходит при первоначальной намагниченности образца (рисунок 7.4).

Это связано со свойством доменов частично сохранять прежнее направление намагниченности. Значение B_0 характеризует остаточную камагниченность ферромагнетика при полном выключении магнитного поля. Для того, чтобы ликвидировать остаточную намагниченность образца, необходимо приложить магнитное поле в противоположном направлении. Длина отрезка *ОС* пропорциональна напряженности поля, необходимого для полного размагничивания образца. При дальнейшем увеличении *H* происходит намагничивание образца в противоположном направлении, и в случае гармонического изменения напряженности поля зависимость *B*(*H*) имеет вид замкнутой кривой, изображенной на рисунке 7.4. Эта кривая называется петлей гистерезиса. Как следует из рисунка 7.4, зависимость индукции
и относительной магнитной проницаемости от напряженности поля является неоднозначной, и на состояние ферромагнетика при некотором значении напряженности влияют также предшествующие значения Н. Рассмотренные свойства ферромагнетиков проявляются лишь при определенных температурах. При нагревании образца взаимодействие магнитных моментов электронов ослабляется, и при некоторой температуре Т₀, называемой температурой Кюри, происходит разрушение доменов. Спонтанная намагниченность образца исчезает, и он из ферромагнетика превращается в обычный парамагнетик. При темпера рах, незначительно превышающих температуру Кюри, махнигная проницаемость образца быстро убывает в соответствии Озаконом NCKACK Кюри-Вейсса:

$$\mu_r = 1 + \frac{A}{T - T_0},$$

где *А* – постоянная.

Таким образом, магнитные свойства фере тнетиков – веществ, способных сильно намагничиваться – позностью аналогичны электрическим свойствам сегнетоэлектриков. Все результаты и выводы, полученные в данном разделе, остаются справедливыми также и для сегнетоэлектриков после формальной замены во всех соотношениях:

$$\mu_0 \to \varepsilon_0; \mu_r \to \varepsilon_r; \vec{H} \to \vec{E}; \vec{P}; \vec{B} \to \vec{D}$$

объясните кривую намагничивания, график зави-1 Нарис ферромагнетика. симости

Вычислите *Н* в длинном соленоиде.

ак происходит намагничивание ферромагнетиком?

то такое петля гистерезиса? Какие причины ее вызывают?

5 Каким образом можно размагнитить образец?

6 Что такое потери энергии на гистерезис?

Лабораторная работа 7

Изучение магнитного гистерезиса с помощью электронного осциллографа

Цель работы: изучить явление магнитного гистерезиса.

Приборы и принадлежности: кассета ФПЭ-07/02, низкочастотный генератор, осциллограф.

Описание установки

Лабораторная работа проводится на установке, состоящей из кассеты ФПЭ-07/02, генератора и осциллографа, собранной по схеме (рисунок 7.5).

Рисунок 7.5 – Схема установки

Принцип работкі установки основан на явлении гистерезиса, возникающего в ферромагнетиках. Исследуемым образцом является сердечник торондального трансформатора из марганец–цинкового феррита М2000НМ размерами $31 \times 18,5 \times 7$ мм, с двумя обмотками (число вихов первичной обмотки $N_1 = 200$, число витков вторичной обмотки $N_2 = 50$). Первичная обмотка подключается к генератору, вторичная обмотка (измерительная) подключается к осциллографу, на экране которого воспроизводится петля гистерезиса исследуемого образца. В цепи, состоящей из намагничивающей обмотки, генератора сигналов и резистора R_1 , создается переменный ток (напряжение 2–5 В, частота 700–806 Гц, гнезда X1, X2). Используемый железный образец имеет форму тора, его намагничивание осуществляется с помощью кольцевой обмотки (рисунок 7.6). Если радиус тора R_0 значительно превышает радиус его поперечного сечения r_0 (сердечник имеет форму тонкого кольца), то магнитное поле, существующее в обмотке,

явлется однородным всюду внутри неё. При этом силовые линии имеют форму окружностей, общий центр которых совпадает с ценром тора.

Рисунок 7.6 – Исследуемый образец, сердечник франсформатора

Поскольку вектор напряжённости магнитного поля всюду параллелен поверхности образца, то из граниных условий для векторов магнитного поля следует, что значения H внутри и вне образца равны между собой. Это обстоятельство позволяет при выполнении расчётов не делать сложных поправок но сометрическую форму образца и существенно упрощает опредствение магнитной проницаемости железа. Связь между силой тока в обмотке I_0 и напряженностью создаваемого этим током магнитного поля \vec{H} можно найти с помощью теоремы о циркуляции вектора \vec{N} :

$$\oint \vec{H}d\vec{l} = NI_0 , \qquad (7.3)$$

где интекрирование приводится по окружности, проходящей внутри тора (вдоль линии вектора \vec{H}), N – число витков обмотки, NI_0 – полный ток проводимости, охватываемый контуром интегрирования. Из ворежения (7.3) следует:

$$H = \frac{NI_0}{2\pi R_0} = nI_0,$$
 (7.4)

где *n* – количество витков обмотки, приходящейся на единицу длины тора. Таким образом, напряженность магнитного поля однозначно определяется силой тока в намагничивающей обмотке и линейной плотностью ее витков.

На резисторе R_1 возникает напряжение, пропорциональное току в первичной обмотке и напряженности магнитного поля в образце. Этот сигнал подается на вход «Х» осциллографа. Измерительная обмотка трансформатора присоединена к интегрирующей R_2C_1 – цепочке.

При изменении потока внешнего магнитного поля, пронизывающего измерительную катушку, в ней возникает Э.Д.С. индукции $\varepsilon = -\frac{d\Phi}{dt} = -SN_2 \frac{dB}{dt}$, где S – площадь поперечного сечения тора. В случае гармонического изменения силы тока зависимость магнитеой индукции от времени можно записать в виде $B = B_0 e^{-i\omega t}$ кле ω – циклическая частота переменного тока. Следовательно, во вгоричной обмотке действует Э.Д.С. индукции $\varepsilon = i\omega SBN_2$. При этом напряжение на интегрирующей емкости С1 пропорционально индукции магнитного поля:

$$U_{c} = \left| -\frac{i}{\omega C_{1}} I_{1} \right| = \left| -\frac{i}{\omega C_{1}} \frac{\varepsilon}{Z} \right| = \frac{\delta \omega V_{2}}{C_{1} \sqrt{R_{2}^{2} + (\omega L_{2} - \frac{1}{\omega C_{1}})^{2}}},$$

где
$$I_1 = \frac{\varepsilon}{Z}$$
 – сила тока во вторичной обмотке,
 $Z = R_2 + i(\omega L_2 - \frac{1}{\omega C_1})$ – импеданс вторичной обмотки.
Этот сигнал подается на вход «Y» осциллографа (гнездо X2, X3).
Из выражения $V_x = U_y = \frac{1}{R_2 C_1} SN_2 B$ находим индукцию магнит-
ного поля
 $B = \frac{U_y R_2 C_1}{SN_2}$, (7.5)

ного поля

$$B = \frac{U_{y}R_{2}C_{1}}{SN_{2}},$$
(7.5)

F – площадь поперечного сечения тороидального сердечника, N₂ – число витков вторичной обмотки. При получении формулы (7.5) мы пренебрегаем реактивным сопротивлением вторичной обмотки.

Падение напряжения на сопротивлении R_1 равно $U_{x} = I_{1}R_{1} = \frac{2\pi R_{0}}{N_{.}}R_{1}H$ и пропорционально отклонению электронного луча по горизонтали. Из этого выражения находим напряженность магнитного поля:

$$H = \frac{N_1 U_x}{2\pi R_0 R_1},$$
 (7.6)

где N_1 – число витков в первичной обмотке, R_0 – радиус тора (рисунок 7.6).

Ход работы

1 Подключите к кассете ФПЭ-07/02 генератор и осциллогорф (рисунок 7.5).

2 Запишите в таблицу 7.1 исходные данные схемы, которые указаны на лицевой панели кассеты.

Таблица 7.1 – Исходные и опытные данные

								A	\sim			
R_1	R_2	C_{I}	S	N_{I}	N_2	U_x	U_y	H		B_0	H_k	$\mu_{\scriptscriptstyle Ma\kappa c}$
								2 ^P				

3 Выполните калибровки осциллографа по оси X и запишите его чувствительность по оси $X - U_x$ (В/дел), а также по оси $Y - U_y$ (В/дел), которую показывает указатель соответствующей ручки.

4 Включите текератор и осциллограф в режиме выключенной развертки. Добейтесь, чтобы петля гистерезиса находилась в центре экрана, была симметричной, имела насыщение и занимала большую часть экрана.

Барисуйте координатную сетку экрана осциллографа (в маспказе одна клетка – 2 см) и на нее нанесите график полной петли гистерезиса.

6 Уменьшая выходное напряжение генератора, получите семейство не менее пяти уменьшающихся до точки петель. Снимите для каждой из них координаты вершин U_{x0} и U_{y0} . По полученным точкам постройте кривую намагничивания. 7 Используя масштабы U_x , U_y и формулы (7.5) и (7.6), найдите по графику петли гистерезиса и запишите в таблицу 7.1, значения магнитных параметров B_H , B_0 , H_k (рисунок 7.4) для пяти петель гистерезиса.

8 Используя кривую намагничивания, по формуле $\mu = \frac{B}{\mu_0 H}$ вычислите магнитную проницаемость при различных значениях напря-женности магнитного поля. Запишите в таблицу 7.1 максимального магнитную проницаемость ферромагнетика µmax. ССОРИНИИ ССОРИНИ ССОРИНИ ССОРИНИИ ССОРИНИИ ССОРИНИИ ССОРИНИИ ССОРИНИИ ССОРИНИИ ССОРИНИИ ССОРИНИИ ССОРИНИИ ССОРИНИ ССОРИ ССОРИНИ ССОРИ ССОРИНИ ССОРИНИ ССОРИНИ ССОРИНИ ССОРИНИ ССОРИ ССОРИ ССОРИНИ ССОРИНИ ССОРИНИ ССОРИ ССОРИНИ ССОРИНИ СОРИНИ ССОРИНИ ССОРИНИ ССОРИ ССОРИ ССОРИНИ СОРИНИ числите магнитную проницаемость при различных значениях напоя-

Тема 8 Изучение работы конденсатора

- 1 Квазистационарные токи
- 2 Дифференциальные уравнения для *RC*-цепи
- 3 Зависимость тока зарядки и разрядки конденсатора от времени

Основные понятия по теме

Если подключить конденсатор к источнику постоянного кока (рисунок 8.1), то напряжение на нем U_c экспоненциально возрастает, асимптотически стремясь к ЭДС источника. При этом сила тока *I* (направление тока указано на рисунке 8.1), проходящего через сопротивление *R*, убывает по экспоненте, уменьшаясь ко нуля.

Процесс зарядки конденсатора можно описать с помощью закона Ома для полной цепи:

$$\varepsilon = IR + (8.1)$$

согласно которому сторонняя ЭХС равна сумме падений напряжения на всех участках цепи (внутренним сопротивлением источника пренебрегаем). В выражении (С. Уучтено, что напряжение U_c на обкладках конденсатора связано с зарядом Q соотношением $U_c = Q/C$, где C – емкость конденсатора.

Рисунок 8.1 – Принципиальная схема заряда и разряда конденсатора

Дифференцируя (8.1) по времени и принимая во внимание, что сила тока равна скорости изменения заряда на обкладках

$$I = \frac{dQ}{dt},$$

получаем дифференциальное уравнение с разделяющимися переменными

где постоянная интегрирования I_0 , равная сила тока в момент времени t = 0, может быть определена из начальных условий. Поскольку в начальный момент времени Q = 0, (зарад на обкладках не успел накопиться), то из (8.1) следует:

$$(8.4)$$

При разрядке конденсатора соответственно справедливы соотношения

$$-IR = 0, \qquad I = -\frac{dQ}{dt}, \qquad \frac{Q_0}{C} = \varepsilon$$

(направление ока изменилось на противоположное, происходит уменьшение заряда на обкладках, начальное напряжение на конденсаторе равно ЭДС источника). В результате зависимость силы тока от времени остается неизменной.

уравнения (8.3) находим закон изменения напряжения U_R на совротивлении *R* и напряжения на конденсаторе U_C (рисунок 8.2):

$$U_R = IR = \varepsilon e^{-\frac{t}{RC}}.$$
(8.5)

$$U_{C} = \varepsilon - IR = \varepsilon - \varepsilon e^{-\frac{t}{RC}} = \varepsilon \left(1 - e^{-\frac{t}{RC}}\right).$$
(8.6)

Рисунок 8.2 – а) зависимость силы тока в цепи от времени; б) изменение напряжения U_R на сопротивлении R в зависимости от времени; изменение напряжения на емкости Ue в зависимости от времени (осциллограмия)

Для характеристики средней скорости изменения силы тока в цепи при зарядке и разрядке конденсатора вводится в рассмотрение время релаксации системы:

$$\mathbf{X} = RC, \tag{8.7}$$

в течение которого сила тока уменьшается в *e* раз, т. е. сила тока при $t = \tau$ составляет 0,368 от максимального значения $I_{\text{max}} = \frac{\varepsilon}{R}$.

