Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

т. п. желонкина, а. н. купо

МОЛЕКУЛЯРНАЯ ФИЗИКА.

Основы молекулярно-кинетической теории

Тестовые задания

для студентов специальности
1-02 05 04 04 «Физика. Техническое творчество»

Гомель ГГУ им. Ф. Скорины 2013 УДК 539.19 (079.1) ББК 22.36 я73 Ж 786

Рецензенты:

кандидат физико-математических наук П. В. Астахов; кафедра общей физики учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Рекомендованы к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Желонкина, Т. П.

Ж 786 Молекулярная физика. Основы молекулярно-кинетической теории: тестовые задания / Т. П. Желонкина, А. Н. Купо; М-во образования РБ, Гомельский гос. ун-т им. Ф. Скорины. – Гомель: ГГУ им. Ф. Скорины, 2013. – 36 с.

ISBN 978-985-439-751-1

В издании содержатся тестовые задания по разделам: «Основные положения МКТ», «Статистические распределения», «Уравнение состояния идеального газа», «Основы термодинамики» и «Реальные газы и жидкости», которые составляют первую часть учебного плана дисциплины «Общая физика. Молекулярная физика». Представлены задания различных типов и различного уровня сложности.

Данные методические материалы предназначены для самоподготовки студентов к компьютерному тестированию с целью контроля и коррекции знаний материала курса «Молекулярная физика».

Тестовые задания адресованы студентам специальности 1-02 05 04 04 «Физика. Техническое творчество».

> УДК 539.19 (079.1) ББК 22.36 я73

Содержание

Введение	. 4
1 Основные положения МКТ. Статистические распределения	. 5
2 Уравнение состояния идеального газа	. 10
3 Основы термодинамики	. 13
4 Реальные газы и жидкости	. 26
Литература	. 33
Relingshire	

Введение

Наиболее современным методическим приёмом повышения эффективности усвоения учебного материала является текущий контроль знаний в форме тестирования. Тестирование студентов с использованием компьютерных технологий позволяет объективно, оперативно и своевременно оценить уровень знаний по разделам изучаемой дисциплины. Текущий контроль знаний, кроме того, что позволяет преподавателю составить полную картину успеваемости студентов в течение семестра, также является средством самоконтроля. Студенты, знания которых регулярно проверяются непосредственно в процессе обучения, могут самостоятельно выявить вопросы и темы в рамках изучаемой дисциплины, усвоенные недостаточно, и проработать их дополнительно.

Недостатком компьютерного тестирования является отсутствие индивидуального общения, что не позволяет преподавателю проанализировать логику мышления учащегося, его умение давать развернутый ответ и прочее. Поэтому, видимо, тестирование не может использоваться для итогового контроля знаний, тем более, по ключевым дисциплинам, однако вполне может быть использовано, например, для проверки теоретических знаний при подготовке к лабораторным работам и контрольным мероприятиям.

В данном пособии содержатся тестовые задания по разделам: «Основные положения МКТ», «Статистические распределения», «Уравнение состояния идеального газа», «Основы термодинамики» и «Реальные газы и жидкости», которые составляют первую часть учебного плана дисциплины «Общая физика. Молекулярная физика». Представлены задания различных типов и различного уровня сложности.

Данные методические материалы предназначены для самоподготовки студентов к компьютерному тестированию с целью контроля и коррекции знаний материала курса «Молекулярная физика». Тестовые задания адресованы студентам специальности 1-02 05 04 04 «Физика. Техническое творчество».

1 Основные положения МКТ. Статистические распределения

- 1. Укажите, какой величине равна средняя арифметическая скорость молекул азота при 27 °C:
 - a) 476 m/c;
 - б) 612 м/c;
 - в) 756 м/с;
 - Γ) 402 m/c;
 - д) 346 м/с.
- 2. Исключите лишнее. Модель материального тела в молекулярной физике это предложение ...:
 - а) о форме тела;
 - б) о том, из каких частиц состоит тело;
 - в) о том, как эти частицы двигаются;
 - г) о том, как они взаимодействуют между собой;
 - д) об агрегатном состоянии тела.
 - 3. Дополните предложение. Газ называется идеальным, если ...:
- а) молекулы можно считать материальными точками, взаимодействием которых на расстоянии можно пренебречь;
 - б) взаимодействие молекул велико;
 - в) массой и формой молекул можно пренебречь;
 - г) размерами и формой молекул можно пренебречь;
 - д) массой и взаимодействием молекул можно пренебречь.
- 4. Укажите, для какого типа распределения температуры по высоте справедлива барометрическая формула:
 - а) для температуры постоянной;
 - б) если увеличивается с высотой по экспоненциальному закону;
 - в) если увеличивается пропорционально высоте;
 - г) если уменьшается с высотой по экспоненциальному закону;
 - д) если меняется произвольно.
- 5. Дополните предложение. Из барометрической формулы следует, что давление газа в поле тяготения Земли ...:
 - а) убывает с высотой по экспоненциальному закону;
 - б) растет с высотой по экспоненциальному закону;

