Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

В. Г. ШОЛОХ, И. В. КУЦЕПАЛОВА

СПЕКТРЫ И СТРОЕНИЕ МОЛЕКУЛ

ТЕСТОВЫЕ ЗАДАНИЯ

для студентов специальности
1-31 04 01 02 «Физика (производственная деятельность)»

Гомель УО «ГГУ им. Ф. Скорины» 2010 УДК 535.33:539.18:539.19 (075.8)

ББК 22.344.3 + 22.36 я73 Ш 786

Рецензент:

кафедра оптики учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Рекомендованы к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Шолох, В. Г.

Ш 786 Спектры и строение молекул: тестовые задания для студентов специальности 1-31 04 01 02 « Физика (производственная деятельность)» / В. Г. Шолох, И. В. Куцепалова; М-во образования РБ, Гомельский гос. ун-т им. Ф. Скорины. – Гомель: ГГУ им. Ф. Скорины, 2010. – 24 с.

Целью тестовых заданий является оказание помощи студентам в усвоении теоретических основ молекулярной спектроскопии и в подготовке к текущему и итоговому контролю знаний.

Тестовые задания адресованы студентам специальности 1-31 04 01 02 «Физика (производственная деятельность)».

УДК 535.33:539.18:539.19 (075.8)

ББК 22.344.3 + 22.36 я73

- © Шолох В. Г., Куцепалова И.В. 2010
- © УО «Гомельский государственный университет им. Ф. Скорины», 2010

СОДЕРЖАНИЕ

Введение	4
Раздел 1. Вращательные спектры молекул и методы	
МВ спектроскопии	5
Раздел 2. Колебательные спектры молекул, методы	
ИК и КР спектроскопии	
Раздел 3. Электронные спектры молекул	19
Литература	23
.0	
Reliositiv	

Введение

Одним из методических приемов повышения эффективности обучения является текущий контроль знаний. При этом немаловажное значение имеет самоконтроль, который позволяет учащемуся в течение семестра оценить уровень своих знаний. Одной из перспективных форм контроля знаний является тестирование. К достоинствам тестового контроля знаний относятся объективность, универсальность, ориентированность на современные технические средства. Компьютерные технологии могут быть с успехом использованы на всех стадиях учебного процесса. Они позволяют более рельефно выделить общую структуру и основные положения излагаемого курса, систематизировать и обобщить учебный материал в рамках каждого раздела (темы), значительно разнообразить формы заданий в процессе обучения. Безусловно, компьютерное тестирование не позволяет преподавателю проанализировать логику мышления учащегося, его умение давать развернутый ответ и прочие качества, выявляемые в процессе индивидуального опроса. В связи с этим рациональным является использование тестирования в качестве дополнительной или предварительной формы контроля знаний наряду с традиционными (зачетами, экзаменами, коллоквиумами).

С использованием программной оболочки МуТеst нами разработаны тесты для проведения текущего и итогового контроля знаний по курсу «Спектры и строение молекул», в которых использованы задания различных типов (одиночный выбор, множественный выбор, задания на соответствие, выбор места на изображении, указание истинности или ложности утверждений, ручной ввод числа) и различного уровня сложности. Текущий контроль знаний осуществляется по разделам курса в обучающем режиме и позволяет тестируемому объективно оценить свои знания, получить конкретные указания для дополнительной индивидуальной работы.

Данные методические материалы предназначены для самоподготовки студентов к компьютерному тестированию с целью контроля и коррекции знаний материала курса «Спектры и строение молекул». Тестовые задания адресованы студентам специальности 1-31 04 01 02 «Физика (производственная деятельность)»

Раздел 1. Вращательные спектры молекул и методы MB спектроскопии

1. Развитие спектроскопии проходило в два периода. Какими открытиями ознаменован каждый период?

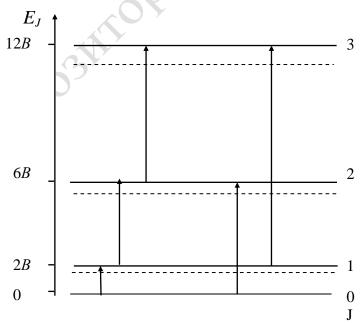
1) первый	а) создание квантовой механики;
период;	б) открытие Кирхгофом и Бунзеном индивидуаль-
2) второй	ности атомных спектров;
период.	в) открытие Фраунгофером дискретных линий по-
	глощения на фоне непрерывного солнечного спектра;
	г) открытие Бальмером, Ридбергом и Ритцем сери-
	альных закономерностей в спектрах водородоподоб-
	ных атомных систем;
	д) открытие Бором квантовых постулатов.

