Анализ карты показал, что наибольшее плотность сельского населения отмечается вблизи областного центра и других крупных городов; область наибольшей плотности (более 20 чел./км²) простирается в субмеридиональном направлении в восточной части региона. По обе стороны от неё плотность населения постепенно убывает. Некоторое увеличение плотности наблюдается в центре области к северу от Мозырской гряды.

Литература

- 1 Элизбарашвили, Н. К. Ландшафтный анализ размещения населения Грузии / Н. К. Элизбарашвили, Д. А. Николаишвили // География и природные ресурсы. № 4. 2006. С. 150–155.
- 2 Исаченко, А. Г. Введение в экологическую географию / А. Г. Исаченко. СПб.: Изд-во СПбГУ, 2003.-192 с.
- 3 Егоренков, Л. И. Геоэкология : учеб. пособие / Л. И. Егоренков, Б. И. Кочуров. М.: Финансы и статистика, 2005. 320 с.
 - 4 Ландшафтная карта Белорусской ССР / под ред. А. Г. Исаченко. М.: ГУГК, 1984.
- 5 Червяков, В. А. Количественные методы в географии / В. А. Червяков. Барнаул: Изд-во Алт. гос. ун-та, 1998. – 259 с.

УДК 631.416.1:581.19

Я. А. Сивая

СОДЕРЖАНИЕ РАЗЛИЧНЫХ ФОРМ АЗОТА В ПОЧВЕ И РАСТИТЕЛЬНЫХ ОБРАЗЦАХ

В ходе исследования по изучению содержания различных форм азота в почве и растительных образцах двух семейств (семейства Пасленовые — Solanaceae и Амариллисовые — Amaryllidaceae) в течении двух лет было установлено, что содержание общего азота в почве зависит от содержания гумуса. Определено содержание нитрати нитрит-ионов в исследуемых семействах растений. Выявлена закономерность снижения нитрат-ионов в 2015 году, что связано с климатическими характеристиками изучаемого периода.

В настоящее время одной из важных проблем, возникающих как результат усиления антропогенной нагрузки на экосистемы, является проблема нитратов. Наряду с традиционным решением задач использования нитратного азота как источника азотного питания растений и оптимизации эколого-агрохимических условий, влияющих на формирование урожая и его качество, возникли вопросы экологических последствий аккумуляции нитратов в почве, воде, растениях, атмосфере, влияние их на здоровье человека [1].

Цель исследований – изучение динамики содержания нитрат-ионов в образцах почвы и растений семейств Пасленовые – *Solanaceae и* Амариллисовые – *Amaryllidaceae* без внесения и с внесением органических удобрений в осенний период в 2014 и 2015 годах.

В качестве объектов исследования были взяты образцы дерново-подзолистой супесчаной почвы, отобранные на приусадебном участке г. Речица, растений семейства Пасленовые – Solanaceae (вид томат обыкновенный – Solanum lycopersicum L., вид перец сладкий – Capsicum annuum L.); семейства Амариллисовые – Amaryllidaceae (вид лук репчатый – Allium cepa L.). Исследование проводилось с постановкой микрополевого опыта. Доза внесения органических удобрений, навоз подстилочный, составила 4–6 кг на 1 м 2 .

При выполнении аналитических работ использовали стандартные методики. Определение нитрат-ионов в почвенных и растительных образцах велось ионометрическим методом; гумуса по методу Тюрина; количество подвижного доступного фосфора

и содержание обменного калия по методу А. Т. Кирсанова; рН почвы – потенциометрическим методом [2]. Статистическую обработку результатов исследований проводили при помощи программы Statistica 7.

В ходе исследований были определены агрохимические характеристики почв приусадебного участка в г. Речица. Результаты анализа почв представлены в таблице 1.

Таблица 1 — Агрохимические характеристики исследуемых почв в 2014 и 2015 годах (n=3, p=0.95)

Характеристики почв	рН солевой вытяжки	P_2O_5 , мг/кг	K_2O , мг/кг	Гумус, %	
2014 год					
Без внесения удобрений	6,14±0,49	165,3±14,8	126,3±6,8	1,8±0,02	
С внесением удобрений	6,73±0,38	177,4±15,6	134,5±8,6	$2,3\pm0,02$	
2015 год					
Без внесения удобрений	6,04±0,03	223,6±1,55	197,2±0,89	1,9±0,07	
С внесением удобрений	6,67±0,02	236,8±1,57	211,1±1,04	2,4±0,04	

Исходя из полученных данных, в исследуемый период времени, значение рН почвы приближается к нейтральному, что хорошо сказывается на большинстве садовых растений (включая овощи). В почвах исследуемого участка в период с 2014 года по 2015 год содержание подвижного фосфора доступного для растений и обменного калия увеличилось на 58,3–59,4 мг/кг и 70,9–76,6 мг/кг соответственно на почвах без внесения и с внесением органических удобрений. Содержание гумуса составило 1,8–2,4 % и колеблется незначительно.

Общее содержание азота в верхних горизонтах почв измеряется десятыми долями процента. Основная часть азота почвы связана с гумусом. В состав гумуса входит 93–97 % общего содержания азота. Азот составляет около 5 % от общей массы гумуса в почве [3].