- в) растет пропорционально высоте;
- г) убывает пропорционально высоте;
- д) практически не изменяется.
- 6. Определите, какую долю средней кинетической энергии молекулы гелия составляет средняя энергия ее вращательного движения:
 - a) 0;
 - б) 3/2;
 - в) 2/3;
 - г) 2;
 - д) 1/2.
- 7. При изотермическом изменении объема некоторой массы идеального газа его давление увеличилось вдвое. Укажите, как при этом изменится средняя квадратичная скорость молекул:
 - а) не изменится;
 - б) возрастет в 2 раза;
 - в) возрастет в 1,41 раза;
 - г) уменьшится в 2 раза;
 - д) уменьшится в 1,41 раза.
- 8. Укажите, как изменится средняя квадратичная скорость теплового движения молекул идеального газа при увеличении абсолютной температуры газа в 4 раза:
 - а) увеличится в 2 раза;
 - б) увеличится в 16 раз;
 - в) увеличится в 6 раз;
 - г) увеличится в 4 раза;
 - д) уменьшится в 4 раза.
- 9. Дополните предложение. Средняя кинетическая энергия идеального газа при повышении его температуры в 2 раза ...:
 - а) увеличится в 2 раза;
 - б) увеличится в 1,41 раза;
 - в) уменьшится в 2 раза;
 - г) уменьшится в 1,41 раза;
 - д) не изменится.
- 10. Укажите, как изменится температура газа, если наиболее вероятная скорость молекул увеличится в 3 раза:

- а) увеличится в 9 раз;
- б) увеличится в 6 раз;
- в) увеличится в 3 раза;
- г) увеличится в 1,73 раза;
- д) уменьшится в 3 раза.

11. Отметьте, как изменится абсолютная температура идеального газа при увеличении средней квадратичной скорости в 2 раза:

- а) увеличится в 4 раза;
- б) увеличится в 2 раза;
- в) ответ зависит от природы газа;
- г) увеличится в 0,5 раз.

12. Укажите, какими эффектами в газе можно пренебречь для того, чтобы газ считался идеальным:

- а) взаимодействием на расстоянии;
- б) внутренней энергией газа;
- в) взаимодействием молекул при столкновении;
- г) массами молекул;
- д) столкновениями молекул.

13. Укажите, чему равна кинетическая энергия вращательного движения всех молекул одного моля двухатомного газа:

- a) *RT*;
- б) $3 \cdot RT$;
- B) $3/2 \cdot kT$;
- Γ) 5/2 · RT;
- $_{\rm J}$) $3/2 \cdot RT$

14. Укажите, от каких величин, характеризующих движение молекул, непосредственно зависит давление газа:

- а) от силы притяжения молекул;
- б) от кинетической энергии молекул;
- в) от средней скорости молекул;
- г) от средней длины свободного пробега молекул;
- д) от числа столкновений молекул.

15. Укажите, какая величина характеризует число степеней свободы молекулы газа:

а) число атомов в молекуле;

- б) число упругих связей между атомами в молекуле;
- в) число независимых координат, с помощью которых можно описать положение молекулы в пространстве;
- г) число связей, которые нужно наложить на молекулу, чтобы закрепить ее неподвижно;
- д) число возможных независимых перемещений молекулы в пространстве.

16. Укажите, от чего зависит число степеней свободы молекулы газа:

- а) от молекулярной массы газа;
- б) от числа атомов в молекуле;
- в) от силы связи атомов в молекуле;
- г) от размера молекулы;
- д) от вида взаимодействия атомов в молекуле.

17. Укажите, какие формулы выражают среднюю энергию молекул газа:

a)
$$\langle W \rangle = \frac{1}{N} \cdot \sum_{i=1}^{N} W_i$$
;

$$\mathfrak{G})\left\langle W\right\rangle =\frac{1}{N}\cdot\frac{m\cdot\left\langle v\right\rangle ^{2}}{2};$$

B)
$$\langle W \rangle = \frac{1}{N} \cdot \sum_{i=1}^{N} \frac{m \cdot \langle v_i \rangle^2}{2};$$

$$\Gamma) \langle W \rangle = \frac{m}{2} \cdot \left(\frac{1}{N} \cdot \sum_{i=1}^{N} v_i \right)^2;$$

д)
$$\langle W \rangle = \frac{W_k + W_p}{2}$$
.

a)
$$\frac{5}{2} \cdot R \cdot T$$
;

$$\Gamma) \ \frac{3}{2} \cdot k \cdot T \,;$$

$$6) \ \frac{1}{2} \cdot R \cdot T ;$$

$$\exists R \cdot R \cdot T$$
.

B)
$$\frac{m}{\mu} \cdot \frac{3}{2} \cdot R \cdot T$$
;

19. Укажите, чему равна средняя квадратичная скорость молекул газа:

a)
$$\sqrt{\frac{8 \cdot k \cdot T}{\pi \cdot \mu}}$$
;

$$6)\sqrt{\frac{3\cdot k\cdot T}{m}};$$

$$\mathrm{B})\,\sqrt{\frac{8\cdot R\cdot T}{\pi\cdot \mu}}\,;$$

$$\Gamma$$
) $\sqrt{\frac{2\cdot R\cdot T}{\mu}}$;

д)
$$\sqrt{\frac{3 \cdot R \cdot T}{\mu}}$$
.

20. Укажите, чему равна средняя арифметическая скорость молекул газа:

a)
$$\sqrt{\frac{8 \cdot k \cdot T}{\pi \cdot \mu}}$$
;

$$6)\sqrt{\frac{3\cdot k\cdot T}{m}};$$

B)
$$\sqrt{\frac{8 \cdot R \cdot T}{\pi \cdot \mu}}$$
;

$$\Gamma$$
) $\sqrt{\frac{2\cdot R\cdot T}{\mu}}$;

д)
$$\sqrt{\frac{3 \cdot R \cdot T}{\mu}}$$
.