- 2. Какие из данных утверждений справедливы?
- а) согласно 1-му постулату Бора внутренняя энергия атома может иметь только определенные дискретные значения;
- б) согласно 1-му постулату Бора излучение электромагнитных волн атомами обусловлено движением электронов относительно ядра атома;
 - в) 2-й постулат Бора отражает закон сохранения энергии;
- г) согласно 2-му постулату Бора частота испускаемого или поглощаемого атомной системой излучения определяется формулой $\nu_{nk} = \frac{|E_k - E_n|}{h}.$

3. Установите соответствие между понятиями и определениями.

жение молекулы; расположения ядер в молекуле; 2) колебательное б) периодическое изменение ориентации
2) коноботон ное б) нарионицаакаа наманация орнантации
2) колебательное б) периодическое изменение ориентации
движение молекулы; молекулы как целого в пространстве;
3) вращательное дви- в) движение электронов молекулы отно-
жение молекулы. сительно ее ядер.

4. Полная энергия молекулы в системе ее центра масс в адиабатическом приближении определяется:


5

a)
$$E = E_e + E_v + E_J + U_{ev} + U_{vJ} + U_{eJ}$$
;

- 6) $E = E_{\rho} + E_{D} + E_{J}$;
- B) $E = E_e + E_v + E_J + U_{ev}$;
- $\Gamma) \quad E = U_{ev} + U_{vJ} + U_{eJ} .$
- **5**. Адиабатическое приближение при описании форм движения молекулы состоит в том, что не учитывается ...
 - а) взаимное влияние электронного и колебательного движений;
 - б) взаимное влияние электронного и вращательного движений;
 - в) взаимное влияние вращательного и колебательного движений;
 - г) центробежное растяжение молекулы.
- **6**. Установите соответствие между типами молекулярных спектров и диапазонами длин волн, в которых они проявляются.
 - 1) электронные;
- а) средний и ближний ИК диапазон;
- 2) колебательные;
- б) видимый, УФ, рентгеновский диапазон;
- 3) вращательные.
- в) дальний ИК и МВ диапазон.
- **7**. Число колебательных степеней свободы нелинейной N ядерной молекулы в системе центра масс равно ...
 - a) 6N;
 - б) 6N-6;
 - в) 3*N*-5;
 - г) 3*N*-6
 - д) 3*N*-3.
- **8**. Между значениями энергий электронного E_e , колебательного E_{υ} и вращательного E_J движений молекул выполняется следующее соотношение:
 - a) $E_e << E_D << E_J$;
 - 6) $E_e >> E_U >> E_J$;
 - B) $E_e \approx E_{\nu} \approx E_J$;
 - Γ) $E_{\rho} \approx E_{D} >> E_{J}$.
 - 9. Структуру в виде совокупности полос имеют ...
 - а) вращательные спектры;
 - б) колебательные спектры;
 - в) электронные спектры.

- 10. Вращательное движение молекулы это ...
- а) периодическое изменение взаимного расположения ядер;
- б) периодическое изменение ориентации молекулы как целого в пространстве;
 - в) движение электронов молекулы относительно ее ядер.
- **11**. Установите ложность или истинность утверждения: «Вращательное движение молекулы сопровождается изменением модуля дипольного момента».
- 12. Укажите число степеней свободы вращательного движения линейной молекулы.
- 13. Для линейной молекулы моменты инерции вращательного движения относительно главных осей соотносятся следующим образом:
 - a) $I_b = I_c \neq I_a$, $I_a \neq 0$;
 - б) $I_b = I_c$;
 - B) $I_a = I_b = I_c$;
 - Γ) $I_a \neq I_b \neq I_c$.
- **14**. Для нелинейной молекулы число вращательных степеней свободы равно ...
 - a) 2;
 - б) 3;
 - в) 1;
 - r) 4.
- 15. Для того чтобы полностью описать вращательное состояние нелинейной молекулы, необходимо задать следующий набор величин:
 - а) вращательный момент импульса \vec{M} ;
- б) проекции вращательного момента импульса M_x , M_y , M_z на внешние оси;
- в) одну из проекций вращательного момента в системе главных осей (например, M_a);
 - Γ) $|\vec{M}|$, M_a , M_z .
- **16**. Какие из следующих факторов учитываются при описании вращательного движения молекулы в модели нежесткого ротатора?

