HFSS прост в применении и обладает интуитивно понятным мультифункциональным интерфейсом.

Литература

1. Банков, С. Е. Решение оптических и СВЧ задач с помощью HFSS / С. Е. Банков, Э. М. Гутцайт, А. А. Курушин. – М.: ООО «Ор-када», 2012. – 250 с.

2. Семченко, И. В. Электромагнитные волны в метаматериалах и спиральных структурах / И. В. Семченко, С. А. Хахомов. – Минск: Беларуская навука, 2019. – 279 с.

А. И. Толкачёв

(ГГУ имени Ф. Скорины, Гомель) Науч. рук. **В. Н. Капшай,** канд. физ.-мат. наук, доцент

АНАЛИЗ ЭФФЕКТИВНОСТИ ПЛОТНОСТИ МОЩНОСТИ ПОЛЯ ВТОРОЙ ГАРМОНИКИ–СУММАРНОЙ ЧАСТОТЫ В ТОНКОМ СФЕРИЧЕСКОМ СЛОЕ ДЛЯ ВОЛН ОДИНАКОВОЙ ЭЛЛИПТИЧНОСТИ

Введение. В настоящее время нелинейные оптические явления, такие как генерация второй гармоники (ГВГ) и генерация суммарной частоты, используются для изучения границ раздела диэлектриков. В частности, это поверхности диэлектрических нано- и микрочастиц. Экспериментальные исследования показывают, что регистрируемый сигнал является слабым [1]. Для его усиления исследуемые частицы покрывают оптически нелинейными веществами. В качестве дополнительного метода усиления сигнала мы предлагаем использовать два когерентных источника исходного излучения. При этом одновременно происходят явления ГВГ каждой из волн и генерации суммарной частоты в поверхностных слоях исследуемых частиц. Так как данные поля имеют одинаковую частоту и когерентны, то результирующее поле определяется методом суперпозиции. Нелинейную генерацию такого вида назовем генерацией второй гармоники–суммарной частоты (ГВГ–СЧ).

Постановка задачи. Рассмотрим падение двух когерентных плоских эллиптически поляризованных электромагнитных волн на диэлектрическую сферическую частицу радиуса *a*, покрытую тонким слоем оптически нелинейного вещества. Напряженности электрических полей источников задаются следующим образом:

$$\mathbf{E}^{(\alpha)}(\mathbf{x},t) = E_{\alpha} \mathbf{e}^{(\alpha)} \exp(i\mathbf{k}^{(\alpha)}\mathbf{x} - i\omega t), \qquad (9)$$

где E_{α} – комплексная амплитуда волны, $\mathbf{e}^{(\alpha)}$ – единичный комплексный вектор поляризации, $\mathbf{k}^{(\alpha)}$ – волновой вектор ($k_{\omega} = |\mathbf{k}^{(\alpha)}|$), ω – циклическая частота. Индекс α показывает принадлежность величины к соответствующему источнику и принимает значения 1 или 2.

Тензор нелинейной диэлектрической восприимчивости второго порядка для данной задачи имеет четыре независимые компоненты $\chi^{(2)}_{1-4}$, входящие в него в следующем виде:

$$\chi_{ijk}^{(2)} = \chi_1^{(2)} n_i n_j n_k + \chi_2^{(2)} n_i \delta_{jk} + \chi_3^{(2)} \left(n_j \delta_{ki} + n_k \delta_{ij} \right) + \chi_4^{(2)} n_m \left(n_k \varepsilon_{ijm} - n_j \varepsilon_{imk} \right).$$
(10)

Нахождение явного вида напряженности электрического поля второй гармоники–суммарной частоты (ВГ–СЧ) $E^{(2\omega)}$ приведено в работе [2]. В дальней зоне интенсивность излучения удвоенной частоты может быть записана в форме

$$S_{\text{norm}}^{(2\omega)} = \frac{c}{8\pi} \frac{n_{2\omega}}{\mu_{2\omega}} \left| \frac{\mathbf{E}^{(2\omega)}}{1 + |\boldsymbol{\eta}|^2} \right|^2, \qquad (11)$$

где $\eta = E_2/E_1$. В данном выражении произведена нормировка напряженности $\mathbf{E}^{(2\omega)}$ на множитель $(1 + |\eta|^2)$ для того, чтобы суммарная мощность падающих волн была неизменной.