21. Укажите, какие из приведенных формул описывают распределение молекул газа по высоте в поле тяготения Земли:

a)
$$dN = N_0 \cdot \frac{4}{\sqrt{\pi}} \cdot e^{-u^2} dy$$
;
6) $p = p_0 \cdot e^{-\frac{mgh}{kT}}$;
B) $p = n_0 \cdot e^{-\frac{mgh}{kT}}$;
 r) $W = mgh$;

$$6) p = p_0 \cdot e^{-\frac{mgh}{kT}};$$

$$p = n_0 \cdot e^{-\frac{mgn}{kT}};$$

$$\Gamma$$
) $W = mgh$;

д)
$$W = -\gamma \frac{m \cdot M}{r}$$
.

- 22. Укажите, какой смысл имеет величина E в формуле $n=n_0\cdot e^{-\frac{E}{kT}}$ для случая распределения молекул в поле тяготения Земли:
 - а) средняя кинетическая энергия молекул;
 - б) потенциальная энергия всех молекул в единице объема;
 - в) средняя энергия теплового движения одной молекулы;
 - г) кинетическая энергия одной молекулы;
 - д) потенциальная энергия одной молекулы.

2 Уравнение состояния идеального газа

1. Укажите уравнение состояния идеального газа:

- a) pV = RT;
- $6) \ pV = \frac{m}{\mu}RT;$
- B) $\left(p + \frac{a}{v^2}\right)(V b \cdot v) = v \cdot RT$;
- $\Gamma) \quad p(V-b) = RT;$
- д) $pV^{\gamma} = const$.
- 2. Имеются два сосуда объемами V и 2V. В первом сосуде находится 1 кмоль газа, во втором 6 кмолей этого же газа. Давление в обоих сосудах одинаковое. Укажите соотношение между температурами в сосудах:
 - a) $T_1 = T_2$;
 - 6) $T_1 = 5 \cdot T_2$;
 - B) $T_1 = 3 \cdot T_2$;
 - Γ) 3 · $T_1 = T_2$;
 - д) $T_1 = 12 \cdot T_2$.
- 3. Из сосуда выпустили половину находящегося в нем газа. Укажите, как необходимо изменить абсолютную температуру оставшегося в сосуде газа, чтобы давление его увеличилось в 3 раза:
 - а) увеличить в 3 раза;
 - б) увеличить в 5 раз;
 - в) увеличить в 6 раз;
 - г) увеличить в 2 раза;
 - д) увеличить в 9 раз.

4. Укажите, что называется температурой:

- а) степень нагретости тела;
- б) мера средней кинетической энергии молекул;
- в) мера числа столкновений молекул;
- г) мера внутренней энергии вещества;
- д) характеристика агрегатного состояния вещества.
- 5. Укажите, какой вид имеет уравнение состояния идеального газа:

- a) $pV = \frac{m}{\mu}RT$;
- $6) p = n_0 \cdot k \cdot T;$
- $\mathbf{B}) \ p = \frac{1}{3} \cdot m_0 \cdot n_0 \cdot \langle v \rangle^2;$
- $\Gamma) \quad p = \frac{2}{3} \cdot n_0 \cdot \langle W \rangle;$
- д) pV = const.
- 6. Идеальный газ при давлении p_0 имел объем V_0 . При неизменной массе и постоянной температуре объем газа уменьшили вдвое. Укажите, как изменилось давление газа:
 - а) возросло в два раза;
 - б) уменьшилось в три раза;
 - в) возросло в три раза;
 - г) уменьшилось в два раза;
 - д) не изменилось.
- 7. Идеальный газ при температуре T_0 имел давление p_0 . Давление газа при неизменной массе и постоянном объеме увеличили в 1,5 раза. Укажите, как изменилась температура газа:
 - а) возросла в полтора раза;
 - б) уменьшилась в полтора раза;
 - в) возросла в два раза;
 - г) не изменилась;
 - д) уменьшилась в два раза.
- 8. Укажите закон, который регламентирует протекание изотермического процесса в идеальном газе:
 - а) Бойля-Мариотта;
 - б) Шарля;
 - в) Гей-Люссака;
 - г) Дальтона;
 - д) Авогадро.
- 9. Укажите закон, регламентирующий протекание изобарного процесса в идеальном газе:
 - а) Бойля-Мариотта;
 - б) Шарля;
 - в) Гей-Люссака;

- г) Дальтона;
- д) Авогадро.

10. Укажите закон, регламентирующий протекание изохорного процесса в идеальном газе:

- а) Бойля-Мариотта;
- б) Шарля;
- в) Гей-Люссака;
- г) Дальтона;
- д) Авогадро.

3 Основы термодинамики

1. Укажите формулу для вычисления внутренней энергии и данной массы *m* идеального газа:

a)
$$U = \frac{i}{2} \cdot m \cdot RT$$
;

B)
$$U = \frac{i}{2} \cdot \frac{m}{\mu} \cdot RT$$
;

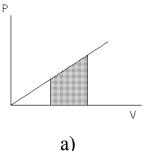
6)
$$U = \frac{i}{2} \cdot m \cdot kT$$
;

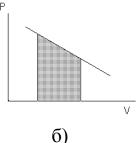
$$\Gamma) \quad U = \frac{i}{2} \cdot \frac{m}{\mu} \cdot N_A \cdot kT.$$

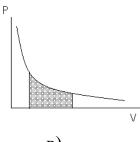
2. Отметьте, для какого из перечисленных процессов выполняется условие Q = A:

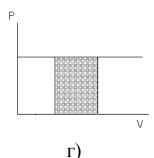
- а) адиабатного;
- б) изохорного;
- в) изотермического;
- г) изобарного.