- а) межмолекулярное взаимодействие;
- б) поступательное движение;
- в) центробежное растяжение;
- г) деформация молекулы в процессе ее колебания.
- 17. Величина вращательной энергии молекулы в адиабатическом приближении зависит...
 - а) от формы рассматриваемой молекулы;
 - б) от размера рассматриваемой молекулы;
 - в) от значений массы ядер молекулы;
 - г) от значений частот собственных колебаний молекулы.
- 18. Формула для вращательной энергии линейной молекулы в модели нежесткого ротатора записывается в виде:
 - a) $E_J = BJ(J+1) DJ^2(J+1)^2$;
 - 6) $E_J = BJ(J+1)$;
 - B) $E_J = \frac{1}{2} \left(\frac{M_a^2}{I_a} + \frac{M_b^2}{I_b} + \frac{M_c^2}{I_c} \right);$
 - $\Gamma) E_J = \frac{1}{2} \left(\frac{M_a^2 + M_b^2 + M_c^2}{I_a + I_b + I_c} \right).$
- **19**. Укажите на схеме энергетических уровней вращательного движения линейной молекулы переходы, разрешенные в спектрах поглощения в МВ и дальней ИК области.

- 20. Степень вырождения третьего вращательного энергетического уровня линейной молекулы равна...
- 21. В системе главных осей вращающейся молекулы справедливо следующее соотношение:

a)
$$\sum_{i=1}^{N} m_i a_i = \sum_{i=1}^{N} m_i b_i = \sum_{i=1}^{N} m_i c_i = \sum_{i=1}^{N} m_i a_i b_i = \sum_{i=1}^{N} m_i a_i c_i = \sum_{i=1}^{N} m_i b_i c_i = 0$$
;

6)
$$\sum_{i=1}^{N} m_i a_i = \sum_{i=1}^{N} m_i b_i = \sum_{i=1}^{N} m_i c_i = \sum_{i=1}^{N} m_i a_i b_i = \sum_{i=1}^{N} m_i a_i c_i = \sum_{i=1}^{N} m_i b_i c_i \neq 0;$$

B)
$$\sum_{i=1}^{N} m_i a_i = \sum_{i=1}^{N} m_i b_i = \sum_{i=1}^{N} m_i c_i = \sum_{i=1}^{N} m_i a_i b_i = \sum_{i=1}^{N} m_i a_i c_i = \sum_{i=1}^{N} m_i b_i c_i \neq 1;$$

$$\Gamma) \sum_{i}^{N} m_{i} a_{i} = \sum_{i}^{N} m_{i} b_{i} = \sum_{i}^{N} m_{i} c_{i} = \sum_{i}^{N} m_{i} a_{i} b_{i} = \sum_{i}^{N} m_{i} a_{i} c_{i} = \sum_{i}^{N} m_{i} b_{i} c_{i} = 1.$$

- **22**. Единицей измерения вращательной постоянной B является...
- а) Дж;
- \mathfrak{G}) \mathbf{M}^2 ;
- $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$
- Γ) B безразмерная величина.
- 23. Установите ложность или истинность утверждения: «Учет центробежного растяжения молекулы приводит к понижению вращательных энергетических уровней».
- 24. В приближении нежесткого ротатора вращательный спектр молекулы имеет вид совокупности линий, ...
 - а) равноотстоящих друг от друга в шкале частот;
 - б) сгущающихся с ростом частоты;
 - в) сгущающихся по мере уменьшения частоты;
 - г) образующих спектральную полосу.
- **25**. Установите ложность или истинность утверждения: « Значение вращательной постоянной молекулы B_{υ} уменьшается при увеличении колебательного квантового числа υ ».
- **26**. Для молекулы, удовлетворяющей данной модели вращательного движения, справедливо следующее соотношение между значениями моментов инерции:

- 1) модель сферического волчка;
- 2) модель симметричного волчка;
- 3) модель асимметричного волчка.
- a) $I_b = I_c = I \neq I_a$;
- 6) $I_a = I_b = I_c = I$;
- B) $I_a \neq I_b \neq I_c$.
- 27. Сопоставьте понятия и определения.
- 1) модель сферического волчка;
- 2) модель симметричного волчка;
- 3) модель асимметричного волчка.
- а) молекулы имеют одну ось симметрии C_n порядка $n \le 2$;
- б) молекулы имеют одну ось симметрии C_n порядка $n \ge 3$;
- в) молекулы имеют несколько осей симметрии C_n порядка $n \ge 3$.
- 28. Формула для вращательной энергии нелинейной молекулы в модели жесткого ротатора записывается в виде:

a)
$$E_J = \frac{1}{2} \left(\frac{M_a^2 + M_b^2 + M_c^2}{I_a + I_b + I_c} \right);$$

