- 2. Method of forming metallization backing for silicon wafer: pat. US 3785892 / Terry L.E., Wilson R.W. Publ. date 15.04.1974.
- 3. Гусев, А.И. Наноматериалы, наноструктуры и нанотехнологии / А.И.Гусев. М: Физматлит, 2005. 416 с.
- 4. Ермоленко, С.В. Особенности нанесения и снятия тонкопленочных металлических покрытий при изготовлении пьезорезонаторов / С.В. Ермоленко, К.С. Лысенко, О.В. Прохоренко, А.М. Ярош // Вестник Ом. ун-та. 2012. №2. С.88-93.
- 5. Способ формирования металлизации обратной стороны кремниевой пластины: пат. ВУ 9677 / Турцевич А.С., Глухманчук В.В., Ануфриев Д.Л., Соловьев Я.А. дата публ. 30.09.2005
- 6. Лякишева, Н.П. Диаграммы состояния двойных металлических систем / Н.П. Лякишева. М: Машиностроение, 2000. С.85

3. Гусейнова

(КГУТИ имени Ш. Есенова, Актау, Республика Казахстан) Науч. рук. Д. Д. Абдешов, ст. преподаватель

НОВЫЕ ТЕХНОЛОГИЧЕСКИЕ СПОСОБНОСТИ ИСПОЛЬЗОВАНИЯ НАНОМАТЕРИАЛОВ И НАНОТЕХНОЛОГИЙ

Нанотехнология начала развиваться как наука в конце двадцатого века, что в основном было связано с основной работой Норио Танигуши и Ричарды Фейнмана, появившейся в 1981 году. Герд Бинниг и Генрих Рорер, сканирующий туннельный микроскоп из цюрихской лаборатории IBM Швейцария. Бурное развитие нанотехнологий началось в начале XXI века и связано с одобрением финансирования программ развития науки США, Японии и Китая. Сегодня наука, нанотехнологии, информационные технологии и электроника, методы производства материалов и их обработки открывают перспективные области в области охраны окружающей среды и энергетики, биологии и медицины, сельского хозяйства, аэрокосмической промышленности. Исторические и основные моменты развития нанотехнологий как науки. Нанотехнологии как наука в медицинской промышленности. Статья интересна как в общеобразовательном плане, так и в научном плане.

Начало XXI века определялось приближением следующей научнотехнической революции, важнейшей связью которой является быстрый переход к интенсивной разработке и внедрению высокотехнологичного и сопутствующего оборудования. Одна из перспективных областей науки и техники сегодня - это исследования в области нанотехнологий, которые могут создать беспрецедентные возможности для цивилизации и стать ключом к будущему жизнеобеспечению в различных областях человеческой деятельности. [1]

Актуальность этой проблемы обусловлена, прежде всего, необходимостью усилить контроль над развитием нанотехнологий и нанотехнологий для предотвращения антропогенного кризиса, и, вовторых, значительным отсутствием исследований по этому вопросу, принимая во внимание современное широкое понимание концепции "технологии". Хотя проделана большая работа по анализу и изучению техники и технологии как зарубежными, так и российскими авторами. Однако нанотехнология, как показывает обзор литературы, все еще обсуждается главным образом в научно техническом контексте, и в нынешнем довольно слабом социально-гуманистическом материально-философском дискурсе по проблемам нанотехнологий такие вопросы по существу не поднимались. Наконец, как сложная, универсальная динамическая система нанотехнологий, необходимы целостное и адекватное понимание, оценка ее основной роли, ее места и значения в современной человеческой культуре. Мы думаем, что такое понимание может быть составлено в особом метатеоретическом, философском и культурном подходе. Ключевые технологии всегда играли важную роль в истории цивилизации, определяя не только уровень развития производительных сил, но и социальнокультурный прогресс в обществе. Взаимосвязь между теорией длинных волн Кондратьевой и технологическими структурами гипотетически определяет начало VI цикла, связанного с конвергенцией NBIC (N-нано-конвергенция; В-био; І-инфо; С-когно-технология).

С точки зрения развития, существует тесная связь между наукой и техникой; Одна из сторон заключается в том, что научные исследования более невозможны без самого высокого уровня современных технологий, и всегда внедряются самые передовые разработки в этих областях. Создание новой технологической структуры возможно благодаря развитию единой, взаимосвязанной, прогрессивной науки и техники, на которую также будут влиять людские, энергетические, природные, транспортные, региональные, трудовые, коммуникационные, финансовые и другие ресурсы, составляющие системные структуры, которые производят определенное поведение системы.

Сегодня ученые и инженеры, кстати, сталкиваются с ожиданием приобретения новых технологических способностей, имеющих большую историческую историю целенаправленных манипуляций с отдельными атомами вещества. В истории культуры известны древние примеры использования «наноматериалов» и «нанотехнологий»: «китайские чернила», «цветные стекла, окрашенные технологией металлических наночастиц, известных в древнем Египте», знаменитая дамасская сталь, изготовленная по наличию в ней нанотрубок, «римские рубиновые кубки» [2].

В нашем случае, при понимании нанотехнологий, акцент будет сделан на воспроизведение этих концепций с их сложными взаимодействиями и взаимозависимостями, и будущая нанотехнология считается аспектом нанотехнологии.

В итоге, любое серьезное изменение в жизни человека предполагает изменение самой культуры, и нанотехнология не является исключением, поскольку в качестве технической концепции она имеет прямые и косвенные отношения с культурой и будет влиять на нее.

Литература

- 1. Гусев, А.И. Наноматериалы, наноструктуры, нанотехнологии / А.И. Гусев. М.: Физматлит, 2007, 416 с.
- 2. Ковшов, А.Н. Основы нанотехнологии в технике: Учебное пособие для студентов высших учебных заведений / А.Н. Ковшов, Ю.Ф. Назаров, И.М. Ибрагимов. М.: ИЦ Академия, 2011, 240 с.

Д. С. Данилевич (БГУИР, Минск) Науч. рук. Е. В. Телеш, ст. преподаватель

ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК ПЛЕНОК SIOF, ПОЛУЧЕННЫХ ПРЯМЫМ ОСАЖДЕНИЕМ ИЗ ИОННЫХ ПУЧКОВ

Для обеспечения перехода на меньшие проектные технологические нормы в микроэлектронной индустрии разрабатываются новые технологии формирования систем металлизации с использованием медных проводников и изолирующих диэлектрических слоев с низкой (ε <3,8) и с ультранизкой (ε <2,2) диэлектрической проницаемостью для увеличения быстродействия и уменьшения энергопотребления СБИС. Диоксид кремния (SiO₂), широко применяющийся в кремние-