3. Работа сжатия газа оказалась равной изменению его внутренней энергии. Укажите, какому процессу это соответствует:

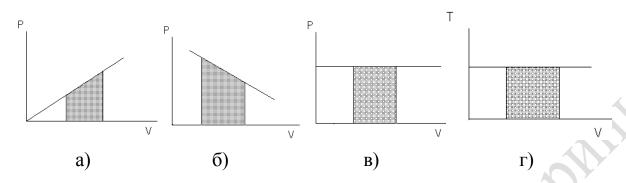

- а) адиабатному;
- б) изохорному;
- в) изотермическому;
- г) изобарному.


4. Газ нагревают в герметически закрытом сосуде. Укажите, какой из указанных процессов имеет место в данном случае:


- а) изобарный;
- б) изотермический;
- в) изохорный;
- г) адиабатный.


5. Укажите, на каком из графиков площадь представляет собой работу изотермического расширения газа?

13



6. Укажите, на каких из приведенных графиков газовых процессов заштрихованная площадь представляет собой работу газа:

7. Газ расширяется при нагревании под поршнем при атмосферном давлении. Отметьте, какой из указанных процессов имеет место:

- а) изохорный;
- б) изобарный;
- в) изотермический;
- г) адиабатный.

8. Укажите, какое из уравнений первого начала термодинамики справедливо для изотермического процесса:

- a) $\Delta Q = \Delta U + \Delta A$;
- δ) ΔQ = ΔA;
- B) $\Delta Q = \Delta U$;
- Γ) $\Delta U = -\Delta A$;
- $\Delta Q = 0$.

9. Укажите, какие из приведенных формул выражают работу изотермического расширения газа:

a)
$$A = \frac{m}{\mu} \cdot R \cdot T \cdot \ln\left(\frac{V_2}{V_1}\right);$$

$$6) A = \frac{m}{\mu} \cdot P_1 \cdot V_1 \cdot \ln\left(\frac{V_2}{V_1}\right);$$

B)
$$A = \frac{m}{\mu} \cdot P_1 \cdot V_1 \cdot \ln\left(\frac{P_1}{P_2}\right);$$

$$\Gamma) \quad A = P_1 \cdot (V_1 - V_2);$$

д)
$$\Delta Q = 0$$
.

- 10. Определите, какое из уравнений первого начала термодинамики справедливо для изохорного процесса:
 - a) $\Delta Q = \Delta U + \Delta A$;
 - δ) ΔQ = ΔA;
 - B) $\Delta Q = \Delta U$;
 - Γ) $\Delta U = -\Delta A$;
 - $\Delta Q = 0$.
- 11. Укажите, какое из приведенных выражений соответствует молярной теплоёмкости идеального газа при постоянном объеме:
 - a) $\frac{i+2}{2} \cdot R$;

 $\Gamma) \frac{i+2}{2 \cdot \mu} \cdot R;$

 $\mathfrak{G}) \; \frac{i}{2} \cdot R \; ;$

 $\exists R$.

- B) $\frac{i}{2 \cdot \mu} \cdot R$;
- 12. При изохорном процессе азоту передано 70 Дж теплоты. Укажите, какое количество теплоты пошло на увеличение внутренней энергии азота:
 - а) 50 Дж;
 - б) 70 Дж;
 - в) 20 Дж;
 - г) 35 Дж;
 - д) 7 Дж.
- 13. Отметьте, для каких из перечисленных газов справедливо отношение $c_p/c_v = 1,4$:
 - а) для гелия;
 - б) для пар серебра;
 - в) для углекислого газа;
 - г) для азота;
 - д) для кислорода.
- 14. Укажите, какое из уравнений первого начала термодинамики справедливо для изобарного процесса:
 - a) $\Delta Q = \Delta U + \Delta A$;
 - δ) ΔQ = ΔA;
 - B) $\Delta Q = \Delta U$;

- Γ) $\Delta U = -\Delta A$;
- \mathcal{Q}) $\Delta Q = 0$.

15. Укажите выражение для молярной теплоемкости идеального газа при постоянном давлении:

a) $\frac{i}{2} \cdot R$;

 Γ) $\frac{i}{2 \cdot \mu} \cdot R$;

 $6)\frac{i+2}{2\cdot\mu}\cdot R;$

д) $\frac{1}{2} \cdot R$.

 $\mathbf{B})\,\frac{i+2}{2}\cdot R\,;$

16. Укажите, на какую величину молярная теплоемкость идеального газа при постоянном давлении больше, чем при постоянном объеме:

a) $\frac{3}{2} \cdot R$;

 Γ) $\frac{i+2}{2} \cdot R$;

6) $\frac{i}{2} \cdot R$;

д) R.

B) R;

17. При изобарном процессе азоту передано 70 Дж теплоты. Определите, сколько теплоты пошло на выполненную азотом работу:

- а) 50 Дж;
- б) 70 Дж;
- в) 20 Дж;
- г) 35 Дж;
- д) 7 Дж.

18. Укажите, какой из перечисленных процессов называют адиабатным:

- а) процесс, происходящий при постоянном объеме;
- б) процесс, происходящий при постоянном давлении;
- в) процесс, в результате которого система возвращается в исходное состояние;
 - г) процесс, происходящий без теплообмена с окружающей средой;
 - д) процесс, происходящий при постоянной температуре.