Формула зависимости силы тока *I* и напряжений U_R и U_C от времени при разрядке, конденсатора через сопротивление *R* при отключенном источнике, тока находится из уравнения $U_C = IR$. Студентам самим предоставляется возможность выполнить решение этой задачи и убедиться в том, что U_C , *I* и U_R при разрядке конденсатора изменяются по одному и тому же закону: $\sim exp(-t/RC)$. Если прологарифмировать выражение (8.3), получаем:

$$\ln I = \ln \frac{\varepsilon}{R} - \frac{t}{\tau},\tag{8.8}$$

то есть изменение логарифма силы тока прямо пропорционально времени. При этом угловой коэффициент прямой, графически выражающий зависимость lnI = f(t), связан со временем релаксации обратной зависимостью $tg\alpha = 1/\tau$. Точка пересечения прямой с осью ординат дает значение логарифма начальной силы тока (рисунок 8.3).

На практике часто используется паралленное или последовательное соединение конденсаторов. Емкость ческольких параллельно соединенных конденсаторов равна сумме их емкостей:

В случае последовательного соединения конденсаторов справедлива такая же формула, как при параллельном соединении резисторов:

$$\frac{1}{C} = \sum_{i=1}^{N} \frac{1}{C_i}$$

где *N* – количество соединенных конденсаторов.

Вопросы для самоконтроля

УЧто такое квазистационарные токи.

² Запишите дифференциальные уравнения для *RC*-цепи.

3 Поясните зависимость тока зарядки и разрядки конденсатора от времени.

4 Как определить т цепи из осциллограммы.

5 Рассчитайте емкости при параллельном и последовательном соединении конденсаторов.

6 Поясните осциллограммы зарядки-разрядки конденсатора, приведенные на рисунке 8.5.

Лабораторная работа 8

Изучение процессов зарядки и разрядки конденсатора

Цель работы: усвоение понятия об электрической емкости, изучение процессов зарядки и разрядки конденсатора осциллографическим методом, определение времени релаксации процесса и емкости конденсатора.

Приборы и принадлежности: кассета ФПЭ–ПИ/09, магазин сопротивлений (2 шт), магазин емкостей, источник питания, генератор низкочастотный, осциллограф С1-117.

Описание установки

Работа выполняется по схеме, приведенной на рисунке 8.4.

С низкочастотною генератора синусоидальный сигнал подается на кассету ПИ, с выхода которой прямоугольные импульсы через два магазина сопротивлений подаются на магазин емкостей. Для того, чтобы получить осциллограммы зарядки и разрядки конденсатора, необходимо через постоянные промежутки времени подключать конденсатор к цепи и сразу же его отключать. Причем частота переключения должна быть такой, при которой незаметно было бы мерцание изображения на экране. Роль такого переключателя в данной работе выполняют прямоугольные импульсы, получаемые с помощью кассеты ФПЭ-ПИ/09 или непосредственно с выхода генератора, поскольку большинство генераторов имеют синусоидальный и прямоугольный выходной сигналы.

Синусоидальный сигнал (1–3 В) подается от входных гнезд X1, X2 через разделительный конденсатор C1 на компаратор напряжения (микросхема серии К554САЗБ). Выходной сигнал компаратора

управляется усилительным каскадом. С выходных гнезд *X3, X4* снимается сигнал прямоугольной формы положительной полярности с амплитудой 11,5 В.

Ход работы

1 Используя рисунок 8.4, соберите рабочую схему. Подключите к разъему кассеты ФПЭ-ПИ/09 кабель источника питания.

Внимание: без кассеты ПИ/09 можно получить прямоугольных сигнал непосредственно с генератора.

2 Установите следующие значения параметров выходного напряжения генератора: частота 1 кГц, напряжение 2 В.

3 Получите на экране осциллографа последовательность прямоугольных импульсов и убедитесь в соответствии отображаемых параметров установленным на генераторе.

4 Установите на магазинах сопротивлений и емкостей следующие значения: $R_1 = 100$ Ом, $R_2 = 1$ кОм $C = 1 \cdot 10^{-2}$ мкФ.

5 Получите на экране осциллографа изображение импульсов зарядки и разрядки конденсатора. С помощью ручек *«Вольт/делен»*, *«синхронизация»*, и *«время/делен»* добейтесь устойчивого неподвижного изображения трков зарядки и разрядки конденсатора.

6 Зарисуйте координатную сетку экрана осциллографа в масштабе и кривые импульсов. Определите время релаксации τ (рисунок 8 2 6), емкость конденсатора по известному сопротивлению и максимальное напряжение в импульсе. Вычислите время релаксации цети τ расчетным путем и сравните ее со значением, найденным экспериментально. Найдите среднюю арифметическую ошибку измерений.

7 Повторите пункты 5–6 для других параметров *R* и *C*, причем подберите их так, чтобы осциллограммы зарядки-разрядки конденсатора выглядела как на рисунке 8.5 (пунктирные линии).

Тема 9 Изучение работы простых цепей

1 Фазовые соотношения в простых цепях

2 Коэффициент передачи

3 Амплитудочастотная и фазочастотная характеристики простых цепей

Основные понятия по теме

Цепь, содержащая два резистора

Схема (рисунок 9.1) представляет собой резистивный делитель, имеющий две пары внешних зажимов. Обозначим входные зажимы U_1 , выходные – U_2 . Коэффициент передачи цепи по напряжению $K = \frac{U_2}{U_1}$. Коэффициент передачи K является важнейний характеристикой цепи, поскольку дает возможность рассчитать напряжение на выходе по из-

вестному напряжению на входе.

Задахим для цепи (рисунок 9.1) напряжение на входе U_I . Тогда действующее значение тока $I = \frac{U_1}{R_1 + R_2}$. Действующее значение напряжения на выходе можно записать в виде

$$U_2 = R_2 I = \frac{U_1 R_2}{R_1 + R_2} \tag{9.1}$$

Коэффициент передачи равен

$$K = \frac{U_2}{U_1} = \frac{R_2}{R_1 + R_2}, \quad \varphi = 0$$
(9.2)

Если на вход резистивного делителя подавать сигнал различных частот с генератора, то, пренебрегая паразитными емкостями, можно установить, что коэффициент передачи не будет изменяться.

Запомните, что в цепи с активным сопротивлением ток и напряжение совпадают по фазе. Электрическая мощность в активном сопротивлении преобразуется в тепло.

Цепь, содержащая *R* и *C* На рисунке 9.2 показан делитель напряжения, состоящий

Здесь точкой сверху обозначены комплексные величины. Сравните полученный результат с выражением для резистивного делителя (9.1).

Для постоянного тока идеальный конденсатор характеризуется бесконечно большим сопротивлением, не позволяющим проходить постоянному току. Для переменного тока с частотой f реактивное сопротивление конденсатора с емкостью C, или емкостное сопротивление, выражается формулой:

$$X_c = \frac{1}{2\pi f C} = \frac{1}{\omega C}.$$

Реактивное сопротивление вызывает сдвиг фаз между током и напряжением (ток в цепи с емкостью без активного сопротивления опережает напряжение на 90°). В цепи, содержащей *R* и *C*, сдвиг фар ϕ между током и напряжением будет меньше 90°: $tg \phi = -1/R\omega C$

Возвращаясь к рисунку 9.2, заметим, что входное сопретивление $\dot{Z}_{ex} = \frac{\dot{U}_1}{I} = Ze^{i\varphi}$. При изменении частоты сопротивление реактивных элементов цепи изменяется. Зависимость модуля комплексного входного сопротивления цепи от частоты называют входной амилитудно-частотной характеристикой цепи (AЧX): $Z_{ex} = Z_{ex}(\omega)$. Анатотично, входной фазочастотной характеристикой цепи (ФЧХ) называют зависимость аргумента комплексного входного сопротивления от частоты от частоты.

Комплексное входное сопротивление можно представить не только в показательной $\dot{Z}_{ex} = Z_{ex}$ но и в алгебраической форме $\dot{Z}_{ex} = R_{ex} + jX_{ex}$, где R_{ex} и X_{ex} - резистивная и реактивная составляющая комплексного входного сопротивления. Частоту ω_{ep} , на которой реактивная составляющая входного сопротивления цепи по абсолютному значению равна резистивной составляющей, называют граничной.

График АЧХ для схемы (рисунок 9.2) представлен на рисунке 9.3. Как вы видите, график представляет фильтр высоких частот. На высоких частотах выходное напряжение приблизительно равно входному $\omega \ge \frac{1}{RC}$, а на низких частотах выходное напряжение уменьшается до нуля.

Рисунок 9.3 – Фильтр высоких частот

Если поменять местами *R* и *C*, то фильтр будет вести себя противоположным образом в отношении частоты, получим фильтр низких частот (рисунок 9.4).

Для RL-цепи можно записать

$$Z_{ex} = R + j\omega L = \sqrt{R^2 + \omega^2 L^2} e^{jarctg\frac{\omega L}{R}} = R \sqrt{1 + \left(\frac{\omega}{\omega_{ep}}\right)^2} e^{jarctg\frac{\omega}{\omega_{ep}}}$$

Итак, входную АЧХ последовательной *RL*-цепи вычисляют согласно выражению $Z_{ex} = R \sqrt{1 + (\omega / \omega_{ep})^2}$, а входную фазочастотную характеристику

$$\varphi_{Z_{ex}} = arctg(\omega/\omega_{2p})$$

При $\omega = 0$ имеем $Z_{\rm BX} = R$, $\varphi = 0$. При $\omega = \omega_{ep}$ получаем $Z_{\rm BX} = R\sqrt{2}$, $\varphi = 45^{\circ}$. При $\omega = \infty$ находим $Z_{\rm BX} = \infty$, $\varphi = 90^{\circ}$.

Кривые $Z_{ex} = f(\omega)$ и $\varphi_{zex} = f(\omega)$ для *RL*-цепи показоны на рисунке 9.5 а, б.

Рисунок 9.5 – Кривых
$$Z_{ex} = f(\omega)$$
 и $\varphi_{zex} = f(\omega)$ для *RL*-цепи

Комплексная передаточная функция цепи по напряжению равна

$$\dot{K}(\omega) = \frac{\dot{U}_2(\omega)}{U_1} = K(\omega)e^{j\varphi_k(\omega)}$$

Корфициент передачи цепи K и угол сдвига фазы φ выражается формулами:

$$K = \frac{R_2}{\sqrt{R_2^2 + (\omega L)^2}},$$
(9.6)

$$tg\,\varphi = \frac{\omega L}{R_2}.\tag{9.7}$$

Вопросы для самоконтроля

1 Дайте определение простых линейных цепей.

2 Приведите фазовые соотношения между входным и выходным напряжением в простых цепях с реактивными элементами.

3 Найдите расчетным путем коэффициенты передачи в простых цепях.

KOPMHE

4 Поясните АЧХ и ФЧХ простых цепей.

Лабораторная работа 9

Изучение электрических процессов в простых цепях

Цель работы: научиться измерять коэффинкент передачи в простых цепях с помощью осциллографа, исследовать входные и передаточные характеристики простых цепей с одним реактивным элементом, научиться определять диапазон частот, в которых входное сопротивление цепи имеет практически чисто резистивный или чисто реактивный характер.

Приборы и принадлежностих кассета ФПЭ-09/ПИ, источник питания, генератор, осциллограф

Описание установки

На плате ФПЭ Ф установлены элементы: активные сопротивления R_1 и R_2 , реактивные емкость C и индуктивность L, а также плата коммутатора A_1 (рисунок 9.6).

Рисунок 9.6 – Принципиальная схема установки

На передней панели установлен кнопочный переключатель *SB*, позволяющий исследовать колебания в трех различных целях: в цепи, содержащей активные сопротивления R_1 и R_2 , активное сопротивление R_2 и емкость *C*; активное сопротивление R_2 и индуктивность *L*.

Входной сигнал от генератора, характеризуемый амплитудой до 3 В и частотой в пределах 20–100 кГц подается на гнезда X_1 , X_2 . Осциллограф подключается к выходным гнездам X_3 , X_4 , X_5 .

Для определения сдвига фаз и разности амплитуд сигналов, поступающих на вход цепи и снимаемых с выхода, используется комутатор A_1 , который позволяет наблюдать на экране осциллографа одновременно входной сигнал и выходной, снимаемый с сопротивления R_2 . Для получения устойчивого изображения на экране осциллографа с гнезда X_3 подается сигнал на вход «синхронизация» осциллографа.

1 Согласно рисунку 9.6 к кассете ФПЭ-09 подключите источник питания через разъем, осциллограф и генератор. Переключателем S_{11} включите сопротивление R_1 , при этом C и L выключены. Получите схему, показанную на рисунке 9.1.