Таблица 2 — Содержание гумуса и общего азота в дерново-подзолистых супесчаных почвах (n = 3, p = 0.95)

	Гумус, %		N _{общ} , %		
Месяц	без внесения	с внесением	без внесения	с внесением	
	удобрений	удобрений	удобрений	удобрений	
Сентябрь	1,6±0,07	2,0±0,06	0,080±0,003	0,100±0,003	
	1,7±0,08	1,9±0,05	0,085±0,002	0,095±0,004	

Примечание – В числителе данные за 2014 год; в знаменателе – за 2015 год.

Нитраты в почвы попадают главным образом с минеральными и органическими удобрениями, с атмосферными осадками, сточными водами, используемыми для полива и орошения. Почвенный азот усваивается растениями в пределах 25 – 83 %. Результаты содержания нитрат-ионов в образцах почвы представлены в таблице 3.

Таблица 3 — Содержание нитрат-анионов в дерново-подзолистых супесчаных почвах (n=3, p=0.95)

мг/кг

Почина	Концентрация нитрат-ионов		
Почва	2014 г.	2015 г.	
Без внесения удобрений	39,7±0,9	31,3±1,5	
С внесением удобрений	42,8±1,1	$34,7\pm2,1$	

Из таблицы 2 видно, что содержание нитрат-ионов в 2015 году существенно ниже, чем в 2014 году, это связано, в первую очередь, с метеорологическими условиями изучаемого

периода. 2015 год характеризуется более высокими температурными режимами и меньшим количеством осадков, в результате чего из-за недобора осадков местами возникла почвенная засуха. Содержание нитритов в почве невелико и колеблется в пределах 0,43–0,51 мг/кг. Несмотря на низкое содержание, нитритам принадлежит существенная роль в реакциях превращения соединений азота в почве.

Было изучено содержание нитрат- и нитрит-ионов в 2014 и 2015 годах в плодоовощной продукции. Результаты представлены в таблице 4.

Таблица 4 — Содержание нитрат-ионов в плодоовощной продукции, выращенной на почве без внесения удобрений и с внесением удобрений в осенний период (n=3,p=0.95)

мг/кг

Исследуемые образцы растений	пдк -	Содержание нитрат-ионов в осенний период			
		2014 г.		2015 г.	
		Без внесения удобрений	С внесением удобрений	Без внесения удобрений	С внесением удобрений
Лук репчатый	60	$\frac{19,2 \pm 1,5}{0,18 \pm 0,05}$	$\frac{42,1 \pm 2,3}{0,64 \pm 0,06}$	$ \begin{array}{c} \underline{15,2 \pm 1,3} \\ 0,48 \pm 0,07 \end{array} $	$ 37.1 \pm 1.8 \\ 0.41 \pm 0.05 $
Томат	100	$ \begin{array}{c} 22.3 \pm 0.5 \\ 0.71 \pm 0.07 \end{array} $	$35,4 \pm 1,7 \\ 0,98 \pm 0,14$	$ \begin{array}{c} 10.2 \pm 0.5 \\ 0.25 \pm 0.05 \end{array} $	$\frac{16,4 \pm 1,3}{0,54 \pm 0,07}$
Перец сладкий	200	$\frac{58,8 \pm 2,2}{0,41 \pm 0,09}$	$\frac{74,3 \pm 3,6}{0,61 \pm 0,08}$	$ \begin{array}{c} 28,8 \pm 1,2 \\ 0,59 \pm 0,10 \end{array} $	$\frac{35,3 \pm 2,6}{0,81 \pm 0,12}$

Примечание — В числителе содержание нитрат-ионов мг/кг; в знаменателе — нитрит-ионов мг/кг.

По полученным данным, в луке содержание нитрат-ионов в 2015 году уменьшается на 20,8 % и 11,8 %, в томате на 45,7 % и 53,6 %, в перце на 51 % и 52,5 % на почвах с внесением и без внесения органических удобрений соответственно, что, в первую очередь, связано с климатическими условиями. Содержание нитрит-ионов к осеннему периоду увеличивается.

Таким образом, при внесении органических удобрений наблюдается повышение содержания общего азота, концентрации нитрат- и нитрит-ионов.

Литература

- 1 Агрохимия: практикум / И. Р. Вильдфлуш [и др.] ; под ред. И. Р. Вильдфлуша. Минск: РИПО, 2011.-300 с.
- 2 Агроэкология: методические указания / Е. П. Воробьева [и др.]; Белорусская государственная сельскохозяйственная академия. Горки, 2010. 32 с.
- 3 Воробьева, Е. В. Физико-химические методы анализа в биохимии / Е. В. Воробьева. Гомель: Мин. образов. РБ, УО «ГГУ им. Ф. Скорины», 2005. 133 с.

УДК 630.28:582

А. В. Скакалов

ЕСТЕСТВЕННОЕ ВОЗОБНОВЛЕНИЕ В СМЕШАННЫХ ДУБОВЫХ НАСАЖДЕНИЯХ

Показаны особенности естественного возобновления в дубовых насаждениях искусственного происхождения. Установлено, что в молодых насаждениях дуба идет