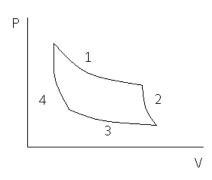
19. Укажите, какие из уравнений первого начала термодинамики справедливы для адиабатного процесса:

- a) $\Delta Q = \Delta U + \Delta A$;
- δ) ΔQ = ΔA;
- B) $\Delta Q = \Delta U$;
- Γ) $\Delta U = -\Delta A$;
- $\Delta Q = 0$.

20. Укажите, какие из указанных уравнений соответствуют адиабатному процессу:

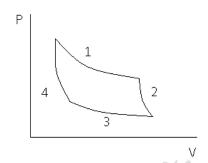
- a) $PV^{\gamma} = const$;
- б) PV = const;
- B) $\frac{P}{T} = const;$

$$\Gamma$$
) $TV^{\gamma-1} = const$;
д) $\frac{V}{T} = const$.

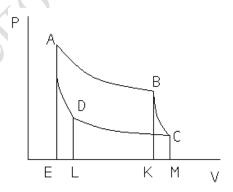

21. Определите, какое из дифференциальных уравнений соответствует адиабатному процессу в идеальном газе:

- a) $PV^{\gamma} + VdP = 0$;
- $6) PdV = \frac{m}{\mu} \cdot RdT;$
- B) $PV^{\gamma} + PdV = \frac{m}{\mu} \cdot RdT$; Γ) $PV^{\gamma} = \frac{m}{\mu} \cdot RdT$.

22. Укажите, какое из перечисленных условий характеризует обратимый термодинамический процесс:

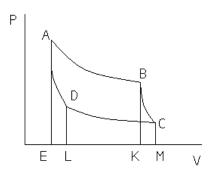

- а) процесс может быть проведен в обратном направлении так, чтобы система вернулась в первоначальное состояние;
- б) процесс должен быть замкнутым, т. е. начало и конец процесса должны совпадать;
- в) процесс может быть проведен в обратном направлении так, чтобы система вернулась в первоначальное состояние и в окружающей среде не было при этом никаких изменений;
- г) процесс протекает крайне медленно и в окружающей среде изменений не происходит;
- д) процесс состоит из изотермического и адиабатного расширения и аналогичных видов сжатия.

23. Укажите, какая из кривых прямого цикла Карно соответствует адиабатному сжатию:

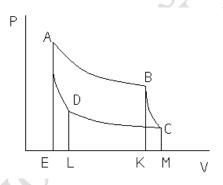

- a) 1;
- б) 2;
- в) 3;
- г) 4.

24. Отметьте, какая из кривых обратного цикла Карно соответствует изотермическому расширению:

- a) 1;
- б) 2;
- в) 3;
- r) 4.


25. Укажите, площадью какой фигуры выражено на рисунке количество теплоты, полученной от нагревателя за один цикл Карно:

a) EABCM;


- б) ЕАВК;
- в) EADL;
- г) ABCD;
- д) КВСМ.

26. Укажите, площадью какой фигуры выражена на рисунке полезная работа за один цикл Карно:

- a) EABCM;
- б) ЕАВК;
- в) EADL;
- г) ABCD;
- д) КВСМ.

27. Укажите, какая из площадей фигур, показанных на рисунке для прямого цикла Карно, изображает графически работу при адиабатном расширении:

- a) KBCM;
- б) EADL;
- в) LDCM;
- г) ABCD;
- д) ЕАВК.

28. Выберите определение к. п. д. цикла Карно:

а) отношение полученного газом количества теплоты к выполненной в полном цикле работе;

- б) отношение выполненной за 1 цикл работы к полученному от нагревателя количеству теплоты;
- в) отношение выполненной за 1 цикл работы к переданному холодильнику количеству теплоты;
- г) отношение переданного холодильнику количества теплоты к количеству теплоты, полученному от нагревателя;
- д) отношение разности температур нагревателя и холодильника к температуре нагревателя.

29. Укажите, какие из перечисленных характеристик являются функциями состояния вещества:

- а) внутренняя энергия;
- б) количество теплоты;
- в) выполненная работа;
- г) энтропия.

30. Укажите, какие свойства нагретых тел характеризует энтропия:

- а) температуру тела;
- б) степень преобразования теплоты в работу;
- в) степень упорядоченности движения молекул;
- г) степень удаления тела от наиболее вероятного состояния;
- д) среднюю кинетическую энергию молекул.

31. Определите, какая формула связывает энтропию S с термодинамической вероятностью состояния:

a)
$$S = k \cdot lnW$$
;
б) $S = \frac{1}{W}$;
в) $S \approx W$;
 $\Delta S = \frac{\Delta Q}{T}$;
д) $\Delta S \leq \frac{\Delta Q}{T}$.

32. Укажите, как изменяется энтропия в случае обратимого процесса в изолированной системе:

- а) увеличивается;
- б) уменьшается;
- в) остается неизменной;
- г) увеличивается, а затем уменьшается;
- д) уменьшается, а затем увеличивается.

33. Укажите, по отношению к каким величинам бесконечно малое приращение соответствует полному дифференциалу:

- а) работе;
- б) внутренней энергии;
- в) количеству теплоты;
- г) энтропии.

34. Укажите формулу, по которой вычисляется количество теплоты, сообщаемое системе:

- 35. Закончите предложение. Если в изолированном от тепла сосуде газ сжимается, то температура газа ...:
 - а) увеличилась;
 - б) уменьшилась;
 - в) не изменилась;
 - г) вначале увеличилась, затем уменьшилась;
 - д) вначале уменьшилась, затем увеличилась.
- 36. Укажите формулу, по которой вычисляется молярная теплоемкость:

a)
$$\frac{\Delta Q}{T \cdot \nu}$$
; Γ) $\frac{\partial Q}{\Delta T \cdot m}$; Ω) $\frac{\partial Q}{\partial T}$.