6)
$$E_J = \frac{1}{2I} \left(M_a^2 + M_b^2 + M_c^2 \right);$$

B)
$$E_J = \frac{1}{2} \left(\frac{M_a^2}{I_a} + \frac{M_b^2}{I_b} + \frac{M_c^2}{I_c} \right);$$

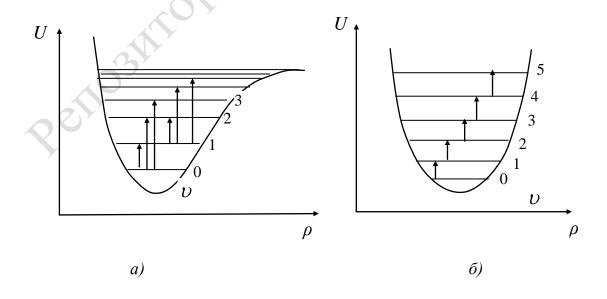
$$\Gamma) E_J = \frac{1}{2I} M_a^2 + M_b^2.$$

- 29. Формула квантования вращательной энергии молекулы типа сферического волчка имеет вид:
 - a) $E_J = BJ(J+1) + (A-B)k^2$;

$$6) E_{J} = \frac{\hbar^{2}}{2I}J(J+1);$$

B)
$$E_{j} = Bj(j+1) - Dj^{2}(j+1)^{2}$$
;

$$\Gamma) \quad E_J = \frac{A+C}{2}J(J+1) + \frac{A-C}{2}E_k^J(\chi).$$


30. Установите соответствие модели описания вращательного движения и степени вырождения вращательных уровней.

10

- 1) модель сферического волчка; a) $g_J = 2 Q J + 1$; 2) модель симметричного волчка; б) $g_J = Q J + 1$;
- 3) линейная молекула. в) $g_J = \mathbf{Q}J + 1^{\frac{1}{2}}$.
- **31**. Единицей измерения параметра асимметрии молекулы χ является...
 - а) мкм;
 - б) см⁻¹;
 - B) c^{-1} ;
 - Γ) χ безразмерная величина.
- **32**. Если в результате квантового перехода изменяется только вращательная энергия молекулы, то возникающий при этом вращательный спектр имеет ... структуру.
- 33. Чисто вращательные спектры поглощения имеют молекулы, у которых...
 - а) дипольный момент равен нулю;
 - б) дипольный момент не равен нулю;
 - в) изменение дипольного момента при переходе не равно нулю;
 - г) изменение поляризуемости не равно нулю.
- **34**. На основе экспериментальных вращательных спектров можно определить...
 - а) значения межъядерных расстояний в молекуле;
 - б) значения валентных углов молекулы;
 - в) величину силовой постоянной химической связи;
 - г) величину электрического дипольного момента молекулы.
- 35. Из экспериментального вращательного спектра линейной молекулы можно определить значения ... моментов инерции молекулы.
 - а) одного;
 - б) двух;
 - в) трех.

Раздел 2. Колебательные спектры молекул, методы ИК и КР спектроскопии

- 1. Колебательное движение молекулы это ...
- а) периодическое изменение взаимного расположения ядер;
- б) периодическое изменение ориентации молекулы как целого в пространстве;
 - в) движение электронов молекулы относительно ее ядер;
 - г) поступательное движение центра масс молекулы.
- 2. Установите ложность или истинность утверждения: «Колебательные квантовые переходы молекулы обусловливают ее колебательные спектры, которые проявляются в средней и дальней ИК области».
 - 3. Установите соответствие между определениями и понятиями.
 - 1) колебания, приводящие к изменению длин связей молекулы, называются ...
 - 2) колебания, приводящие к изменению валентных углов молекулы, называются ...
- а) деформационными;
- б) валентными.
- **4**. В приближении гармонического осциллятора график зависимости потенциальной энергии колебательного движения двухатомной молекулы от межъядерного расстояния имеет вид:

5. Линии колебательного спектра двухатомной молекулы, соответствующие правилам отбора, называются:

1)	ΛD	=	+1	:
1	Δc		<u> </u>	,

2) $\Delta \upsilon = \pm 2$;

3)
$$\Delta v = \pm 3$$
.

- а) первый обертон;
- б) основной тон;
- в) второй обертон.

6. Установите ложность или истинность утверждения: «Интенсивность спектральных линий основного тона значительно выше, чем интенсивность первого обертона».

7. Укажите число колебательных степеней свободы нелинейной трёхатомной молекулы.