2 Зарисуйте колебания, наблюдаемые на экране осциллографа при частоте f = 20 кГц.

3 Рассчитайте коэффициенты передачи, имея в виду, что $R_1 = 470$ Ом, $R_2 = 51$ Ом. Получите этот же результат опытным путем, сравните. Обратите внимание, что сдвиг фаз между входным U_1 и выходным напряжением U_2 отсутствует.

4 Результаты измерений и вычислений занесите в таблицу 9.1.

Таблица 9.1 – Расчетные и экспериментальные данные

U_{ex} , B	$U_{{\scriptscriptstyle {\it {\it bbl }} x}}$, B	K
		pM
		NOT
		th

<u>Упражнение 2. Изучение электрических процессов в цепи, содер-</u> жащей резистор и конденсатор.

1 Выключите сопротивление к и включите емкость *С*. Получите схему, показанную на рисунке **С**.

2 Зарисуйте колебания на блюдаемые на экране осциллографа при частоте f = 20 кГц.

3 Определите угол сдвига фаз между силой тока в цепи и входным напряжением. Для этого измерьте в делениях шкалы экрана осциллографа сдвиг по времени между изображениями двух исследуемых сигналов (а) в период колебаний (б) (рисунок 9.7).

4 разность фаз рассчитайте по формуле $\varphi = \frac{a}{360} [zpad]$

$$\varphi = \frac{a}{b} 360[zpad]. \tag{9.8}$$

5 Повторите задания пунктов 2 и 3 при частоте генератора $f = 100 \text{ к}\Gamma$ ц.

6 Произведите измерения амплитуд напряжений на входе и выходе цепи при различных значениях частоты генератора (от 20 кГц до 100 кГц с шагом 10 кГц). 7 Рассчитайте коэффициент передачи K цепи по формуле $K = \frac{U_{_{6blx}}}{U_{_{6x}}}$ для всего исследованного диапазона частот.

8 Постройте график зависимости K = f(f).

9 С помощью графика K = f(f) оцените емкость C конденсатора. Для этого определите угол наклона α линейного участка графика κ оси

f, получите $tg \alpha = 2\pi R_2 C$, откуда $C = \frac{tg \alpha}{2\pi R_2}$.

10 По формуле (9.5) рассчитайте разность фаз φ придвух значениях частоты генератора: 20 и 100 кГц. Сравните результаты расчета с результатами непосредственного измерения угла φ .

11 Результаты измерений и вычислений саньсите в таблицу 9.2.

Таблица 9.2 – Расчетные и экспериментальные данные

<i>f</i> , Гц	U_{ex} , B	U_{6blx}, \mathbf{B}	K	С, Ф	а, дел	<i>b</i> , дел	<i>ф_{изм}</i> , град	φ_{pac4} , град
				1				

Упражнение У Изучение электрических процессов в цепи, содержащей резистор и катушку индуктивности.

1 Кыключите емкость *С* и включите индуктивное сопротивление *L*.

Х2 Зарисуйте колебания, наблюдаемые на экране осциллографа при частоте f = 20 кГц.

3 Определите угол сдвига фаз между силой тока в цепи и входным напряжением при частоте f = 20 кГц. Для этого измерьте в делениях шкалы экрана осциллографа сдвиг по времени между изображениями двух исследуемых сигналов (а) и период колебаний (б) (рисунок 9.7). Разность фаз рассчитайте по формуле (9.8).

4 Повторите задания пунктов 2 и 3 при частоте генератора $f = 100 \ \kappa \Gamma$ ц.

5 Произведите измерения амплитуд напряжений на входе и выходе цепи при различных значениях частоты генератора (от 20 кГц до 100 кГц с шагом 10 кГц).

6 Рассчитайте коэффициент передачи К цепи по формуле CKOPNH $K = \frac{U_{\text{вых}}}{U_{\text{вх}}}$ для всего исследованного диапазона частот.

7 Постройте график зависимости $K = f \begin{pmatrix} 1/f \end{pmatrix}$.

8 С помощью графика $K = f \begin{pmatrix} 1/f \end{pmatrix}$ оцените индуктивность L катушки. Для этого определите угол наклона а линейного участка графика к оси 1/f, получите $tg \alpha = \frac{R_2}{2\pi L}$ окуда $L = \frac{R_2}{2\pi tg \alpha}$.

9 По формуле (9.7) рассчитай сразность фаз φ при двух значениях частоты генератора: 20 и 100 кой. Сравните результаты расчета с результатами непосредственно измерения угла φ .

10 Результаты измерений и вычислений занесите в таблицу 9.3.

<i>f</i> , Гц	1/ <i>f</i> , c	U.B	U_{Bblx} , B	K	<i>L</i> , Гн	а, дел	<i>b</i> , дел	<i>ф_{изм}</i> , град	φ_{pac4} , град
		N							
	05'								
2×									
,									

Таблица 9.3 – Расчетные и экспериментальные данные

Тема 10 Изучение затухающих колебаний

- 1 Дифференциальное уравнение *RLC*-контура
- 2 Затухающие колебания
- 3 Параметры затухающих колебаний

Основные понятия по теме

На рисунке 10.1 показана электрическая цепь, используемая для изучения свободных электромагнитных колебаний. Ключ K сначала приводят в положение 1, при этом происходит зарядка конденсатора от источника постоянного напряжения ε_0 . Затем ключ K переводят в положение 2, при этом источник ε_0 отключается и цепи, однако цепь остается замкнутой, и в ней возникают свободные электромагнитные колебания. При таких колебаниях происходит обмен энергией между конденсатором и катушкой, и этот происсо и периодически повторяется, сопровождаемый тепловыми потеряха. Другими словами, энергия электрического поля преобразуется в энергию магнитного поля и обратно, при этом часть энергии рассеивается в виде тепла.

ХДля такой цепи, содержащей *R*-, *L*- и *C*-элементы (рисунок 10.1), в которой происходят свободные (в отсутствие внешнего напряжения) электромагнитные колебания, согласно второму закону Кирхгофа, можно записать:

$$RI + U_C = -L\frac{dI}{dt}.$$

Здесь U_C – напряжение на конденсаторе,

 $\varepsilon_{cuho} = -L \frac{dI}{dt} - 3.$ д.с. самоиндукции, возникающая в катушке. Выражая Uc через заряд q, получим

$$RI + L\frac{dI}{dt} + \frac{q}{C} = 0.$$

Дифференцируя по времени и учитывая, что сила тока равна

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0.$$

 $I = \frac{dq}{dt},$

I = $\frac{1}{dt}$, получаем: $L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0$. Вводя собственную частоту колебательной системы $\omega_0 = \sqrt{\frac{1}{LC}}$ и эффициент затууания и – P/2I – ти коэффициент затухания $\gamma = R/2L$, перепишем уравнение в виде

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0.$$

Здесь точки обозначают дифференцирование по времени.

Решая это уравнение, можно поразать, что, в зависимости от соотношения между параметрами у, возможны следующие типы колебаний в контуре:

а) затухающие кодебания, которые имеют место в случае $\omega_0^2 - \gamma^2 > 0$. При этом зависимость силы тока от времени имеет вид $I = I_0 e^{-\gamma t} \cos(\omega t + \delta)$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$ – частота, δ – начальная фаза колебаний, I_0 – их начальная амплитуда (рисунок 10.2).

Рисунок 10.2 – График затухающих колебаний в контуре I = f(t)

Величины δ и I_0 могут быть определены из начальных условий. Для характеристики затухающих колебаний вводятся также такие величины, как период колебаний («повторения нулей»)

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}},$$

логарифмический декремент затухания, который показывает уметьшение амплитуды за период колебаний

и добротность контура, физический смысл которой заключается в отношении запасенной в контуре энергии к энергии потерь за период колебаний

Здесь I_n и I_{n+1} – значения сиркі тока в моменты времени, отстоящие друг от друга на один период солебаний;

б) апериодическое затухание силы тока в контуре, которое наблюдается в случае $\omega_0^2 - \gamma^2 < 0$. При этом сила тока монотонно убывает до нуля по закону $I = Ae^{-\alpha_1 t} + Be^{-\alpha_2 t}$, где $\alpha_1 = \gamma + \sqrt{\gamma^2 - \omega_0^2}$ и $\alpha_2 = \gamma - \sqrt{\gamma^2} \omega_0^2$, A и B – величины, определяемые из начальных условий (рисунок 10.3).

в) <u>критический режим</u> изменения силы тока, который имеет место при выполнении соотношения $\omega_0^2 - \gamma^2 = 0$ и представляет собой предельный случай рассмотренных выше затухающих колебаний и апериодического режима. При этом зависимость силы тока от времени можно записать в виде

$$I = (A + Bt)e^{-\gamma t},$$

где значения постоянных A и B определяются из начальных условий. График зависимости в случае $A = 0, B \neq 0$ и $A \neq 0, B = 0$ представлен на рисунке 10.4.

Сопротивление $R_{\rm kp} = 2\sqrt{\frac{L}{c}}$, при котором выполняется собношение $\omega_0^2 - \gamma^2 = 0$, называется критическим сопротивлением.

Рискиюк 10.4 – График зависимости I = (t)в случаях $A \neq 0$, B = 0 и A = 0, $B \neq 0$ при критическом режиме

Колебательный процесс изучать в системе координат I-U, где и колебательный процесс изучать в системе координат I-U, где и конденсаторе, то плоскость I-U называют фазовой плоскостью, а кривую, изображающую такую зависимость, называют фазовой кривой (рисунок 10.5).

При затухающих колебаниях амплитуда напряжения и силы тока в контуре убывает, а фазовая кривая превращается в спираль, приближающаяся к фокусу 0. При $R \ge R_{\kappa p}$ колебательный процесс прекращается, и спираль превращается в окружность.

Рисунок 10.5 – Колебательный процесс на фазовой плоскости

Вопросы для самоконтроля

1 Приведите уравнение, описывающие затухающие колебания в контуре, содержащем *R*, *L* и *C*.

2 Охарактеризуйте следующие пераметры: коэффициент затухания, логарифмический декремент затухания, добротность контура.

3 Приведите определение тритического сопротивления *R_{кp}* контура.

Лабораторная работа 10

Изучение этухающих колебаний с помощею электронного осциллографа

Цен работы: исследование свободных затухающих колебаний, измерение и расчёт их характеристик.

ФИЭ-09/ПИ, магазин сопротивлений, источник питания, генератор, осциллограф.

Описание установки

Принцип работы кассеты $\Phi\Pi$ Э-10 основан на получении затухающих колебаний в колебательном контуре с элементами L_1 , C_1 , соединенном через гнёзда X_5 , X_6 с магазином сопротивлений (0–1000 Ом), с помощью подаваемых через гнёзда X_1 , X_2 прямоугольных импульсов. Вспомогательные элементы R_1 и VD1 ограничивают амплитуду напряжения в момент подачи импульса. Колебания в контуре наблюдаются и изучаются с помощью осциллографа, подключаемого к гнёздам X_3 , X_4 , X_7 (рисунок 10.6), ($L_1 = 0,1 \Gamma$ н, $C_1 = 0,1 \pm 10 \%$ мкФ).

Ход работы

1 Соберите электрическую схему, представленную на рисунке 16 б. Подайте на её вход (клеммы X₁, X₂) прямоугольные импулься с преобразователя импульсов (кассета ПИ/ФПЭ-09).

2 Установите значение сопротивления R = 100 Ом, частоту генератора v = 250 Гц, выходное напряжение генератора U = 3 В.

3 Изменяя астоту развёртки осциллографа, добейтесь на экране осциллографа устойчивой картины затухающих колебаний (рисунок 10.7).

Рисунок 10.7 – Определение добротности контура из осциллограммы затухающих колебаний

4 Убедитесь, что длительность импульсов напряжения, подаваемых на вход схемы, значительно меньше, а промежуток между ними значительно больше периода наблюдаемых колебаний.

5 Измерьте с помощью осциллографа период *T* собственных колебаний контура (рисунок 10.7). Период *T* находится по формуле $T = \frac{\tau}{n}$, где τ – время затухания (время, за которое амплитуда колебаний убывает в *e* раз), а *n* – число колебаний, укладывающихся в интервале времени τ .

6 Сравните полученные значения *T* с его теоретическим значением, рассчитанным по формуле $T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}}$.

7 Определите погрешность измерения *T* данным методом, сделайте вывод о том, как согласуются между собой результаты измерения и теоретические значения *T*.

8 Постепенно увеличивая *R*, добейжесь перехода от колебательной формы разряда к апериодическому разряду (рисунок 10.8).

Сравните полученные значения критического сопротивления со значением, рассчитанным по формуле $R_{\rm kp} = 2\sqrt{\frac{L}{c}}$.

, эк 10.8 – Осциллограмма апериодического разряда

10 Оцените точность, с которой измеряется *R_{кp}*. Сделайте вывод о согласовании теоретического и опытного значения.