- 37. Идеальному газу передано количество теплоты 5 Дж, и внешние силы совершили над ним работу 8 Дж. Укажите, как изменилась внутренняя энергия газа:
 - а) увеличилась на 13 Дж;
 - б) увеличилась на 3 Дж;
 - в) не изменилась;
 - г) уменьшилась на 13 Дж;

- д) уменьшилась на 3 Дж.
- 38. Укажите, на сколько увеличится внутренняя энергия трех молей идеального одноатомного газа при изобарном нагревании его от 299 К до 301 К:
 - а) 75 Дж;
 - б) 50 Дж;
 - в) 125 Дж;
 - г) 25 Дж;
 - д) 33 Дж.
- 39. Укажите, в ходе какого процесса внутренняя энергия идеального газа не изменяется:
 - а) изотермического;
 - б) политропного;
 - в) адиабатного;
 - г) изохорного;
 - д) изобарного.
- 40. Укажите, какая из приведенных ниже формул является математическим выражением первого начала термодинамики:
 - a) $\partial Q = dU + \partial A$;
 - δ) ∂*A* = pdV;
 - $\mathbf{B}) \ p = \frac{1}{3} n m_0 \left\langle v_{\hat{e}\hat{a}} \right\rangle^2;$
 - Γ) $pV^{\gamma} = const$;
 - д) $pV^{\gamma-1} = const.$
- 41. Газ получил количество теплоты 500 Дж и совершил работу 200 Дж. Укажите, чему равно изменение внутренней энергии газа:
 - а) 300 Дж;
 - б) 200 Дж;
 - в) 100 Дж;
 - г) 700 Дж;
 - д) 500 Дж.
- 42. Определите, какое условие обязательно выполняется при адиабатном процессе изменения состояния газа:
 - а) нет теплообмена с окружающей средой;
 - б) объем не изменяется;

- в) давление не изменяется;
- г) работа не совершается;
- д) внутренняя энергия газа не изменяется.

43. Закончите предложение. Если в изолированном от тепла сосуде газ сжимается, то температура газа ...:

- а) увеличилась;
- б) уменьшилась;
- в) вначале уменьшилась, затем увеличилась;
- г) вначале увеличилась, затем уменьшилась;
- д) не изменилась.

44. Укажите, как изменится внутренняя энергия идеального газа, если его давление увеличится в 2 раза, а объем уменьшится в 2 раза:

- а) останется неизменной;
- б) увеличится в 2 раза;
- в) увеличится в 4 раза;
- г) уменьшится в 2 раза;
- д) уменьшится в 4 раза.

45. При изохорном процессе азоту передано 70 Дж теплоты. Укажите, сколько теплоты пошло на увеличение внутренней энергии азота:

- а) 70 Дж;
- б) 20 Дж;
- в) 30 Дж;
- г) 7 Дж;
- д) 50 Дж.

46. Внутренняя энергия трех молей идеального двухатомного газа при изохорном нагревании на два градуса Цельсия увеличится на:

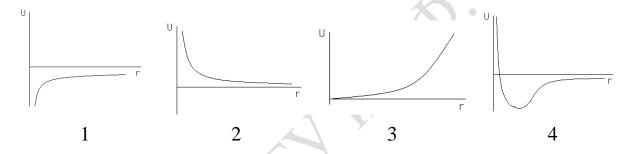
- а) 124,5 Дж;
- б) 360 Дж;
- в) 200 Дж;
- г) 100 Дж;
- д) 187 Дж.

47. При изохорном процессе азоту передано 60 Дж теплоты. Укажите, сколько теплоты пошло на увеличение внутренней энергии азота:

- а) 60 Дж;
- б) 7 Дж;
- в) 30 Дж;
- г) 50 Дж;
- д) 20 Дж.
- 48. Укажите, в каком процессе изменение внутренней энергии системы равно количеству переданной теплоты:
 - а) в изохорическом;
 - б) в изотермическом;
 - в) в адиабатическом;
 - г) в изобарическом;
 - д) в изотермическом и изобарическом.
- 49. Укажите, какое максимальное значение к.п.д. может иметь тепловая машина с температурой нагревателя 227 °C и температурой холодильника 27 °C:
 - a) 40 %;
 - б) 68 %;
 - B) 88 %;
 - г) 100 %;
 - д) 60 %.
- 50. Тепловая машина за один цикл работы выделила 400 Дж теплоты и произвела 600 Дж работы. Укажите к.п.д. тепловой машины:
 - a) 60 %;
 - б) 40 %;
 - в) 20 %;
 - г) 100 %;
 - д) 50%.
- 51. Для цикла, изображенного на рисунке, определите теплоту Q_2 , отдаваемую рабочим телом холодильнику:

- а) 12 кДж;
- б) 18 кДж;
- в) 30 кДж;
- г) 24 кДж;
- д) 40 кДж.

52. Укажите, что из перечисленного не является свойством энтропии:


- а) функция не возрастающая;
- б) определяет направление процесса в замкнутой системе;
- в) функция состояния;
- г) не изменяется при обратимых процессах;
- д) функция аддитивная.
- 53. В идеальном тепловом двигателе абсолютная температура нагревателя в 3 раза выше, чем температура холодильника. Нагреватель передал газу количество теплоты 40 кДж. Укажите, какую работу совершил газ:
 - а) 26,7 кДж;
 - б) 15 кДж;
 - в) 20,6 кДж;
 - г) 540 кДж;
 - д) 54 кДж.

