М.Ю. Бокий (ГГУ имени Ф. Скорины, Гомель) Науч. рук. В.В. Можаровский, д-р техн. наук, профессор

РАЗРАБОТКА ПРОГРАММНОГО МОДУЛЯ ДЛЯ РАСЧЕТА ПАРАМЕТРОВ КОНТАКТА ИНДЕНТОРОВ СПОКРЫТИЕМ

Разработан программный модуль для расчета напряжений, возникающих при вдавливании жёсткого шара в упругое изотропное покрытие на основе известных упругих решений с помощью принципа Вольтерра

На первом этапе модуль использует входные данные (рисунок 1) для вычисления радиуса зоны контакта по формуле: $a^4 = \frac{4(1-v^2)RH}{\pi} \frac{1}{E}(P(a))$ [1].

Затем производится расчет компонент тензора напряжений в зоне контакта (при г изменяющемся от 0 до а):

$$\begin{split} \sigma_{rr}(t) &= -\frac{v}{1-v^2} \frac{E\left(2a^2-r^2\right)}{8Rh}, \\ \sigma_{\theta\theta}(t) &= -\frac{v}{1-v^2} \frac{E\left(2a^2-r^2\right)}{8Rh}, \\ \sigma_{zz}(t) &= -\frac{v}{1-v^2} \frac{E\left(a^2-r^2\right)}{2Rh}. \end{split}$$

<u>&</u>	Контакт индентора с тонким покры
2	Input
	v - коэффициент Пуассона
$\mathcal{O}^{\mathcal{N}}$	0.48
	Е - модуль упругости
XO	8.5
	R - радиус шара
67,	0.1
\sim	h - толщина слоя
	0.02
	Р - сила вдавливания
	6
Рис	сунок 1 – Входные данные
D	

Рисунок 1 – Входные данные

Результаты можно изучить на каждом этапе с заданным шагом (рисунок 2).

И наконец, библиотека строит графики каждой компоненты напряжения (рисунок 3).

Output	
r - от 0 да a:	orr:
0.0	24.6475562298
0.0192856544	24.524318445
0.0385713089	24.1546050905
0.0578569648	23.5384161113
0.0771426178	22.6757516727
0.0964282708	21.5666117011
0.1157139296	20.2109957559
0.1349995883	18.6089041308
0.1542852471	16.7603368259
0.1735709058	14.6652938412
0.1928565646	12.3237751767

SENHIP Рисунок 2 – Значения радиальной компоненты напряжения при заданных входных данных и шаге в 0.1а

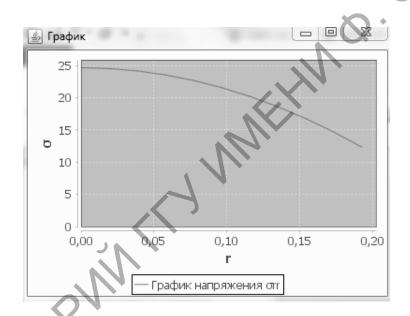


Рисунок 3 – График радиальной компоненты напряжения

Данный модуль эффективно справляется с расчетом заданных систем и станет частью более сложного программного комплекса в методах расчета физико-механических параметров и диагностики трибологических систем, изделий и покрытий из композиционных материалов.

Литература

1. Можаровский, В.В. О контактном взаимодействии жесткого индентора с армированным резиновым слоем с учетом явлений вязкоупругости / В.В. Можаровский. Международный технический журнал «Полимерные материалы и технологии», Том 3 №2, 2017. - 70-79 c.