11 Зарисуйте осциллограмму при R = 0 (сопротивление контура

равно активному сопротивлению катушки индуктивности) и при полном сопротивлении контура, равном $R_{\kappa p}$.

12 Из осциллограммы (рисунок 10.7) найдите добротность контура Q, используя формулу $Q = n\pi$ при R = 0, R = 100 Ом.

13 Определите по осциллограмме величину амплитуды затухающих колебаний через один или, если затухание невелико, через несколько периодов колебаний. По полученным значениям амплитуды A_m и $A_m = (m, m+n - числа периодов колебаний)$ определите логарифмический декремент затухания d и добротность контура Q из соотнограний $d = \frac{1}{n} \ln(\frac{A_m}{A_{m+n}}), \ Q = \frac{\pi}{d}$.

14 Выполните измерения и расчёты (п.4 – п.13), при сопротивлении R = 100, 300, 500 Ом.

15 Установите сопротивление R = 100 см, выключите развёртку осциллографа и получите на экране осниллографа фазовую кривую, зарисуйте её.

16 Измерьте по фазовой кривой напряжения и силы токов в делениях сетки осциллографа, разделенные периодом колебаний, т. е. расстояния от фокуса фазовой кривой до точек пересечения витков спирали с осью напряжений или силы тока. Измерения выполняйте по трем виткам фазовой кривой.

17 Изменяя кол 100 до 600 Ом, по фазовым кривым определите логарифмический декремент затухания и постройте график d = f(R).

18 Содините полученные значения *d* и *Q* с их теоретическими значения *m*, рассчитанными по формулам $d = \frac{\pi R}{\sqrt{\frac{L}{C} - \frac{R^2}{4}}}, Q = \frac{\pi}{d}$.

19 Установите значение на магазине сопротивлений $R > R_{\kappa p}$, зарисуйте фазовую кривую апериодического процесса.

20 Сделайте вывод о влиянии параметров *R*, *C*, *L* на частоту собственных колебаний, а также на величину логарифмического декремента и добротность контура.

Тема 11 Изучение вынужденных колебаний

- 1 Вынужденные колебания
- 2 Параметры вынужденных колебаний
- 3 Явление резонанса

Основные понятия по теме

Рассмотрим электрическую цепь, содержащую актинне сопротивление *R*, конденсатор *C*, катушку индуктивности *L* и сточник переменного напряжения *U* (рисунок 11.1).

Рисунок 11.1 – Электрическая цепь, содержащая *R*, *C*, *L* и источник переменного напряжения

В соответствии со вторым законом Кирхгофа полная Э.Д.С., действующая в цепи, равна сумме падений напряжения на всех участках цепи

$$U = U_R + U_L + U_C = IR + L\frac{dI}{dt} + \frac{q}{C}$$
(11.1)

энаком Э.Д.С. самоиндукции, возникающей в катушке, равное с обратным знаком Э.Д.С. самоиндукции, возникающей в катушке, $U_R = IR - па-$ дение напряжения на активном сопротивлении, $U_C = \frac{q}{C} -$ разность потенциалов обкладок конденсатора. Дифференцируя уравнение (11.1) по времени и учитывая, что dq/dt = I, получим:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = \frac{dU}{dt}.$$
(11.2)

Наибольший интерес представляет анализ гармонического переменного тока, поскольку с помощью преобразования Фурье произвольный ток может быть представлен в виде совокупности гармонических составляющих. Для удобства дифференцирования силу тока и напряжение в цепи представим в комплексной форме

$$I = I_0 e^{j\omega t}, \ U = U_0 e^{j\omega t},$$
(11.3)

где I_0 и U_0 – некоторые комплексные числа. При этом необходимо иметь ввиду, что ток и напряжение, как реальные физические величины, должны описываться действительной частью выражений. (11.3). Поэтому, после выполнения преобразований согласно (11.2), в найденных решениях необходимо выделить действительную часть. Поскольку уравнение (11.2) является линейным, то окончательный результат будет таким же, как и в случае выполнения преобразования только над действительной частью выражения (11.3). Подставляя (11.3) в уравнение (11.2), после дифференцирования получаем:

$$\left(-\omega^2 L + j\omega R \frac{1}{C}\right)I = j\omega U.$$
(11.4)

Разделив обе части уравнения на $j\omega$, можно записать (11.4) в виде

$$\mathbf{Y}\mathbf{Z} = U, \qquad (11.5)$$

выражающем закон ма для цепи переменного тока. Комплексная величина

$$\dot{Z} = R + j \left(\omega L - \frac{1}{\omega C} \right) \tag{11.6}$$

называется импедансом, она играет роль сопротивления цепи, зависящего от частоты тока ω . Импеданс характеризует соотношение между амплитудами и фазами тока и напряжения в цепи, содержащей активное сопротивление, емкость и индуктивность.

Зависимость между током и напряжением (11.5) можно проиллюстрировать графически, путем представления комплексных величин векторами на комплексной плоскости. При этом гармонически изменяющаяся величина изображается вектором, вращающимся с частотой ω вокруг начала координат против часовой стрелки. Длина вектора равна амплитуде колебаний рассматриваемой физической величины, а угол между вектором и осью OX равен фазе колебаний. Совместим ось OX с вектором силы тока I в произвольный момент времени (рисунок 11.2), тогда вектор падения напряжения на активном сопротивлении $U_a = IR$ также будет направлен вдоль оси OX. Падение напряжения на катушке и конденсаторе соответственно равно

$$U_L = j\omega LI, \qquad (11.7)$$

$$U_C = -\frac{j}{\omega C}I.$$

При определении ориентации векторов U_L и U_C необходимо учесть, что, согласно формуле Эйлера, $j = e^{j\frac{\pi}{2}}$. Следовательно, умножение произвольной комплексной величины $y = |y_0|e^{j\varphi_0}$ на $\pm j$ эквивалентно повороту вектора на комплексной плоскости на угол $\pm \frac{\pi}{2}$ без изменения длины этого вектора:

$$\pm jy = y_0 \left(\frac{\varphi_0 \pm \frac{\pi}{2}}{2} \right).$$
(11.9)

В соответствии с этим правилом, напряжение на катушке (формула 11.7) всегда опережает по фазе силу тока на $\frac{\pi}{2}$, а напряжение на конденсаторе (формула 11.8) отстает по фазе от силы тока на $-\frac{\pi}{2}$. Построив на комплексной плоскости векторы U_L и U_c , можно графически определить полное напряжение как сумму падений напряжения на всех участках цепи.

Рисунок 11.2 – Векторная диаграмма цепи R, C, L, если индуктивное сопротивление X_L больше емкостного X_C

Векторная диаграмма цепи (рисунок 11.2) показывает, что полное напряжение *U* может как опережать по фазе силу тока, так и отставать от нее. При этом сдвиг фаз между током и напряжением в цепи определяется выражением

$$\varphi = a \, r \, c \, t \frac{\omega L - \frac{1}{\omega C}}{R}, \qquad (11.10)$$

а амплитуда напряжения и силы тока связаны соотношением:

$$|U| = |I||Z| = |I|\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
(11.11)

Формула (11.10) показывает, что сдвиг фаз между током и напряжением может принимать как положительные, так и отрицательные значения в зависимости от соотношения параметров цепи и частоты тока. Для частоты тока $\omega_0 = \frac{1}{\sqrt{LC}}$, совпалающей с собственной частотой колебательного контура, сдвиг фаз φ равен нулю. В этом случае напряжение на конденсаторе и катулке взаимно компенсируются (они равны по величине, но противоножны по знаку, поскольку имеют относительно друг друга сдвиг фаз, равный π). Сила тока такая же, как при отсутствии в цепи реактивных элементов, то есть принимает максимальное значение $|\mu| = \frac{|\nu|}{R}$ (в последовательной цепи имеет место резонанс напряжений).

Сдвиг фаз межну током и напряжением в цепи переменного тока можно определять с помощью электронного осциллографа. Допустим, необходимо измерить сдвиг фаз между двумя гармоническими сигналами одинаховой частоты. Подадим эти сигналы на горизонтально и вертикально отклоняющие пластины осциллографа. Тогда смещения электронного луча по горизонтали и вертикали будут изменяться с телением времени следующим образом:

$$x = x_0 \sin \omega t , \quad y = y_0 \sin(\omega t + \varphi) , \quad (11.12)$$

здесь ω – частота колебания, φ – искомый сдвиг фаз, x_0 и y_0 – максимальные отклонения электронного луча, зависящие от амплитуды исследуемых сигналов и коэффициентов усиления соответствующих каналов осциллографа. Исключая время *t*, в результате тригонометрических преобразований из (11.12) можно получить уравнение эллипса,

описываемого электронным лучом на экране осциллографа:

$$\frac{x^2}{x_0^2} + \frac{y^2}{y_0^2} - 2\frac{xy}{x_0y_0}\cos\varphi = \sin^2\varphi, \qquad (11.13)$$

Ориентация этого эллипса относительно осей OX и OY зависит как от сдвига фаз φ , так и от максимальных смещений луча x_0 , y_0 . Перейдем к системе координат X'OY', оси которой повернуты на угол $\pi/4$ относительно осей XOY. В соответствии с правилом преобразования сординат при повороте на угол α , получаем

$$X = X' \cos \alpha + Y' \sin \alpha = \frac{\sqrt{2}}{2} (X' + Y');$$

$$Y = Y' \cos \alpha - X' \sin \alpha = \frac{\sqrt{2}}{2} (Y' - X');$$

В случае равенства амплитуд $x_0 = y_0$, выходнения которого можно добиться регулировкой коэффициентов усиления каналов осциллографа, уравнение эллипса в повернутой устеме координат запишется в канонической форме

где $A = \sqrt{2}x_0 \sin(\varphi/2)$, $B \neq \sqrt{2}x_0 \cos(\varphi/2)$ – главные полуоси эллипса (рисунок 11.3). Измерив непосредственно на экране осциллографа длину больших полуосей, можно определить сдвиг фаз исследуемых колебаний.

Вопросы для самоконтроля

1 Проведите аналогию между вынужденными колебаниями механических и электрических колебательных систем. Сделайте вывод о характере колебаний в этих системах, о влиянии параметров систем на явление резонанса.

2 Охарактеризуйте режим резонанса в контуре.

3 Начертите вид зависимостей $X_L = f(\omega), X_C = f(\omega), I = f(\omega)$.

4 Выберите *R*, *L*, *C* так, чтобы обеспечить $f_0 = 5$ кГц (резонанстая частота), Q = 50 (добротность).

5 Постройте векторные диаграммы контура до резонанса. Зонанса. Лабораторная работа 11 Изучение колебаний, возникающих под воздействием внешней Э.Д.С. после резонанса.

Цель работы: получить вынуждение колебания, возникающие в колебательном контуре под воздействием внешней Э.Д.С., изучить явления, наблюдаемые при вненних возбуждениях колебаний с частотами, близкими к резонанской, исследовать зависимость амплитуды и фазы этих колебаний от частоты вынуждающего воздействия.

Приборы и принадлежности: кассета ФПЭ-11/10, магазин сопротивлений, миллиамперметр, магазин емкостей, генератор, осциллограф С1-117

Описание Становки

Колеботельный контур состоит из индуктивности $L = 0,1\Gamma$ н, магазина сикостей, магазина сопротивлений и активного сопротивлений *В* 35 Ом, включенных последовательно с генератором. Наблюдение вынужденных колебаний ведется по экрану осциллографа, подключенного согласно схеме (рисунок 11.4) к кассете ФПЭ-11.

Внешнее возбуждение подается в контур через гнезда X_1, X_2 от звукового генератора. Резистор R_1 включен последовательно с элементами контура. С этого резистора подается напряжение на вход У осциллографа через гнезда Х₅, Х₇. Это напряжение пропорционально току в контуре и находится с ним в одной фазе. На вход X осциллографа (гнезда X_6, X_7) подается входное напряжение для исследования зависимости амплитуды и фазы вынужденных колебаний от частоты вынуждающего воздействия. В контур можно подключить миллиамперметр, который при резонансе напряжений, т. е. когда контур будет настроен в резонанс, будет показывать максимальное значение.

Рисунок 11.4 – Принципиальная схема установки

Ход работы

1 Соберите схему измерительной установки (рисунок 11.4). Установите значение емкости в пределах C = 3 нФ и сопротивление R = 0.

2 Определите по заданным значениям *L* и *C* резонансную частоту контура $f_p = \frac{1}{2\pi}$.

3 Регуля ором выходного напряжения генератора установите 1 В, частоту УКГц. Напряжение генератора в процессе всех измерений нужно поддерживать неизменным.

У Включите развертку осциллографа, получите на экране устойчивое изображение нескольких периодов синусоидального сигнала. Измерьте амплитуду сигнала. Результаты измерений запишите в таблицу 11.1.