8. Формула для колебательной энергии двухатомной молекулы в ангармоническом приближении имеет следующий вид:

a)
$$E_{\upsilon} = h \nu_0 (\upsilon + \frac{1}{2});$$

6)
$$E_{\upsilon} = h \nu_0 (\upsilon + \frac{1}{2}) + h \nu_0 \chi (\upsilon + \frac{1}{2})^2;$$

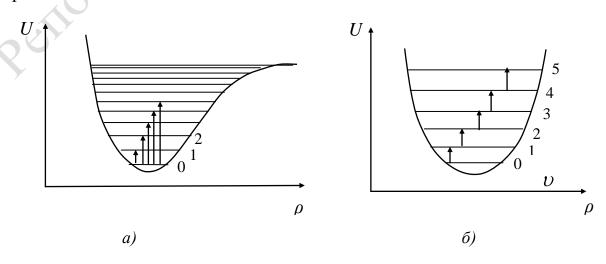
B)
$$E_{\upsilon} = h \nu_0 (\upsilon + \frac{1}{2}) - h \nu_0 \chi (\upsilon + \frac{1}{2})^2;$$

r)
$$E_{\upsilon} = h \nu_0 \chi (\upsilon + \frac{1}{2})^2$$
.

9. Какова размерность параметра ангармоничности χ ?

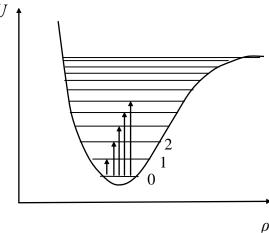
- a) c⁻¹;
- б) м;
- в) см⁻¹;
- Γ) χ безразмерная величина.

10. Формула Морзе, описывающая зависимость потенциальной энергии колебательного движения двухатомной молекулы от ее межъядерного расстояния, имеет следующий вид:


a)
$$U(q) = \frac{kq^2}{2}$$
;

6)
$$U \bigcirc D_e = e^{-a(\rho - \rho_e)^{\frac{7}{2}}};$$

B)
$$U \diamondsuit = U \diamondsuit_e + \left(\frac{dU}{d\rho}\right)_{\rho_e} \diamondsuit - \rho_e + \frac{1}{2} \left(\frac{d^2U}{d\rho^2}\right)_{\rho_e} \diamondsuit - \rho_e + \dots;$$


$$\Gamma) \ U \bigcirc = \frac{k \bigcirc - \rho_e}{2}.$$

- **11**. Интенсивность линий колебательного спектра комбинационного рассеяния молекулы определяется:
 - а) величиной собственного дипольного момента молекулы;
- б) величиной изменения дипольного момента молекулы, обусловленного колебанием;
- в) величиной изменения поляризуемости молекулы, обусловленного колебанием;
- г) величиной изменения параметра ангармоничности молекулы, обусловленного колебанием.
- **12**. Интенсивности красного $(I_{\kappa p})$ и фиолетового (I_{ϕ}) сателлитов в спектре комбинационного рассеяния соотносятся следующим образом:
 - a) $I_{\kappa p} \approx I_{\phi}$;
 - 6) $I_{\kappa p} << I_{\phi};$
 - B) $I_{\kappa p} >> I_{\phi};$
 - Γ) $I_{\kappa p} \geq I_{\phi}$;
 - д) $I_{\kappa p} \leq I_{\phi}$.
- 13. Сколько красных сателлитов должно наблюдаться в колебательном спектре комбинационного рассеяния двухатомной молекулы?
- **14**. Укажите, какая из данных кривых описывается формулой Морзе.

- **15**. Установите ложность или истинность утверждения: «Истинное отношение интенсивностей красных и фиолетовых сателлитов в спектре КР молекулы описывается в рамках классической теории».
- **16**. Укажите на рисунке межъядерное расстояние двухатомной молекулы, называемое равновесным.

CKODIVIII

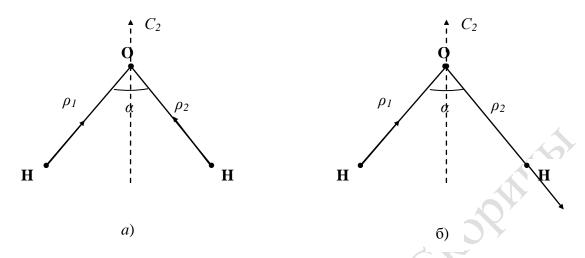
- **17**. Укажите минимальное число частот колебательного спектра двухатомной молекулы, необходимое для определения ее собственной частоты колебания.
- 18. На основе экспериментального колебательного спектра двухатомной молекулы можно определить значение:
 - а) собственной частоты колебания молекулы;
 - б) параметра ангармоничности колебания молекулы;
 - в) межъядерного расстояния молекулы;
 - г) дипольного момента молекулы.
- 19. При увеличении значения параметра ангармоничности колебания величина энергии диссоциации молекулы ...
 - а) возрастает;
 - б) уменьшается;
 - в) остается неизменной.
- **20**. Для более точного описания структуры колебательновращательной полосы необходимо учесть, как наиболее существенное:
 - а) влияние электронного движения на вращение молекулы;
 - б) влияние колебательного движения на вращение молекулы;
 - в) влияние электронного движения на колебания молекулы;
 - г) влияние вращательного движения на колебание молекулы.