4 Реальные газы и жидкости

1. Укажите, какие из названных процессов относятся к флуктуациям:

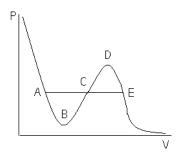
- а) броуновское движение;
- б) расширение газа в пустоту;
- в) образование зародышей пара в нагретой до температуры кипения жидкости;
 - г) охлаждение в воздухе нагретого тела;
 - д) хаотическое движение молекул.

2. Укажите, какая из потенциальных кривых, приведенных на рисунке, характеризует взаимодействие атомов (или молекул):

- a) 1;
- б) 2;
- в) 3;
- г) 4.

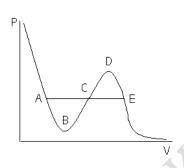
3. Укажите, какое соотношение между глубиной потенциальной кривой взаимодействия молекул U и средней кинетической энергией молекул вещества kT соответствует твердому телу:

- a) $U \ge kT$;
- б) U > kT;
- B) U < kT;
- Γ) U << kT;
- $_{\rm I}$ Д) U = kT.

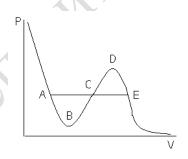

4. Укажите, какое соотношение между глубиной потенциальной кривой взаимодействия молекул U и средней кинетической энергией молекул вещества kT соответствует жидкости:

- a) $U \gg kT$;
- $\stackrel{\frown}{\text{6}} U > kT;$

- B) U < kT; Γ) U << kT;
- $_{\rm J}$) U = kT.
- 5. Укажите, какое соотношение между глубиной потенциальной кривой взаимодействия молекул U и средней кинетической энергией молекул вещества kT соответствует реальному газу:
 - a) $kT \gg U$;
 - б) kT > U;
 - B) kT < U;
 - Γ) $kT \ll U$;
 - Д) kT = U.
- 6. Укажите, какое соотношение между глубиной потенциальной кривой взаимодействия молекул U и средней кинетической энергией молекул вещества kT соответствует идеальному газу:
 - a) $kT \gg U$;
 - б) kT > U;
 - B) kT < U;
 - Γ) $kT \ll U$;
 - $_{\rm I}$ Д) kT = U.
- 7. Укажите, что учитывает поправка b в уравнении Ван-дер-Ваальса:
 - а) дополнительное давление газа;
 - б) силы взаимодействия между молекулами;
 - в) размер молекул;
 - г) температуру молекул;
 - д) энергию молекул.
- 8. Укажите, что учитывает поправка *а* в уравнении Ван-дер-Ваальса:
 - а) скорость молекул;
 - б) размер молекул;
 - в) форму молекул;
 - г) силы взаимодействия между молекулами;
 - д) объем молекул.
 - 9. Укажите, что называют насыщенным паром:
 - а) пар, находящийся в динамическом равновесии с жидкостью;
 - б) пар ниже критической температуры;


- в) пар выше температуры кипения;
- г) пар при температуре выше точки росы;
- д) пар при температуре кипения.

10. Определите, какой из участков изотермы Ван-дер-Ваальса соответствует состоянию пересыщенного пара:


- a) AB;
- б) ВС;
- в) CD;
- г) DE;
- д) BD.

11. Укажите, какие участки теоретической изотермы Ван-дер-Ваальса не могут быть осуществлены практически:

- a) AB;
- б) BC;
- в) CD;
- г) CE;
- д) DE.

12. Определите, какая из точек на рисунке соответствует появлению пара при увеличении объема жидкости:

- a) A;
- б) В;
- в) C;
 - г) D;
- д) Е.

13. Укажите, какая из точек на рисунке соответствует появлению жидкости при уменьшении объема газа:

- a) A;
- б) B:
- в) C: г) D:
- **д) Е.**

14. Укажите, что называется критической температурой:

- а) температура кипения;
- б) температура фазового перехода;
- в) температура, при которой прекращается поступательное движение молекул;
- г) температура, выше которой никаким повышением давления нельзя превратить газ в жидкость;
- д) температура, выше которой реальный газ подчиняется законам идеального газа.

15. Состояния «пересыщенный пар» и «перегретая жидкость»:

- а) не осуществимы;
- б) осуществимы и стабильны;
- в) осуществимы, метастабильны;
- г) осуществимы только с растворами;
- д) осуществимы только с веществами без примесей.

16. Укажите, уравнение Ван-дер-Ваальса для 1 моля реального газа:

a)
$$\left(P + \frac{a}{V^2}\right) \cdot \left(V - b\right) = RT$$
;

- б) PV = RT;
- B) PV = vRT:

$$\Gamma\left(P + \frac{a}{V^{\gamma}}\right) \cdot \left(V - b\right) = RT;$$

$$\mathbf{J}(P + \frac{a}{V^2}) = RT \cdot (V - b).$$

17. Дополните предложение. При плавлении ...:

- а) объем всех тел увеличивается;
- б) объем всех тел уменьшается;

- в) объем одних тел увеличивается, других уменьшается;
- г) объём не изменяется.

18. Закончите предложение. При испарении и сублимации без теплообмена температура тела ...:

- а) понижается;
- б) не изменяется;
- в) повышается;
- г) испарение и сублимация не могут идти, если система не получает теплоту;
- д) может повышаться или понижаться в зависимости от начальной температуры.