Таблица 11.1 – Результаты измерений

<i>f</i> , кГц	
U_0,B	
<i>I</i> ₀ , мА	

5 Проведите аналогичные измерения амплитуды при других частотах в диапазоне 2–16 кГц с интервалом 2 кГц. Выберите интервал частот вблизи резонанса (там, где U_0 проходит через максимум) и проведите дополнительные измерения в этом интервале через 0,2 кГц. Результаты измерений запишите в таблицу 11.1.

6 Для каждой частоты рассчитайте амплитуду силы тока I_0 в колебательном контуре по формуле $I_0 = \frac{U_0}{R_1}$. Значение R_1 указано на кассете. Результаты измерений запишите в таблицу 11.1.

7 Установите сопротивление магазина R = 500 Ом, 3 ком и произведите измерения и расчеты (п. 4–6). Результаты измерения запишите в таблицу 11.1.

8 Постройте на одном графике кривые $I_0(f)$. По графику при R = 0 найдите резонансную частоту f_p и ширину у резонансной кривой на высоте $I_{0m}/\sqrt{2}$. Рассчитайте добротность колебательного контура по

формуле $Q = \frac{f_p}{\Delta f_p}$

9 Подключите выход X кассеты к входу X осциллографа. Установите сопротивление R = 0, емкость C = 1 нФ. Выключите развертку осциллографа, получите на экране эллипс. Изменяя частоту генератора (выходное напряжение не более 3В), получите прямую линию, расположенную примерно под углом 45° к оси X. В этом случае частота генератора равна резонансной f_p . Значения f_p и C запишите в таблицу 11.2.

10 Проведите измерения f_p при других значениях емкости C от 2 до 10 нФ синтервалом 1нФ.

10 нф синтервалом 1нФ. Постройте график зависимости Z от C, где $Z = \frac{1}{(2\pi f_p)^2}$,

который должен представлять собой прямую линию, проходящую через начало координат.

Таблица 11.2 – Результаты измерений

С, нФ	
f_p , к Γ ц	
$Z, 10^{10}$	

Тема 12 Изучение релаксационных колебаний

- 1 Релаксационные колебания
- 2 Параметры релаксационных колебаний
- 3 Принцип работы генератора релаксационных колебаний

Основные понятия по теме

Релаксационные колебания можно наблюдать в электрической цепи, схема которой показана на рисунке 12.1.

Рисунок 12.1 – Схемацени для получения релаксационных колебаний

Конденсатор емкости C_1 , параллельно которому подключена неоновая лампа HA_1 , заряжается от источника тока через большое сопротивление R_1 . Процесс зарядки конденсатора можно описать с помощью второго закона Кирхгофа:

 $U=IR_1+U_c,$

согласно которому полное напряжение U, снимаемое с потенциометра, равно сумме падений напряжения на активном сопротивлении и на конденсаторе U_c . Использование соотношения для силы тока:

$$I = \frac{dq}{dt} = C \frac{dU_C}{dt}$$

приводит к дифференциальному уравнению с разделяющимися переменными

$$-\frac{dt}{R_1 C_1} = \frac{d(U - U_C)}{U - U_C}$$
(12.1)

В отсутствии неоновой лампы решение уравнения (12.1), удовлетворяющее начальному условию $U_c = 0$, имеет вид

$$U_{C}(t) = U(1 - e^{\left(-\frac{t}{R_{1}C_{1}}\right)}),$$

то есть напряжение на конденсаторе U_c асимптотически стремится к полому напряжению U, снимаемому с потенциометра. Эта зависимость представлена на рисунке 12.2 штриховой линией.

Рисунок 12.2 – График изменения на емкости с течением времени

После включения в ценесновой лампы характер зависимости напряжения на конденсатор от времени существенно изменяется. При некотором напряжение Уз, называемом потенциалом зажигания, в лампе возникает самостоятельный электрический разряд. Объясняется это тем, что инерспый газ, которым заполнена лампа, частично ионизирован вследствие хаотического теплового движения молекул. При значении вистичего напряжения, равном потенциалу зажигания, ускоряемые висиним электрическим полем электроны проводимости приобретато Энергию, достаточную для ионизации нейтральных атомов газа. Вновь образованные электроны проводимости также принимают учистие в бомбардировке атомов, и процесс возникновения свободных носителей заряда принимает лавинообразный характер. Энергия, накопленная электронами проводимости, при их взаимодействии с ионами и атомами газа частично выделяется в виде света, чем и объясняется свечение лампы. Во время существования газового разряда в неоновой лампе ее электрическое сопротивление чрезвычайно мало по сравнению с сопротивлением R_1 , и происходит быстрая разрядка конденсатора через лампу. При некотором значении напряжения на конденсаторе U_{Γ} , называемом потенциалом гашения, газовый разряд в

лампе прекращается, и вновь начинается зарядка конденсатора от внешнего источника. С течением времени процесс накопления энергии в конденсаторе, а затем его быстрой разрядки через неоновую лампу будет периодически повторяться. При этом график зависимости напряжения на конденсаторе от времени имеет пилообразную форму (рисунок 12.2). Такие колебания напряжения называются релаксационными, и их период $T = T_1 + T_2$ равен сумме периодов T_1 – времени заряда, за которое напряжение на конденсаторе изменяется от U_{Γ} до U_3 и T_2 – времени разряда, за которое напряжение изменяется от U_3 до V_7 .

Поскольку обычно выполняется неравенство $T_2 << T_1$, то период релаксации колебаний полностью определяется временеко зарядки конденсатора: $T = T_3$. Интегрируя уравнение (12.1) от потенциала гашения U_{Γ} до потенциала затухания U_3 , можно получить следующее выражение для периода релаксационных колебаний.

$$T = \tau ln(\frac{U - U_{\Gamma}}{U - U_{3}}), \qquad (12.3)$$

где $\tau = R_1 C_1$ – время релаксации. Если напрежение *U*, снимаемое с потенциометра, намного превышает потенциал зажигания, то из (12.3) следует приближенное соотношение:

$$T = T \frac{U - U_{\rm r}}{U}. \tag{12.4}$$

Следует отметить, что период релаксационных колебаний, наблюдаемых на практике, всегда несколько превышает значения, рассчитанные по формулам (12,3) и (12.4). Это связано с тем, что при выводе соотношения для периода колебаний не учитывались предразрядные токи через неоновую лампу, которые имеют значительную величину при напряжениях на конденсаторе, близких к потенциалу зажигания. Благодаря существованию этих токов сила тока *I* через конденсатор перед наналом газового разряда существенно уменьшается, и заряд конденсатора замедляется. Соответственно увеличивается и период регаксационных колебаний.

Вопросы для самоконтроля

1 Нарисуйте и объясните вольтамперную характеристику газового разряда.

2 Учитывая величину ограничивающего сопротивления *R*₁, нарисуйте вольтамперную характеристику лампы и вычислите её

дифференциальное сопротивление.

3 Нарисуйте схему генератора релаксационных колебаний и объясните принцип его работы.

4 Приведите примеры использования релаксационных колебаний.

Лабораторная работа 12

Изучение релаксационных колебаний в схеме с неоновой лампой

Цель работы: получение вольтамперной характеристики неоновой лампы, наблюдение и изучение релаксационных колебаний и установление зависимости их периода от параметров электрической цепи.

Приборы и принадлежности: кассета ФПЗ 12/13, магазин емкостей, магазин сопротивлений, источник питания, вольтметр, осциллограф, секундомер. DRE

Описание установки

Лабораторная работа ФПЭ12 поводится на установке, содержащей рабочее устройство (кассету, ФИЭ12/13), магазин емкостей, магазин сопротивлений, источник питания, вольтметр, осциллограф С1-73, собранной по схеме 12

Принцип работы основан на получении релаксационных колебаний с использованием газоразрядных ламп МТХ-90, выполняющих роль автоматического выключателя при различных параметрах контура.

Для ограничения тока последовательно с газоразрядной лампой

подключен резистор $R_1 = 68$ Ом. Кассета, как видно из рисунка 12.3, позволяет к клеммам X3 и X2 подключить магазин сопротивлений R, а к клеммам X1 и X2 – магазин емкостей и осциллограф.

Схема, приведенная на рисунке 12.3, получается, если включить кнопку *SA1* (находится на лицевой панели кассеты). При снятии вольтамперной характеристики кнопка должна быть в отключённом состоянии (отжата). Тогда получим схему, изображенную на рисунке 12.4.

Рисунок 12.4 – Схема установки при отключения кнопки SA1, снятие вольтамперной характеристики

Ход работы

1 Соберите схему, приведенную на рисунке 12.4. Подключите к источнику питания к гнездам 1200 ифоровой вольтметр (для обеспечения более точного измерения) а к гнездам X5, X4 цифровой вольтметр в режиме миллиамперистра. Снимите вольтамперную характеристику газоразрядной дамны путем измерения силы тока в зависимости от напряжения (не менее 10 значений I(U)), один раз в сторону увеличения напряжения, второй – в сторону уменьшения. Особо точно определите значения напряжения зажигания U_3 (резкое увеличение силы тока) и тапения U_{Γ} (резкое уменьшение силы тока) неоновой лампы. Измерения занесите в таблицу 12.1, постройте график I = f(U). Определите дифференциальное сопротивление лампы $R_i = ctga$ (рисунок 12) или $R_i = \frac{U-U_0}{I}$.

Хаблица 12.1 – Результаты измерений

С, нФ	
f_p , к Γ ц	
$Z, 10^{10}$	

2 Для наблюдения релаксационных колебаний соберите схему (рисунок 12.3), далее, подав на схему напряжение, большее напряжения зажигания неоновой лампы U_3 , подберите такие R и C, при которых

будут наблюдаться заметные вспышки лампы. Измерьте время t_n , необходимое для совершения 20 полных колебаний и найдите период *T* с помощью формулы $T = \frac{t_n}{20}$. Проделайте опыт 5 раз, вычислите среднее значение *T*.

3 При постоянных значениях U и C, изменяя R (не менее 10 раз), определите в каждом случае период T и постройте график зависимости T = f(R).

4 Подключите параллельно конденсатору емкости C осцистраф. Подберите R и C так, чтобы на экране получились релаксационные колебания, зарисуйте их и определите по осциллографу кериод T. Изменяя напряжение при RC = const, для каждого значения U найдите период T и постройте график зависимости T = f(U). Найдите U_{max} , при котором возникают колебания.

5 Проанализируйте зависимость отношения времени зарядки и разрядки конденсатора от напряжения.

6 Сравните результаты измерений периода релаксационных колебаний *T* с расчетными данными, полученными с использованием формулы (12.3).

Рисунок 12.5 – Вольтамперная характеристика неоновой лампы

Тема 13 Исследование связанных колебательных контуров

- 1 Одиночные и связанные контуры
- 2 Виды связей колебательных контуров
- 3 Принцип работы установки для изучения связанных контуров,

Основные понятия по теме

Два контура называются связанными, если изменениетока в одном из них вызывает изменение тока или напряжения в другом. Связь между контурами может осуществляться через магнитные или электрические поля катушек или конденсаторов. Вид связи сиределяется элементом, входящим в оба контура. При наличии у контурае общих элементов *L* или *C* связь называют соответственно индуктивной или емкостной. Связь посредством магнитного потока, охвать вающего элементы *L* контуров, называют трансформаторной. Взаимное влияние контуров друг на друга характеризуется коэффициентом скази: $K_{\rm CB} = \sqrt{K_{21} \cdot K_{12}}$, где K_{21} – коэффициент передачи по напряжению из первичного контура во вторичный, K_{12} —коэффициент передачи из вторичного контура в первичный для цепи, состоящей из элементов, однородных с элементом связи, и работающей в режиме холостого хода. Для схемы (рисунок 13.1): $K_{\rm CB} = \frac{M}{\sqrt{L_1L_2}}$. Если $M = L_2 = L$, то $K_{\rm CB} = \frac{M}{L}$, где M – коэффициент вза-

имоиндукци L_1, L_2 – индуктивности контуров.

Рисунок 13.1 – Связанные контуры

Для схемы с емкостной внутренней связью (рисунок 13.2).

$$K_{CB} = \sqrt{\frac{C_1 C_2}{(C_1 + C_{CB})(C_2 + C_{CB})}}, \quad где \ C_I, \ C_2 - емкости \ контуров.$$

Здесь $\xi_1 = I_1 + I_2$, $\xi_2 = I_1 - I_2$, постоянные ξ_{10} , ξ_{20} , φ_1 и φ_2 определяются из начальных условий.

Таким образом, в системе двух одинаковых связанных контуров могут совершаться два независимых колебания с разными частотами:

$$\omega_2 = \frac{1}{\sqrt{LC}},$$

$$\omega_1 = \frac{1}{\sqrt{LC}} \sqrt{1 + \frac{2C}{C_{12}}} = \omega_2 \sqrt{1 + \frac{2C}{C_{12}}}$$

Эти колебания называются нормальными колебаниями или модами. Результирующий колебательный процесс представляет собой супериозицию двух нормальных колебаний с частотами ω_1 и ω_2 (рисунок 54). В случае $\frac{2C}{C_{12}} \ll 1$ связь между контурами слабая, и частоти колебаний ω_1 и ω_2 мало отличЗ1аются одна от другой. Наличие слабой связи приводит к возникновению биений. Когда амплитуда силы тока в контуре 1 максимальна, в контуре 2 она равна 0, и на борот.