21. Энергия двухатомной молекулы, осуществляющей колебательное и вращательное движения, определяется в соответствии с формулой:

a)
$$E = h v_0 \left(\upsilon + \frac{1}{2} \right) - h v_0 \chi \left(\upsilon + \frac{1}{2} \right)^2 + BJ (+1);$$

6)
$$E = BJ(J+1) - DJ^{2}(J+1)^{2}$$
;

B)
$$E = h v_0 \left(\upsilon + \frac{1}{2} \right) - h v_0 \chi \left(\upsilon + \frac{1}{2} \right)^2 + BJ \left((1 + 1) \right) DJ^2 \left((1 + 1) \right)$$
;


r)
$$E = \frac{A+C}{2}J(J+1) + \frac{A-C}{2}E_K^J(\chi)$$
.

22. Соотнесите правила отбора для колебательно-вращательных переходов двухатомной молекулы с буквенными обозначениями соответствующих ветвей.

1) $\Delta J = -2;$	a) S;
2) $\Delta J = -1$;	б) Р;
3) $\Delta J=0$;	в) О;
4) $\Delta J=1$;	г) Q;
5) $\Delta J=2$.	д) R.

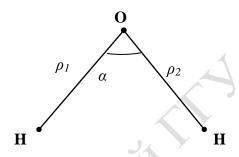
- 23. Какие из перечисленных ветвей колебательно-вращательных полос разрешены (активны) в ИК спектре?
 - a) O;
 - б) Р;
 - в) Q;
 - г) R;
 - д) S.
- 24. Используя экспериментальный колебательно-вращательный спектр двухатомной молекулы, можно определить значения ее ...
 - а) межъядерного расстояния;
 - б) дипольного момента;
 - в) собственной частоты колебания;
 - г) магнитного момента;
 - д) энергии ионизации.

25. Укажите на рисунке антисимметричное валентное колебание молекулы воды.

26. Между собственными частотами симметричных (ν_s), антисимметричных (ν_{as}) и деформационных (ν_{δ}) колебаний многоатомной молекулы справедливо следующее соотношение:

- a) $v_{\delta} > v_{s} > v_{as}$;
- $6) \quad v_{as} > v_s > v_{\delta};$
- B) $v_{as} \ge v_s \ge v_{\delta}$;
- Γ) $v_{\delta} \geq v_{s} \geq v_{as}$.

27. Соотнесите понятия и определения, характерные для колебательного движения многоатомной молекулы.


- 1) комбинированный уровень;
- 2) фундамен-тальный уровень;
- 3) обертонный уровень.
- а) уровень, для которого значение одного из квантовых колебательных чисел больше единицы, а значения остальных равны нулю;
- б) уровень, для которого значения двух или более квантовых чисел отличны от нуля;
- в) уровень, для которого значение одного из квантовых колебательных чисел равно единице, а значения остальных равны нулю.

28. Установите ложность или истинность утверждения: «Среди всех разрешенных колебательных переходов наименьшей вероятностью обладают фундаментальные переходы».

- **29**. Установите ложность или истинность утверждения: «Порядок группы симметрии это число элементов симметрии, составляющих данную группу».
 - 30. Соотнесите обозначения и понятия элементов симметрии.

1) C_n ;	а) зеркально-поворотная ось симметрии порядка n ;
$2) \sigma;$	б) плоскость симметрии;
3) i;	в) поворотная ось симметрии порядка n ;
4) S_n .	г) центр инверсии (симметрии).

- **31**. Установите ложность или истинность утверждения: «Для элемента симметрии о характерна операция отражение в точке».
 - 32. Сколько осей симметрии и имеет данная трехатомная молекула?

33. Соотнесите понятия и определения, характерные для симметрии колебаний многоатомной молекулы.