Оптимизация плотности мощности ГВГ–СЧ. Проведем численную максимизацию плотности генерируемой мощности ВГ–СЧ для следующих фиксированных параметров задачи: размер частицы $k_{\omega}a = 0,1$, показатель дисперсии $\xi = 1,34/1,33$. Остальные параметры являются варьируемыми: направление наблюдения θ , φ , угол γ между векторами $\mathbf{k}^{(1)}$ и $\mathbf{k}^{(2)}$, отношение комплексных амплитуд падающих волн η , их азимуты поляризации $\varphi_{in}^{(\alpha)}$ и эллиптичности σ_{α} . Для объективности сравнения эффективности ГВГ–СЧ и ГВГ рассмотрим случай одинаковых эллиптичностей падающих волн ($\sigma_1 = \sigma_2$). Оптимизацию будем проводить отдельно для четырех типов анизотропии $\chi_{1-4}^{(2)}$ (под типом анизотропии $\chi_i^{(2)}$ подразумеваются значения независимых компонент тензора $\chi_{ijk}^{(2)}$: $\chi_i^{(2)} = 1$, $\chi_j^{(2)} \Big|_{j\neq i} = 0$) и для тензора (2), соответствующего малахитовому зеленому (M3, $\chi_1^{(2)} = -0,627$, $\chi_2^{(2)} = 0,778$, $\chi_3^{(2)} = -0,021$, $\chi_4^{(2)} = 0$). Результаты максимизации плотности мощности $S_{\text{norm, max}}^{\Gamma B \Gamma - C \Psi}$ представлены в первой строке таблицы 1, где использована

вспомогательная величина $S_0 = 2\pi c \frac{\mu_{2\omega}}{n_{2\omega}^3} \frac{d_0^2}{r^2} (k_{2\omega}a)^4 |E_1|^4.$

Таблица 1 – Значения оптимизированной плотности мощностиГВГ-СЧ и максимальной плотности мощности при ГВГ

Вычисляемая вели- чина	Тип анизотропии				
	$\chi_1^{(2)}$	$\chi_2^{(2)}$	$\chi_3^{(2)}$	$\chi_4^{(2)}$	M3
$S_{\text{norm, max}}^{\Gamma B \Gamma - C \Psi} / (10^{-3} S_0)$	2,20	17,5	21,8	0,193	8,74
$S_{\text{norm, max}}^{\Gamma B \Gamma} / (10^{-3} S_0)$	0,551	4,37	4,49	0,0481	2,19

На рисунке 1, *а* представлены графики зависимости оптимизированной плотности мощности ГВГ-СЧ от эллиптичности падающих волн для указанных выше форм тензора $\chi_{ijk}^{(2)}$.

Рисунок 1 – Нормированные зависимости максимальной плотности мощности от эллиптичности падающих волн для явлений: *а*) ГВГ–СЧ, *б*) ГВГ

Для удобства сравнения различных типов анизотропии данные зависимости нормированы на значения интенсивностей, соответствующие указанным в строке 1 таблицы 1. Отметим, что глобальный максимум $S_{\text{norm}}^{\Gamma B \Gamma - C \Psi}$ для всех типов анизотропии наблюдается при линейно поляризованных исходных волнах ($\sigma_{\alpha} = 0$). Отклонение от данного значения приводит к монотонному уменьшению оптимальной плотности мощности. Для типа анизотропии $\chi_3^{(2)}$ в области $\sigma \in [0,46;1]$ максимальная плотность мощности не изменяется.

Анализ плотности мощности ГВГ. Рассмотрим падение одной плоской электромагнитной волны на сферическую диэлектрическую частицу, покрытую тонким слоем оптически нелинейного вещества. В данном слое будет происходить явление ГВГ. Формулы, описывающие данное явление, аналогичны приведенным выше, если положить $\eta = 0$.

Построим графики зависимости максимальной генерируемой плотности мощности второй гармоники от эллиптичности исходного излучения для типов анизотропии $\chi_{1-4}^{(2)}$ и M3 (рисунок 1, *б*). Данные зависимости нормированы таким образом, чтобы функции $S_{\text{погт, max}}^{\Gamma B \Gamma}$ не превышали единицу. Нормирующие множители соответствуют приведеным в строке 2 таблицы 1. Для типов анизотропии $\chi_{1,2,4}^{(2)}$ и M3 указанные зависимости – это монотонно убывающие кривые с максимумом при линейной поляризации падающей волны ($\sigma = 0$). Для типа анизотропии $\chi_3^{(2)}$ максимальная генерируемая плотность мощности не изменяется во всем возможном диапазоне изменения эллиптичности. В работе [3] аналитически показано, что при ГВГ в тонком сферическом слое, обладающем типом анизотропии $\chi_2^{(2)}$, мощность генерируемого излучения пропорциональна величине $\left(\frac{1-\sigma^2}{1+\sigma^2}\right)^2$. Нормированный график указанной зависимости совпадает с графиком для данно-

го типа анизотропии, приведенном на рисунке 1, б. При падении циркулярно поляризованной волны ГВГ не происходит для типа анизотропии $\chi_2^{(2)}$, что видно из приведенной формулы и графика.