При этом происходит обмен энергией между контурами. Время $t_{oбM}$, необходимое для перехода энергии из контура 1 и обратно $t_{oбM} = \frac{\pi}{\omega_6}$. Часточа обмена энергией равна $\omega_{oбM} = \frac{2\pi}{t_{oбM}} = 2\omega_6 = \omega_1 - \omega_2$, или $\omega_{\hat{i}\hat{a}} = \frac{1}{\omega L C_{12}}$,

где ω – собственная частота колебаний $\omega = \frac{\omega_1 + \omega_2}{2}$, ω_6 – частота биений.

При наличии в контурах одинаковых сопротивлений *R* энергия колебаний превращается в джоулеву теплоту и колебания постепенно затухают (рисунок 13.5).

$$U_1 + U_{12} + I_1 R = -L \frac{dI_1}{dt},$$
$$U_2 + U_{12} + I_2 R = -L \frac{dI_2}{dt}.$$

Решения данных уравнений имеют вид

$$\begin{split} \xi_1 &= \xi_{10} e^{-\beta t} \cos(\omega_1 t + \varphi_1), \\ \xi_2 &= \xi_{20} e^{-\beta t} \cos(\omega_2 t + \varphi_2), \end{split}$$

где $\beta = \frac{R}{2L}$.

При малом затухании ($\frac{1}{LC} \gg \frac{R^2}{4L^2}$) и слабой связи ($\frac{C}{C_{12}} \ll 1$) можно принять $T = 2\pi\sqrt{LC}$, тогда

$$t_{\hat{i}\hat{a}\hat{i}} = \frac{4\pi L C_{12}}{2\pi\sqrt{LC}} = T \frac{C_{12}}{C}.$$

Вопросы для самоконтроля

1 Какие контуры называются связанными? Чем они отличаются от одиночных контуров?

2 Что такое нормальные колебания или моды?

3 Почему случай $C_{12} \gg C$ называется слабой связью?

Лабораторная работа 13

Исследование колебательных контуров с внутренней емкостной связью

Цель работы: экспериментально исследовать связанные контуры с внутренней емкостной связью и изучить характер колебательного процесса в контуре при изменении частоты следования импульса.

CKOPWHD

Приборы и принадлежности: кассета ФХЭ-13/12, магазин емкостей, источник питания, генератор низкочасторный, осциллограф С1-73.

Описание установки

Исследовать электрических колебания в связанных контурах можно с помощью осциллографа, колключённого согласно схеме (рисунок 13.6).

Принцип работы установки заключается в получении электрических колебаний в связанных контурах, имеющих одинаковые параметры в условиях их балансировки емкостной связью. Кассета ФПЭ-13 содержит два колебательных контура ($R_1 = R_2 = R = 82$ Ом, $L_1 = L_2 = L = 80 \pm 2$ мГн, $C_1 = C_2 = C = 10000 \pm 20$ пФ) и плату преобразователей импульсов (ПИ),

на вход которой подается от генератора синусоидальное напряжение не более 3 В. Амплитуда прямоугольного импульса на входе ПИ не более 11,5 B.

Контуры L_1C_1 и L_2C_2 через X_3 , X_4 соединяются внутренней ёмкостной связью. Для отсечки сигнала во время паузы от первичного контура L_1C_1 в цепь питания включён диод VD1. В промежутках между прямоугольными импульсами возбуждаемые в контуре затухающие колебания через внутреннюю емкостную связь (50-80 пФ) передаются в контур L_2C_2 , где накладываются на собственные колебания. На экране осциллографа, подключённого к гнёздам Х5, Х6, отображается кериодическое возрастание и убывание амплитуды затухающих колобаний. Перемычка П позволяет подать синусоидальные колебания непосредственно в контур (X_1, X_2) . XP.

Ход работы

<u>Упражнение 1. Изучение биений в связание</u> <u>ных емкост</u>ях связи контурах при различных емкостях связи

ра́ сигналов U = 2 B, частоту 1 Установите напряжение генера v = 200 Гц, а емкость магазина емкостей $C = 4 \cdot 10^{-2}$ мк Φ .

2 Получите на экране остринографа устойчивую картину биений в контуре 2.

3 Измерьте число N полных колебаний, умещающихся между двумя соседними мимимумами. Данные занесите в таблицу 13.1.

измерения для других значений емкости от 4·10⁻² до 4 Проведит Рекультаты запишите в таблицу 13.1. 0.4 мкФ

формуле $C = \frac{C_{12}T}{t_{obm}} = \frac{C_{12}}{N}$ рассчитайте емкость колебательного контура для всех измерений. Найдите среднее значение и сравните его с истинным, указанным на кассете.

Упражнение 2. Измерение сопротивления связанных контуров по затуханию биений.

1 Установите напряжение генератора сигналов U = 2 B, а емкость магазина емкостей $C = 4 \cdot 10^{-2}$ мк Φ .

2 Получите на экране осциллографа устойчивую картину биений (рисунок 12.4).

3 Измерьте амплитуды трех соседних максимумов биений и запишите результаты измерений.

4 Измерьте время t_{обм}.

5 Вычислите общее сопротивление колебательного контура по формуле $ln \frac{A_1}{A_2} = \frac{2\pi^2 RC}{t_{06M}}$ для каждой пары значений A (порядок максимума). При расчете используйте значение емкости C полученное в упражнении 1. Найдите среднее значение сопротивления.

Таблица 13.1 – Результаты измерений

M ¹
X

Тема 14 Изучение электростатических полей

- 1 Параметры электростатического поля
- 2 Эквипотенциальные поверхности
- 3 Проводники и диэлектрики в электростатическом поле

Основные понятия по теме

Характеристики электростатического поля

RMHb Всякий неподвижный заряд создает в окружающем кространстве электрическое поле, которое обнаруживается при внесении других, так называемых пробных электрических зарядов в тебую точку поля. Электростатическое поле есть особое состояние материи. Силовой характеристикой поля является его напряженноеть E.

Напряженность численно равна силе, стоторой поле действует на единицу положительного заряда, помещенного в данную точку поля:

Линия, касательная 🦡 которой в каждой точке совпадает по направлению с напряженностью электростатического поля, называется силовой линией. Таких образом, силовая линия определяется в каждой точке, через которую она проходит и характеризует направление напряженности а следовательно, и направление силы, действующей на положительный заряд, помещенный в эту точку поля. Графически поле принято изображать в виде силовых линий, причем густота линий характеризует численное значение напряженности.

Энергетической характеристикой поля является потенциал, которыхизмеряется работой, совершаемой силами поля при перемещении единичного заряда из данной точки поля в точку, находящуюся вне поля.

Работа по перемещению заряда q_1 из одной точки поля r_1 в другую *r*² равна:

$$A = \int_{r_1}^{r_2} \vec{F} d\vec{r} = \int_{r_1}^{r_2} \frac{q_1 q}{4\pi \varepsilon_0 r^2} dr = \frac{q_1 q}{4\pi \varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = q_1 (\varphi_1 - \varphi_2),$$

где $\varphi_1 = \frac{q}{4\pi\varepsilon_0\varepsilon r_1}$ – потенциал поля в начальной точке, $\varphi_2 = \frac{q}{4\pi\varepsilon_0\varepsilon r_2}$ – потенциал поля в конечной точке, ε – относительная диэлектрическая проницаемость среды.

Потенциал является функцией расстояния от данной точки до заряда. Геометрическое место точек равного потенциала носит название эквипотенциальной поверхности.

Силовые линии всегда перпендикулярны к поверхности равного потенциала. Если перемещается единичный положительный зарядого элементарная работа, совершаемая полем, равна

$$dA = Edl \cos \alpha$$

где dl – модуль вектора элементарного перемещения, α – угол между направлением вектора напряженности и касательной к траектории движения частицы.

С другой стороны, работа по перемещению единичного заряда из точки с потенциалом φ в точку с потенциалом $\varphi + d\varphi$ численно равна

$$dA = \varphi - (\varphi + d\varphi) = -d\varphi.$$

Если перемещение происходит по эквипотенциальной поверхности, то работа, совершаемая полек, будет равна нулю, т. к. $d\varphi = 0$. Таким образом, $\cos \alpha = 0$ или $\alpha = 90^{\circ}$, следовательно, силовые линии всегда перпендикулярны к эквипотенциальной поверхности.

Итак, имея картину линий напряженности поля, можно построить систему эквипотенциальных поверхностей, и, наоборот, зная положение поверхностей равного потенциала, можно построить линии напряженности поля.

Поскотку в однородной проводящей среде при прохождении по ней постоянного тока нет объемных электрических зарядов, поле в пространстве между электродами, к которым приложено постоянное напряжение, имеет ту же конфигурацию, какую оно имело бы в непроводящей среде, если электропроводность проводящей среды много меньше электропроводности электродов. При невыполнении этого условия линии напряженности не будут перпендикулярны поверхностям электродов, т. е. изменится их конфигурация.

Таким образом, электростатическое поле в непроводящей среде (в вакууме или диэлектрике) и поле постоянных токов в однородной слабо проводящей среде практически одинаковы: оба поля потенциальны, а их линии напряженности перпендикулярны поверхностям заряженных проводников-электродов (вблизи этих поверхностей).

Для измерения электрического потенциала применяются зонды. В качестве зонда используется заостренный металлический стержень. Он принимает в проводящей среде потенциал той точки поля, в которую он помещен.

Имея картину распределения потенциала в изучаемом поле, можно получить линии напряженности поля, используя связь между напряженностью и потенциалом электростатического поля:

$$\vec{E} = E_x \vec{i} + E_y \vec{j} + E_z \vec{k} = -\left(\frac{\partial \varphi}{\partial x} \vec{i} + \frac{\partial \varphi}{\partial y} \vec{j} + \frac{\partial \varphi}{\partial z} \vec{k}\right) = -grad \varphi$$

где $\vec{i}, \vec{j}, \vec{k}$ – орты декартовой системы координат.

Выражение в круглых скобках в формуле в математике называется градиентом. Градиент – векторная величина, определяющая быстроту изменения скалярной функции по направлению. В данной точке пространства градиент направлен в сторону накоолее быстрого возрастания скалярной функции, а модуль его равен быстроге возрастания. Знак минус показывает, что вектор наиряженности электрического поля направлен в сторону убывания потенциала. Под действием сил поля положительные заряды движутся в сторону уменьшения потенциала, отрицательные – в противоположном направлении.

Вопросы для самеконтроля

1 Что называют напряженностью и потенциалом электрического поля? Какова какова между ними?

2 Объясните расположение линий напряженности и эквипотенциальных полерхностей для исследуемых полей.

3. Каковы условия равновесия зарядов на проводнике?

4 как влияет на электростатическое поле внесения в него металлических и диэлектрических тел?

5 Как создается модель электростатического поля в данной задаче?

Лабораторная работа 14

Изучение электростатического поля, создаваемого электродами различной формы

Цель работы: исследование электростатического поля, создаваемого электродами различной формы, построение эквипотенциальных поверхностей и линий напряженности электростатического поля.

Приборы и принадлежности: ванна с электродами различной формы, частично заполненная водой, источник питания, цифковой вольтметр, зонд.

Описание установки

Экспериментальная установка (рисунок 14.2) представляет собой ванну, выполненную из материала с хорошими эксктроизоляционными свойствами. В ванну помещают металлические электроды 1, поле между которыми подлежит изучению, и наливают водопроводную воду слоем около 5 мм. В поле между эректродами помещают зонд 2, соединенный с вольтметром. Дно ванны имеет координатную сетку. Помещая зонд в точки с определенными координатами, с помощью цифрового вольтметра *PV* определенными координатами, с помощью сительно одного из электродов. Подготовку установки к работе проводят в порядке, приведенными ниже.

Рисунок 14.2 – Экспериментальная установка

Ход работы

1 Дно ванны заполните слоем воды.

2 Соберите электрическую схему установки. Убедитесь в симметричном расположении электродов по отношению к координатной сетке ванны.

3 Подключите к сети источник питания ИП и цифровой волиметр PV.

4 Подготовьте цифровой вольтметр к работе, для чето выберите соответствующий диапазон измерения напряжения.

5 Подготовьте лист миллиметровки, отметьте ней положение электродов и координатных осей.

6 Включите питание стенда.

7 Поместите зонд в точку, находичуюся вблизи одного из электродов на оси симметрии расположения электродов (координатной оси), запишите показания вольстветра и отметьте на рисунке точку с найденным значением потенцията.