1) g и u;	а) симметричные и антисимметричные колебания от-
2) 1 и 2;	носительно центра инверсии і;
3) 'и".	б) симметричные и антисимметричные типы колеба-
00'	ний по отношению к операции отражения в плоскости σ_{v}
	или по отношению к повороту относительно $C_2 \perp C_n^z$;
	в) симметричные или антисимметричные типы коле-
	баний относительно плоскости σ_h .

- **34**. Какая из перечисленных точечных групп симметрии содержит элемент симметрии σ_h ?
 - б) D_{2h} ;

- B) C_{3n} ;
- Γ) C_1
- D_n .
- а) число колебаний данного типа симметрии;
- б) число операций симметрии в рассматриваемой группе симметрии;
- в) число атомов, не меняющих своего положения при выполнении соответствующей операции симметрии;
- Religation of the state of the г) число операций симметрии в данном классе.

Раздел 3. Электронные спектры молекул

- 1. Какие из перечисленных характеристик определяют свойства электронного состояния молекулы?
 - а) свойства симметрии функции состояния;
 - б) моменты инерции молекулы;
 - в) потенциальная кривая электронного состояния;
 - г) число степеней свободы.
 - **2**. Число степеней свободы для электронного движения молекулы, содержащей n электронов, определяется формулой ...
 - a) 3n-1;
 - б) 6*n*-2;
 - в) 6*n*;
 - г) 3*n*.
- **3**. Соотнесите обозначения электронных состояний двухатомных молекул и значения квантового числа $\Lambda = |m_M|$.

1) Σ;	a) 3;	
2) Π;	б) 1;	
3) Δ ;	в) 2;	
4) Φ.	г) 0.	

4. Укажите на рисунке, какой из графиков соответствует связывающему электронному состоянию двухатомной молекулы.

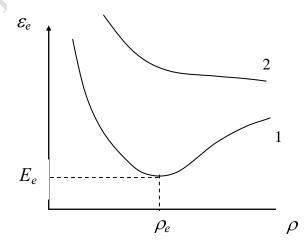
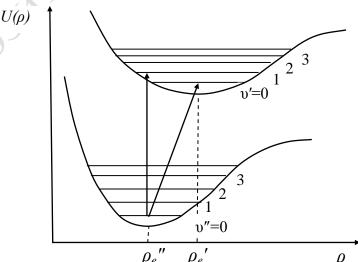
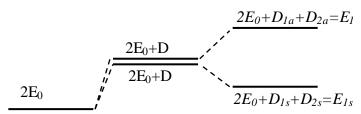



Рисунок – Вид зависимости энергии электронного движения двухатомной молекулы от межъядерного расстояния

- **5**. Мультиплетность электронного состояния двухатомной молекулы, заселенного двумя электронами, может принимать значения
 - a) 0;
 - б) 1;
 - в) 2;
 - г) 3.
- **6**. Электронно-колебательные переходы двухатомной молекулы осуществляются при выполнении следующих правил отбора для колебательного квантового числа:
 - a) $\Delta v = 0,\pm 1;$
 - δ) Δυ = ±1;
 - B) $\Delta \upsilon = \pm 2$;
 - г) строгих правил отбора нет.
- 7. Установите ложность или истинность утверждения: «Электронно-колебательные спектры молекул наблюдаются в микроволновой области длин волн».
- **8**. Электронные переходы двухатомных молекул подчиняются правилам отбора по квантовому числу Λ :
 - a) $\Delta \Lambda = 0$;
 - δ) ΔΛ = ±1;
 - B) $\Delta \Lambda = \pm 2$.
- **9**. Укажите, какой из данных электронно-колебательных переходов в соответствии с принципом Франка-Кондона имеет максимальную вероятность.


- **10**. Установите ложность или истинность утверждения: «Интеркомбинационные электронные переходы ($\Delta S \neq 0$) наблюдаются вследствие спинорбитального взаимодействия».
- 11. Установите ложность или истинность утверждения: «На основе экспериментальных электронно-колебательных спектров можно определить энергию диссоциации молекулы в возбужденном электронном состоянии».
- **12**. Укажите число частот электронно-колебательной полосы, значения которых необходимо экспериментально определить, чтобы вычислить значения параметров ангармоничности молекулы в основном и возбужденном состояниях.
- 13. Установите ложность или истинность утверждения: «Наибольшая вероятность электронно-колебательного перехода двухатомной молекулы наблюдается в тех случаях, когда ее межъядерное расстояние р изменяется за время перехода».
 - **14**. Гамильтониан электронного движения молекулы \hat{H}_e это ...
 - а) оператор кинетической энергии электронов;
 - б) оператор потенциальной энергии взаимодействия электронов;
- в) оператор, соответствующий полной энергии электронов и потенциальной энергии электростатического взаимодействия ядер.
- **15**. Установите ложность или истинность утверждения: «В рамках адиабатического приближения функция состояния молекулы может быть представлена в виде:

$$\Psi(\rho)\Psi(\rho)\Psi(\rho)\Psi(\rho)\Psi(\rho)$$

где Ψ_e (ρ) — функция состояния электронного движения молекулы, Ψ_g (ρ) — функция состояния движения ее ядер».