Сравнение эффективности ГВГ–СЧ и ГВГ. Под эффективностью плотности мощности поля ВГ–СЧ будем понимать отношение оптимизированной плотности мощности ВГ–СЧ к генерируемой плотности мощности при использовании одного источника (ГВГ) аналогичной эллиптичности ($S_{\text{norm, max}}^{\Gamma B \Gamma-C Ч} / S_{\text{norm, max}}^{\Gamma B \Gamma}$ при $\sigma_1 = \sigma_2 = \sigma$). Графики зависимости эффективности ГВГ–СЧ от эллиптичности возбуждающего излучения приведены на рисунке 2.

Общим для всех рассмотренных форм тензора (2) является наличие областей с эффективностью равной четырем, при этом исходные волны сонаправлены, имеют одинаковые напряженности электрического поля, фазы и ориентации эллипсов поляризации. В областях, где эффективность ГВГ–СЧ больше четырех, оптимальные параметры отличаются от указанных выше и зависят от эллиптичности. Укажем области эллиптичности с эффективностью больше четырех: для типа анизотропии $\chi_1^{(2)}$ это $\sigma \in [0,53; 0,93]$, для $\chi_2^{(2)} - \sigma \in [0,58; 1]$, для $\chi_3^{(2)} - \sigma \in [0,58; 1]$ $\sigma \in [0; 0,45]$, для МЗ – $\sigma \in [0,63; 1]$. Для типа анизотропии $\chi_2^{(2)}$ в области σ ∈ [0,58; 1] происходит монотонное возрастание эффективности от четырех до бесконечности. Для типа анизотропии $\chi_4^{(2)}$ во всем рассматриваемом диапазоне эллиптичности оптимальная плотность мощности ГВГ-СЧ в четыре раза больше максимальной плотности мощности при ГВГ.

При сравнении максимально возможной генерируемой плотности мощности ВГ-СЧ с учетом варьирования эллиптичности падающих волн с аналогичной величиной при ГВГ (строки 1 и 2 таблицы 1) можно заключить, что эффективность ГВГ-СЧ для типов анизотропии $\chi_{1,2,4}^{(2)}$ и МЗ равна четырем, а для типа анизотропии $\chi_3^{(2)} - 4,86$.

Заключение. В данной работе проведена оптимизация плотности мощности ГВГ-СЧ в тонком сферическом слое малого радиуса при падении двух электромагнитных волн одинаковой эллиптичности. Обнаружено, что максимальная плотность мощности генерируется при использовании линейно поляризованных волн. Увеличение эллиптичности исходного излучения приводит к уменьшению интенсивности генерируемого излучения. При рассмотрении явления ГВГ в

малом сферическом слое установлено, что для типа анизотропии $\chi_3^{(2)}$ максимальная генерируемая плотность мощности не зависит от эллиптичности падающей волны. Анализ эффективности ГВГ–СЧ и ГВГ показал, что использование двух когерентных источников позволяет увеличить интенсивность генерируемого излучения в четыре раза и более по сравнению с использованием одного источника.

Работа выполнена при финансовой поддержке гранта БРФФИ (проект Ф20М-011).

Литература

1. Viarbitskaya, S. Size dependence of second harmonic generation at the surface of microspheres / S. Viarbitskaya [et al.] // Phys. Rev. A. -2010. - Vol. 81, No 5. -P. 053850.

2. Толкачёв, А. И. Генерация второй гармоники от тонкого сферического слоя при наличии двух источников / А. И. Толкачёв, В. Н. Капшай // Актуальные вопросы физики и техники: материалы VII Респ. научной конф. студентов, магистрантов и аспирантов, Гомель, 25 апреля 2018 г. : в З ч. / ГГУ им. Ф. Скорины, редкол.: Д. Л. Коваленко [и др.]. – Гомель, 2018. – Ч. 1. – С. 287–290.

3. Шамына, А.А. Генерация второй гармоники и излучения суммарной частоты в поверхностном слое диэлектрических частиц сферической и цилиндрической формы : дис. канд. физ.-мат. наук / А. А. Шамына. – Гомель, 2020. – 182 с.

В. О. Хулуп

(ГГУ имени Ф. Скорины, Гомель) Науч. рук. О. М. Дерюжкова, канд. физ.-мат. наук, доцент

РАСЧЕТ ВОЛНОВЫХ ФУНКЦИЙ ПОЛЕЙ В РАМКАХ КЛАССА МОДЕЛЕЙ С ОБЪЕДИНЕННЫМ КАЛИБРОВОЧНЫМ И ХИГГСОВСКИМ СЕКТОРАМИ

Выполнен расчет волновых функций бозонных полей в рамках класса моделей с объединенным калибровочным и хиггсовским секторами (КХО модели). Идея вложения в один мультиплет представления калибровочной группы калибровочных и хиггсовских полей позволяет естественным образом защитить массы скалярных полей от больших радиационных поправок («проблема натуральности» в Стан-