19. Укажите, какая температура называется критической температурой:

- а) температура, выше которой никаким повышением давления нельзя превратить газ в жидкость;
- б) температура, при которой прекращается поступательное движение молекул;
 - B) T = 273 K;
- г) температура, выше которой плотность газа становится больше плотности жидкости;
 - д) температура кипения.

20. Укажите, в чем состоит эффект Джоуля-Томсона:

- а) в прохождении газа через пористую перегородку;
- б) в изменении температуры реального газа при расширении без совершения работы;
 - в) в сжижении газа;
 - г) в переходе газа через критическое состояние;
 - д) в расширении газа в вакуум.

21. Определите, какой тип движения молекул характерен для жидкостей:

- а) хаотическое движение;
- б) дальний порядок;
- в) направленное движение;
- г) колебательное движение;
- д) ближний порядок.

22. Укажите, что называется удельной теплотой испарения:

- а) количество теплоты, необходимое для испарения данной массы жидкости;
- б) количество теплоты, необходимое для испарения единицы массы жидкости при температуре кипения;
- в) количество теплоты, необходимое для нагревания единицы массы жидкости до температуры кипения и испарения этой жидкости;
- г) количество теплоты, необходимое для испарения единицы массы жидкости при данной температуре.

23. Укажите, что называется коэффициентом поверхностного натяжения жидкости:

- а) отношение силы натяжения к площади поверхности жидкости;
- б) отношение силы натяжения к длине контура, ограничивающего жидкость;
 - в) избыточная свободная энергия единицы поверхности жидкости;
 - г) избыточная свободная энергия поверхности жидкости;
- д) отношение силы, действующей по нормали к поверхности жидкости, к площади ее поверхности.

24. Укажите, в каких единицах измеряется коэффициент поверхностного натяжения:

- a) Дж/ M^2 ;
- б) Дж/м;
- B) H/M^2 ;
- г) Н/м;
- д) Н/(м⋅с).

25. Определите, что произойдет с каплей, находящейся в сужающемся капилляре в положении, показанном на рисунке:

- а) переместится вправо;
- б) переместится влево;
- в) останется неподвижной;
- г) симметрично разольется по капилляру;
- д) разольется в обе стороны, преимущественно влево.

26. Укажите, какие соотношения можно применить для расчета высоты поднятия жидкости в капилляре:

a)
$$\rho gh = \frac{2\sigma}{r}$$
;

$$\Gamma) \Delta \rho = \sigma \cdot \left(\frac{1}{r_1} + \frac{1}{r_2} \right);$$

$$6) h = \frac{2\sigma}{\rho gh};$$

д)
$$\rho = \frac{\sigma g h}{S}$$
.

B)
$$\Delta \rho = \frac{2\sigma}{r}$$
;

27. Укажите, какие выражения определяют избыточное давление под искривленной поверхностью жидкости (формула Лапласа):

a)
$$\Delta \rho = \frac{R\Delta T}{V}$$
;

$$\Gamma) \ \Delta \rho = \frac{\Delta A}{V};$$

$$\delta) \, \Delta \rho = \frac{2\sigma}{r};$$

B)
$$\Delta \rho = \sigma \cdot \left(\frac{1}{r_1} + \frac{1}{r_2}\right);$$

28. В закрытом сосуде с жидкостью при неизменной температуре в 2 раза увеличили свободное пространство над жидкостью. Укажите, как изменилось давление насыщенного пара после установления равновесия:

- а) не изменилось;
- б) увеличилось;
- в) увеличилось, если это водяной пар;
- г) уменьшилось;
- д) ответ не однозначен.

29. Температура равновесной системы жидкость и насыщенный пар увеличилась на 20 К. Укажите, как изменились количество и скорость молекул после установления равновесия:

- а) количество молекул пара и их скорость увеличились;
- б) количество молекул пара не изменилось, а их скорость возросла;
- в) количество молекул пара возросло, а скорость их не изменилась;
- г) скорость молекул пара возросла, а количество молекул пара уменьшилось;
- д) скорость молекул пара возросла, количество их могло и увеличиться, и уменьшиться;

Литература

- 1. Наркевич, И. И. Физика для ВТУЗов. Молекулярная физика: учеб. пособие / И. И. Наркевич. Минск: Высшая школа, 1992. 420 с.
- 2. Кикоин, А. К. Молекулярная физика / А. К. Кикоин, И. К. Кикоин. М.: Наука, 1980. 530 с.
- 3. Савельев, И. В. Курс общей физики: учеб. пособие : в 3 т. Т. 1. Механика и молекулярная физика / И. В. Савельев. М. : Наука, 1973. 528 с.
- 4. Сивухин, Д. В. Общий курс физики : в 3 т. Т. 1. Механика и молекулярная физика / Д. В. Сивухин. М. : Высшая школа, 1977. 688 с.

Учебное издание

Желонкина Тамара Петровна, **Купо** Александр Николаевич

МОЛЕКУЛЯРНАЯ ФИЗИКА. Основы молекулярно-кинетической теории

Тестовые задания

для студентов специальности 1-02 05 04 04 «Физика. Техническое творчество»

Редактор *В. И. Шкредова* Корректор *В. В. Калугина*

Подписано в печать 26.02.2013. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 2,09. Уч.- изд. л. 2,29. Тираж 40 экз. Заказ 124.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины» ЛИ № 02330/0549481 от 14.05.2009. Ул. Советская, 104, 246019, г. Гомель

Remodification of the companies of the c

Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

т. п. желонкина, а. н. купо

МОЛЕКУЛЯРНАЯ ФИЗИКА.

Основы молекулярно-кинетической теории