8 Смещая зонд с координатной оси, найдите координаты другой точки, имеющей такое же значение потенциала (с точностью до 0,05 В). Найдите координать еще 4–5 точек, имеющих такой же потенциал и расположенных по ту же сторону от координатной оси.

9 Повторите измерения для других значений потенциала. В пространстве между электродами надо получить не менее семи линий равного потенциала.

10 Соедините на рисунке точки с одинаковым значением потенциала.

11 Проведите на рисунке несколько линий напряженности (перпендикулярных в каждой точке линиям равного потенциала).

12 Постройте график зависимости потенциала φ поля от расстояния *r* между электродами. Начало отсчета координат совместите с поверхностью электрода, вблизи которого зарегистрирован меньший потенциал.

13 Пользуясь построенным графиком, методом численного дифференцирования, найдите напряженность *E* поля для разных значений *r*, зная, что

$$E = \frac{\Delta \varphi}{\Delta r}, \qquad (14.1)$$

где $\Delta \varphi$ – изменение потенциала на отрезке Δr , $\Delta r = 5$ мм.

Расчет по формуле (14.1) проводится следующим образов. Выбрав значение r_1 , установите по графику значение φ_1 , соответствующее значению r_1 , а затем φ_2 для $r_2 = r_1 + \Delta r$. При этом точки, характеризуемые значениями r_1 и r_2 необходимо выбирать лежащими на одной силовой линии поля. Разделив $\Delta \varphi = \phi_1 + \varphi_1$ на Δr , получим численное значение напряженности E поля. Расчет выполните для 7–8 значений r, охватывающих весь высервал расстояний между электродами. Результаты расчетов занеские в таблицу14.1.

Таблица 14.1 – Результаты измерений и расчетов

<i>r</i> ₁ , _{MM}	φ_1, B	r ₂	φ_2, B	$\Delta \varphi$, B	Е, В/м
	<u> </u>	J			
	24	>			
					1

14 Построй с график зависимости напряженности *E* электрического поля от расстояния *r* между электродами.

130

Тема 15 Определение горизонтальной составляющей индукции магнитного поля Земли

- 1 Магнитное поле Земли
- 2 Магнитный момент кругового тока
- 3 Принцип работы тангенс-гальванометра

Основные понятия по теме

Магнитометрический метод измерения основан на магнитном взаимодействии образца и магнитной стрелки.

Земля представляет собой огромный шаровой магнит. Поэтому в любой точке на поверхности Земли и в окружающем пространстве обнаруживается действие магнитных сил. Магнитные полюса Земли не совпадают с географическими. Южный полюс магнитного поля Земли расположен у северных берегов Америки, примерно под 74° северной широты и 100° западной долготы, а северный полюс – в Антарктиде, под 60° южной широты и 143° восточной долготы. Схема силовых линий магнитного поля Земли показана на рисунке 15.1 (пунктиром показана ось вращения Земли С

Рисунок 15.1 – Схема силовых линий магнитного поля Земли

Направление магнитных силовых линий Земли можно определить с помощью магнитной стрелки. Если подвесить магнитную стрелку на нити так, чтобы точка подвеса совпадала с центром тяжести стрелки, то последняя устанавливается по направлению касательной к силовой линии магнитного поля Земли. В северном полушарии южный конец будет наклонен к Земле и стрелка составит с горизонтом угол наклонения θ . Вертикальная плоскость, в которой расположится стрелка, называется плоскостью магнитного меридиана. Угол α между магнитным и географическим меридианами называется магнитным склонением.

Силовой характеристикой любого магнитного поля является индукция \vec{B} . Значения \vec{B} Земли невелики и изменяются в пределах от 0,42·10⁻⁴ Тл на экваторе до 0,7·10⁻⁴ Тл у магнитных полюсов. Вектор индукции магнитного поля Земли \vec{B} можно разложить на две составляющие: горизонтальную $\vec{B}_{\tilde{A}}$ и вертикальную \vec{B}_{B} . Укрепленная на вертикальной оси магнитная стрелка устанавливается в направлении горизонтальной составляющей магнизного поля Земли $\vec{B}_{\tilde{A}}$.

Магнитное наклонение θ , склонение α и горизонтальная составляющая магнитного поля $\vec{B}_{\bar{A}}$ являются основными параметрами магнитного поля Земли. Горизонтальную составляющую магнитного поля Земли определяют с номощью прибора, называемого тангенс-гальванометром.

Рисунок 15.2 – Общий вид тангенс-гальванометра

Он состоит из катушки – нескольких круговых проводников, расположенных вертикально в плоскости магнитного меридиана (диаметр

проводников и число витков указывается на приборе). В центре помещается магнитная стрелка. Она должна быть малой, чтобы можно было принимать действующую на полюса индукцию равной индукции в центе кругового тока.

Плоскость контура устанавливается перпендикулярно горизонтальной плоскости так, чтобы она совпадала с направлением магнитной стрелки (рисунок 15.3 а). Ток, протекающий по контуру, создает магнитное поле $\vec{B}_{\rm k}$, действующее на магнитную стрелку и направленное перпендикулярно горизонтальной составляющей земного поля $\vec{B}_{\rm r}$ бод действием горизонтальной составляющей индукции поля Земля и индукции поля контура стрелка установится по направлению авнодействующей индукции $\vec{B}_{\rm p}$ (рисунок 15.3 б).

Рисунок 15.3 – Векторная диаграмма: а) – плоскость контура совпадает с пергоначальным направлением магнитной стрелки, б) – стредка отклоняется под действием горизонтальной составляющей индукции поля Земли.

Из опсунка 15.2 видно, что

$$B_k = B_{\rm r} t g \alpha \,. \tag{15.1}$$

Индукция магнитного поля контура B_{κ} в центре контура равна

$$B_k = \mu_0 \frac{nl}{2r},\tag{15.2}$$

где n – число витков контура, I – ток, протекающий в контуре, r – радиус контура, μ_0 – магнитная постоянная.

Из (15.1) и (15.2) следует:

 $\mu_0(\frac{nI}{2r}) = B_{\rm r} t g \varphi$

ИЛИ

$$B_{\Gamma} = \mu_0 \left(\frac{n}{2r}\right) \left(\frac{l}{tg\varphi}\right). \tag{15.3}$$

Для данного места Земли и данного прибора $\frac{1}{tg\varphi} = C$ является постоянной величиной и называется постоянной тангенс-гальванометра. Тогда:

$$B_{\rm r} = \mu_0 \left(\frac{n}{2r}\right) C.$$

Следует помнить, что формула (15.4) является прибликенной, т. е. верной только в том случае, когда размер магнитной стрелки много меньше радиуса контура r. Наименьшая ошибка при измерениях получается при углах отклонения стрелки ≈ 45°. Соответственно этому и устанавливается сила тока в катушке тангенскальванометра, который Вопросы для самоконтроля 1 Назовите основные паразинни 2 Объясните используется в данной работе.

1 Назовите основные параметры магнитного поля Земли.

2 Объясните устройствой уринцип действия тангенс-гальванометра. 3 Чему равна напряженность магнитного поля в центре контура с током?

4 Почему измерения горизонтальной составляющей напряженности магнитного под Уемли выгоднее проводить при угле отклонения стрелки 45°

называется магнитным моментом кругового тока? 5 Что

ораторная работа 15

Определение горизонтальной составляющей индукции магнитного поля Земли и магнитного момента постоянного магнита

Цель работы: практическое освоение магнитометрического метода измерения горизонтальной составляющей индукции магнитного поля Земли.

Приборы и принадлежности: тангенс-гальванометр, источник постоянного тока, миллиамперметр, реостат, ключ и переключатель.

Описание установки

Прибор состоит из катушки, укрепленной на вращающейся подставке. В центре катушки на вертикальной оси укреплены стрелка и алюминиевый круг (лимб) с делениями и обозначениями сторон света. Стрелка с лимбом может свободно вращаться внутри круглой кородки с прозрачной крышкой. Отсчет по прибору выполняют тогда когда деление шкалы совпадает с направлением стрелки.

Электрическая схема установки приведена на рисунке 15.4. Здесь *А* – миллиамперметр, *К* – ключ, *R* – реостат, *TГ* – тангенс-гальванометр.

Ход работь

1 Собрать схему согласно изображению на рисунке 15.4. Поворачивая подставку тангенс-гальванометра, установить витки его катушти в плоскости магнитного меридиана (визирная нить должна совтадать с делением 207).

2 Ключом *К* включить ток в катушке. Изменяя его величину реостатом *R*, добиться поворота стрелки на $\varphi_l = 45^\circ$ и зафиксировать значение тока I_l .

Переключателем изменить направление тока в катушке, добиться отклонения стрелки на $\varphi_2 = 45^{\circ}$ и снова зафиксировать значение тока I_2 .

Данные измерений занести в таблицу 15.1:

Таблица 15.1 – Данные измерений

№ измерения	I_1	I_2		B_{Γ}

3 Взяв среднее значение токов I_1 и I_2 , вычислить по формуле (154) значение горизонтальной составляющей B_{Γ} .

4 Оценить, исходя из формулы (15.3), максимальную потрешность измерения B_{Γ} , считая, что значение $\left(\frac{n}{2r}\right)$ известно точно, абсолютная погрешность не превышает одного деления лимба, относительную погрешность в измерении тока можно определить исходя из класса точности миллиамперметра.

5 Измерения произвести при различной значениях тока в цепи катушки (для 3–4 значений), по полученным значениям *B_Γ* определить ее среднеарифметическую величини и рассчитать погрешность измерений.

136

Тема 16 Изучение работы биполярного транзистора

- 1 Принцип работы биполярных транзисторов
- 2 Транзисторы *п-р-п* и *р-п-р* типа
- 3 Параметры биполярных транзисторов

Основные понятия по теме

Биполярный транзистор – полупроводниковый прибор Савумя *p-n*переходами, для работы которого существенно участие в создании тока носителей заряда обоих знаков. Устройство транзистора представляет собой пластинку германия или другого полупроводника, в которой созданы три области с различной электропроводностью. Транзистор типа *n-p-n* имеет среднюю область с дырочной электропроводностью, а две крайние области с электронной электропроводностью. Средняя область называется базой, одна крайная область эмиттером, другая коллектором.

Расстояние между *p-n*-переходами должно быть очень малым, не более единиц микрон, т. е. область базы должна быть очень тонкой.

Обычно к эмиттерному переходу подключают напряжение, являющееся прямым для основных носителей заряда областей, прилегающих к этому переходу, а к коллекторному переходу – обратное напряжение. При таком включении транзистора ток между эмиттером и базой I_3 будет в основном состоять из электронов, движущихся из эмиттера в базу. Порки из базы в эмиттер проникают также легко – для них эмиттерный переход также включен в прямом направлении. Но концентрацию дырок в базе делают значительно меньше концентрации свободных электронов в области эмиттера. Поэтому током дырок из базы к область эмиттера можно пренебречь.

часть электронов, проходя через базовую область, рекомбинирует там с дырками, однако большая часть их диффундирует сквозь узкую базовую область и попадает в поле коллекторного перехода, который для них открыт. Таким образом, ток коллектора практически равен току эмиттера, отличаясь от него на небольшую долю вследствие рекомбинации части электронов в базовой области.

Назначением эмиттера является инжекция (впуск, впрыскивание, но не эмиссия в обычном понимании этого термина) носителей заряда в базу. База – это область, в которую инжектируются эмиттером

неосновные для нее носители заряда. Коллектор – область, назначением которой является экстракция (прием, поглощение) носителей заряда из базы.

Между рассмотренными токами в соответствии с законом Кирхгофа выполняется соотношение

$$I_{\mathfrak{I}} = I_{\kappa} + I_{\mathfrak{I}} \tag{16.1}$$

Работу транзистора иллюстрирует потенциальная диаграмма (рисунок 16.1).

Рисунок 16.1 – Изменение потенциала между эмиттером и коллектором

Потенциал омиттера принят за нулевой. В эмиттерном переходе, хотя он и включен в прямом направлении для электронов (основных носителей варяда в эмиттерной области), все-таки есть небольшой потенциатывый барьер. Высотой этого барьера можно управлять, меняя напряжение между базой и эмиттером. Поле в области коллектора для этектронов является ускоряющим.

Зависимость между токами и напряжениями, действующими в транзисторе, имеет сложный характер. Ее удобно описывать графически в виде характеристик.

Рассмотрим одну из основных схем включения транзистора – схему с общим эмиттером. Входное напряжение U_{сигн}, которое необходимо усилить, подается на участок база-эмиттер. На базу подается также напряжение смещения U_{δ_2} . При этом в цепи базы протекает некоторый ток, т. е. сопротивление транзистора получается сравнительно небольшим. Цепь

коллектора (выходная цепь) питается от источника E_{κ_3} .