- **16**. Нулевое приближение при решении уравнения Шрёдингера для электронного движения молекулы основывается на утверждении:
 - а) взаимодействие между отдельными атомами отсутствует;
 - б) значение кинетической энергии ядер пренебрежимо мало;
- в) значение энергии взаимодействия электронов с ядрами пренебрежимо мало.

17. Укажите на схеме энергетический уровень, соответствующий нулевому приближению.

- **18**. Формула $S = \int \Psi_A \bigoplus \mathcal{F}_B \bigoplus \mathcal{F}_A \bigoplus \mathcal$
 - а) интеграл перекрывания;
 - б) кулоновский интеграл;
 - в) обменный интеграл.
- 19. Установите ложность или истинность утверждения: «При описании электронных состояний молекулы кулоновский интеграл $K = \int \Psi_{\hat{A}} \bigoplus \Psi_{\hat{$
- 20. Установите ложность или истинность утверждения: «Электронное состояние молекулы водорода, в котором электронная плотность в межъядерной области увеличивается в результате перекрывания одноэлектронных функций атомов, называется разрыхляющим состоянием».

Литература

- 1 Ельяшевич, М. А. Атомная и молекулярная спектроскопия / М. А. Ельяшевич М.: Изд-во физ.-мат. лит., 1962. 892 с.
- 2 Практикум по спектроскопии: учеб. пособие для студ. физ. фак. вузов / А. И. Акимов [и др.]. М.: Изд-во МГУ, 1994. 354 с.
- 3 Лебедева, В. В. Техника оптической спектроскопии / В. В. Лебедева. 2-е изд., перераб. и доп. М.: Изд-во МГУ, 1986. 352 с.
- 4 Мальцев, А. А. Молекулярная спектроскопия : учеб. пособие для вузов / А. А. Мальцев. М.: Изд-во МГУ, 1980. 272 с.
- 5 Казаченко, Л. П. Молекулярная спектроскопия жидкости: учеб. пособие для вузов / Л. П. Казаченко Мн.: Изд-во БГУ, 1978. 176 с.
- 6 Бенуэлл, К. Основы молекулярной спектроскопии / К. Бенуэлл; под ред. Е. Б. Гордона; пер. с англ. М.: Мир, 1985. 384 с.
- 7 Артеменко, А. И. Практикум по органической химии : учеб. пособие для вузов / А. И. Артеменко, И. В. Тикунова, У. К. Ануфриев. М.: Высшая школа, 2001. 187 с.
- 8 Драго, Р. Физические методы в химии: в 2 т. Т. 1 / Р. Драго; под ред. О.А. Реутова; пер. с англ. М.: Мир, 1981. 424 с.
- 9 Драго, Р. Физические методы в химии: в 2 т. Т. 2 / Р. Драго; под ред. О. А. Реутова; пер. с англ. М.: Мир, 1981. 456 с.
- 10 Сидоренко, В. М. Молекулярная спектроскопия биологических сред: учеб. пособие для вузов / В. М. Сидоренко.— М.: Высшая школа, 2004. 191 с.
- 11 Банкер, Ф. Симметрия молекул и спектроскопия / Ф. Банкер; пер. с англ. М.: Мир, 2004. 763 с.
- 12 Зайдель, А. Н. Техника и практика спектроскопии: учеб. пособие для вузов / А. Н Зайдель, Г. В. Островская, Ю. И. Островский. М.: Наука, 1976. 284 с.
- 13 Кизель, В. А. Практическая молекулярная спектроскопия: учеб. пособие для вузов / В. А. Кизель. М.: Изд-во МФТИ, 1998. 276 с.
- 14 Минкин, В. И. Теория строения молекул: учеб. пособие для вузов / В. И. Минкин, Б. Я. Симкин, Р. М. Миняев. М.: Высшая школа, 1979. 407 с.
- 15 Шолох, В.Г. Спектры и строение молекул: тексты лекций по курсу для студентов специальности 1-31 04 01 02 «Физика (производственная деятельность)» / В. Г. Шолох. Гомель: ГГУ им.Ф Скорины, 2009. 91 с.