Статические характеристики снимаются на постоянном токе. В качестве входных характеристик для описанной схемы можно рассматривать зависимость:

$$I_{\delta}(U_{\delta \mathfrak{I}})$$
 при $U_{\kappa \mathfrak{I}} = const.$ (16.2)

А выходных – зависимость

Входные и выходные характеристики транзистора имеют тесную связь с вольталиерной характеристикой полупроводникового диода. Действительно, входные характеристики относятся к эмиттерному переходу, который работает при прямом напряжении. Поэтому они подебны характеристике прямого тока диода. Выходные характеристики подобны характеристике обратного тока диода, так как отображают свойства коллекторного перехода, работающего при обратном напряжении (для основных носителей заряда).

По входным характеристикам можно определить входное сопротивление транзистора:

$$R_{\rm BX} = \frac{\Delta U_{69}}{\Delta I_6}$$
 при $U_{\kappa_9} = const,$ (16.4)

а по выходным – выходное сопротивление:

$$R_{\rm Bbix} = \frac{\Delta U_{\rm K9}}{\Delta I_{\rm K}}$$
 при $I_{\delta} = const.$ (16.5)

Вычисленные таким образом величины R_{gx} и R_{gblx} являются сопротивлениями транзистора по переменному току. Т. е. такое сопротивление оказывает транзистор переменному току небольшой амплитуды сравнительно с постоянным током, текущим соответственно во входной и выходной цепях. Величины R_{gx} и R_{gblx} используются при анализе работы транзистора в схемах усиления переменного тока или напояжения.

Одним из важнейших параметров транзистора является корффициент усиления тока базы β , который определяется как скношение приращения тока коллектора к приращению тока базы при постоянной разности потенциалов между эмиттером и коллектором

$$\beta = \frac{\Delta I_{\kappa}}{\Delta I_{6}} \operatorname{при} U_{\kappa_{9}} = const.$$
(16.6)

Так как основная часть тока эмиттера закикается через цепь коллектора, коэффициент β всегда значительно больше единицы. У современных транзисторов он равен 10–300.

При любой схеме включения транзистора в качестве усилителя электрический ток имеется как в выходной цепи, так и во входной. Это позволяет говорить об усилителе на транзисторе как об усилителе тока. Но входной ток транзистора связан с выходным напряжением. Таким образом, схему с транзистором можно рассматривать и как усилитель тока, и как усилитель напряжения, и, естественно, как усилитель мощности.

Коэффициент, койления по напряжению схемы с транзистором приближенно каки вычислить следующим образом:

$$K = \frac{\Delta U_{\text{Bbix}}}{\Delta U_{\text{Bx}}} = \frac{\Delta I_{\text{K}} R_{\text{H}}}{\Delta I_{6} R_{\text{Bx}}} = \beta \frac{R_{\text{H}}}{R_{\text{Bx}}},$$
(16.7)

где 💦 сопротивление нагрузки в цепи коллектора.

Уна простая формула справедлива лишь в небольшой области режимов работы транзистора. Как и в любом другом усилителе, коэффициент усиления транзисторного усилителя зависит от частоты сигнала и его амплитуды.

Вопросы для самоконтроля

1 Что представляют собой транзисторы n-p-n типа?

2 Какую роль играют эмиттер, база и коллектор в транзисторе?

3 Почему базу транзистора делают тонкой?

4 Какие носители заряда являются основными и не основными в эмиттерной, базовой и коллекторной областях транзистора?

5 Для каких носителей заряда коллекторный переход включается в обратном направлении?

6 Объясните сходство между входными и выходными характеристиками транзистора, с одной стороны, и вольтамперной характеристикой диода – с другой?

7 Как можно найти величины входного и выходного соп ний транзистора?

8 Как можно определить коэффициент усиления транзистора по току?

9 Какого порядка обычно бывают входное и выходное сопротив-OP ATIMON ления транзистора?

Лабораторная работа 16

Снятие входных и выходных теристик биполярного транзистора вольтамперных харак

снятие основных характеристик транзи-Цель работы: изучение и стора, вычисление его нараметров.

и принядлежности: экспериментальная установка, Приборы транзистор *п-р-п* источник питания, вольтметр, амперметр, осциллограф.

транзистора выполняется на установке, основным элекоторой является специальная монтажная панель (рисунок 16.3). На ней размещены: транзистор VT n-p-n типа (например, МП37Б) и другие элементы. Питание схемы осуществляется от источника постоянного напряжения 15 В. Ток, потребляемый схемой от источника, не более 5 мА. На панели есть специальные гнезда для подключения приборов, измеряющих ток и напряжение базы, ток и напряжение коллектора, гнезда для подачи на вход транзисторного усилителя сигнала от генератора переменного напряжения, гнезда для подключения осциллографа, чтобы наблюдать форму и величину этого сигнала на входе и выходе.

Величина постоянного напряжения на базе транзистора регулируется потенциометром R_1 , а на коллекторе – потенциометром R_4 . Резистор R_2 играет вспомогательную роль, ограничивая величину базового тока транзистора и способствуя плавности регулировки базового напряжения. Резистор R_3 при изучении усиления выполняет роль нагрузки. Резистор R_5 уменьшает величину напряжения, подаваемого на потенциометр R_1 . Конденсатор C_1 позволяет подвести к базе транзистора переменный сигнал, не нарушая режима работы транзистора то постоянному току. Конденсатор C_2 соединяет минус схемы и отин из контактов нагрузочного резистора R_3 (по переменному току). Величины элементов схемы:

Рисунок 16.3 – Схема экспериментальной установки

базы измеряется микроамперметром с пределом измерения 100 мкА, ток коллектора – миллиамперметром с пределом измерения 3мА.

Напряжения на базе и на коллекторе измеряются вольтметрами.

В качестве источника усиливаемого переменного сигнала используется генератор, с которого снимается напряжение с амплитудой не более 50 мВ на частоте 1000 Гц.

Визуально сигнал наблюдается на экране осциллографа.

Величина усиливаемого сигнала оценивается по вольтметру

генератора, а величина усиленного сигнала – с помощью калиброванного входного делителя осциллографа.

Ход работы

<u>Упражнение 1. Снятие семейства выходных характеристик тран-</u> зистора

1 Соберите схему в соответствии с рисунком 16.3.

2 Ручки потенциометров R_1 и R_4 сначала должны быткуутановлены в крайнее положение против часовой стрелки, резистор R_3 необходимо закоротить перемычкой. Установите пределы измерения приборов, исходя из того, что ожидаемые значения $U_{\kappa_3} = 10 B$, $U_{\delta_3} = 0,2 B$, $I_{\kappa} = 2 MA$, $I_{\delta} = 30 M \kappa A$.

3 Подключите к схеме источник питания

4 Установите ток базы I_{δ} . Затем вращайте ручку потенциометра R_4 до появления коллекторного тока. Если при этом ток базы изменится, то восстановите его первоначальное значение. Получившиеся при этом значения U_{κ_9} и I_{κ} занесите в табынку.

5 Снимите зависимость $V_{\kappa}(U_{\kappa_3})$ при $I_{\delta} = 5$ мкА, увеличивая U_{κ_3} с помощью потенциометра R_4 и поддерживая I_{δ} постоянным с помощью R_1 . Результаты измерений занесите в таблицу. После этого аналогичным образом сничите зависимость $I_{\kappa}(U_{\kappa_3})$ при $I_{\delta} = 10, 20, 30$ мкА. Результаты измерений занесите в таблицу. Закончив измерения, уменьшите напряжения и токи в схеме до минимума.

6 Пестройте графики зависимости $I_{\kappa}(U_{\kappa_{3}})$ при I_{δ} в качестве параметра.

У7 Для использования транзистора в качестве усилителя переменного сигнала транзистор необходимо поставить в режим работы по постоянному току, обеспечивающий линейную связь между U_{κ_9} и I_6 (при этом искажения усиливаемого сигнала будут наименьшими). В связи с этим на графике, где изображено семейство выходных характеристик транзистора, необходимо определить точку, примерно соответствующую центру линейных участков характеристик. Пусть это будет точка с координатами $U_{\kappa_9} = U'_{\kappa_9}$, $I_6 = I'_6$.

Запишите значения U'_{κ_3} и I'_{δ} . Считая, что в окрестности этой точки параметры транзистора практически неизменны, определите величину коэффициента усиления транзистора по току β и величину выходного сопротивления транзистора R_{sbix} .

Упражнение 2. Снятие входных характеристик транзистора

1 С помощью потенциометра R_4 установите $U_{\kappa_3} = U'_{\kappa_3}$. Снимите зависимость $I_{\delta}(U_{\delta_3})$, занося результаты измерений I_{δ} и U_{δ_3} в таблину. При этом напряжение U_{δ_3} увеличивайте с помощью потенциометра R_1 , поддерживая $U_{\kappa_3} = U'_{\kappa_3}$ с помощью потенциометра R_4 . Законона измерения, уменьшите напряжения и токи в схеме до минимума

2 Постройте графики зависимости $I_{\delta}(U_{\delta_{2}})$ при $U_{\kappa_{2}}$ $U'_{\kappa_{2}}$.

Для значения $I_{\delta} = I'_{\delta}$ по наклону зависимости U_{δ_3}) определите величину входного сопротивления транзистора K_{δ_3} .

<u>Упражнение 3. Наблюдение эффекта укидения переменного сигнала</u> <u>с помощью транзистора</u>

1 Зная величины β и R_{6x} , полученные в предыдущих упражнениях для определенного режима работы транзистора, а также зная сопротивление резистора нагрузки R_{H} , можно вычислить величину коэффициента усиления усилителя, в котором транзистор работает в указанном режиме, а в качестве нагрузки используется резистор $R = R_{H}$. Вычислите коэффициент усиления K.

2 Снимите коротко замыкающую перемычку с резистора R_3 . С помощью посенциометров R_1 и R_4 установите режим работы транзистора, соответствующий выбранному по результатам предыдущих упражнении.

Вольтметр V_1 исключите из схемы. Включите генератор, и с его выхода подайте небольшое (около 10 мВ) напряжение частоты порядка 1 кГц на вход транзистора через конденсатор C_1 .

4 Подключите к схеме в соответствии с рисунком 16.3 осциллограф и на его экране получите изображение сигнала на входе транзисторного усилителя, а затем на выходе. Убедитесь в том, что выходной сигнал сохранил свою гармоническую форму. Если же нет, то уменьшите величину входного сигнала.
5 Определите коэффициент усиления как отношение величин сигнала на выходе и входе усилителя:

$$K_{\mathfrak{SKC\Pi}} = \frac{U_{\mathrm{BMX}}}{U_{\mathrm{BX}}}.$$

Закончив измерения, уменьшите напряжение и токи в схеме до минимума, выключите приборы и питание схемы.

6 Сравните коэффициент усиления, определенный экспериментально, с коэффициентом усиления, найденным теоретически и использованием параметров β и R_{sc} . 6 Сравните коэффициент усиления, определенный эксперимен-

145

Литература

1 Сивухин, Д. В. Общий курс физики : учеб. : в 3 т. Т. 3. Электричество / Д. В. Сивухин. – М. : Высшая школа, 1977. – 688 с.

2 Матвеев, А. Н. Электричество и магнетизм : учеб. / А. Н. Матвеев. – М. : Высшая школа, 1983. – 363 с.

3 Савельев, М. В. Общий курс физики: учеб. : в 2 т. Т. 2 / М. В. Савельев. – М. : Наука, 1982. – 421 с.

4 Калашников, С. Г. Электричество : учеб. / С. Г. Калашников, М. : Высшая школа, 1977. – 576 с.

5 Яворский, Б. М. Справочник по физике / Б. М. Пворский, А. А. Детлаф. – М. : Наука, 1968. – 940 с.

6 Практикум по физике. Электричество и магнетная Учеб. пособие для вузов / Ю. К. Виноградов [и др.]; под ред. Ф. Ииколаева. – М. : Высшая школа, 1991. – 151 с.

146

Учебное издание

БАЕВИЧ Георгий Александрович СЕМЧЕНКО Игорь Валентинович БАРАНОВ Михаил Тихонович

ОБЩАЯ ФИЗИКА

ПРАКТИЧЕСКОЕ ПОСОБИЕ

CKOPMHb по электричеству и магнетны для студентов физических специа стей

Редактор В Ікредова Коррек В. Калугина

2330/0549481 от 14.05.09. Лицензи Подписано в печать 11.01.10. Формат 60х84 ¹/₁₆. а офсетная. Гарнитура «Таймс». Усл. печ. л. 8,6. изд. л. 9,4. Тираж 150 экз. Заказ № 13

> Отпечатано с оригинала-макета на ризографе учреждения образования «Гомельский государственный университет имени Франциска Скорины» Лицензия № 02330/0150450 от 03.02.09. 246019, г. Гомель, ул. Советская, 104

PEROMANNAMINA OPAMINA

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

с. а. баевич, м. т. баранов, и. в. семчероорунин ОБЩАЯ ФРАНИК ОБЩАЯ ОРУНИКА ОБЩАЯ ОРУНИКА ОБЩАЯ ОРУНИКА

Гомель УО «ГГУ им. Ф. Скорины» 2010