Microsoft вкладывает огромные усилия в развитие .NET. Это перспективный инструмент, который продолжает совершенствоваться до сих пор, несмотря на то что платформа вот-вот отметит свой 20-ти летний юбилей.

Начав изучения языка С# я и не мог подумать, что выбрал столь разносторонний язык с многочисленными возможностями в разработке приложений. Перспективным в настоящее время стало направление web разработки, являющимся одним из самых востребованных на рынке. Процесс разработки моего web-приложения для дестрибьюции билетов на культурно массовые мероприятия с использованием платформы .NET включает:

- Планировка логики работы приложения и взаимодействия пользователей с ним;
 - Разработку бизнес-логики приложения;
 - Разработка архитектуры базы данных;
 - Создание базы данных с использованием СУБД MSsqlServer;
- Разработку UI(web-интерфейса) для взаимодействия пользователя с приложением;

Я считаю, что использование данной разработки позволит пользователям легко обмениваться или продавать билеты друг-другу на интересующие их мероприятия, так же я рассматриваю возможность внедрения функционала, который позволит площадкам проведения мероприятия осуществлять коммерческую продажу билетов пользователям.

П. В. Асвинова (ГГТУ имени П. О. Сухого, Гомель)

Науч. рук. О. А. Лапко, ассистент

ПОСТРОЕНИЕ ЭЛЕМЕНТОВ РЕДУКТОРА С ПОМОЩЬЮ ГРАФИЧЕСКОЙ СИСТЕМЫ КОМПАС НА ПРИМЕРЕ ДЕТАЛИ ТИПА ВАЛ

Современное машиностроение характеризуется повышением требований к геометрическим параметрам качества изготовления поверхностей деталей — точности получаемых размеров, отклонений формы, взаимного расположения поверхностей, их волнистости и шероховатости $[\underline{1}]$. Целью работы является с использованием графической системы КОМПАС показать эффективность, точность чертежа и экономию времени [2, 3] на примере построения детали типа вал — элемента цилиндрического редуктора.

Чертеж вала в компасе 3D начинается с создания новой детали. Затем необходимо выбрать плоскость, в которой будет строиться эскиз. Выбирается команда отрезок — это будет ось будущего вала, далее необходимо начертить верхнюю часть контура вала, с помощью команды отрезок, задаваясь необходимыми размерами, указывая все необходимые цилиндрические ступени, проточки и фаски. Далее, отжимая кнопку эскиз, выбирается команда элемент вращения, указывается ось, вокруг которой вращается вал.

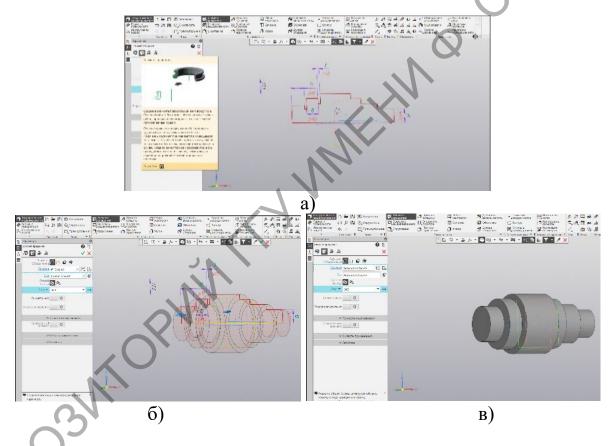


Рисунок 1 – Этапы построения чертежа вала: а – начало построения; б – первый этап; в – второй этап.

Следующий этап — изготовление шпоночных пазов, для этого необходимо зайти во вкладку приложения-механика-валы и механические передачи 3D-разъемные соединения-шпоночный паз. В появившемся окне необходимо выбрать тип шпоночного паза.

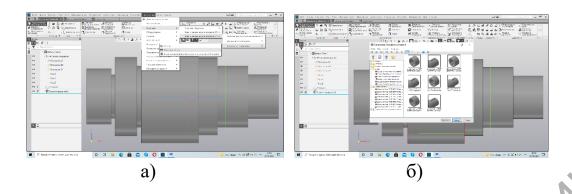


Рисунок 2 – Этапы построения шпоночного паза на чертеже вала

В панели позиционирования выбирается начальная грань, указывается расстояние, на котором будет построен шпоночный паз от данной грани и указываем цилиндрическую поверхность, на которой будет построен сам шпоночный паз. Компас сам подбирает размеры шпоночного паза для указанной поверхности и размеров.

Для построения шлицев необходимо зайти в приложениямеханика-валы и механические передачи 3D-разъемные соединенияшлицы. Задать поверхность, на которой будут располагаться шлицы и компас их построит.

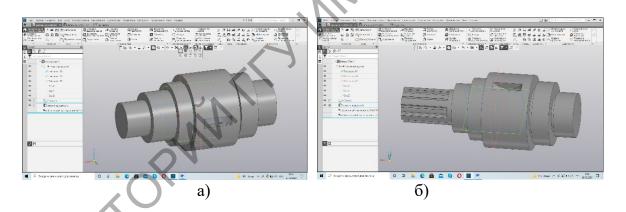


Рисунок 3 – Шпоночный паз на чертеже вала а) и построение шлицев на чертеже вала б)

Использование системы КОМПАС и библиотек машиностроительного профиля в процессе создания элементов цилиндрического редуктора позволяет сократить общее время проектирования рабочих чертежей деталей машин в 1,5–2 раза.

Литература

1. Дунаев, П. Ф. Конструирование узлов и деталей машин / П. Ф. Дунаев, О. П. Леликов. – М. : Высшая школа, 2001. - 447 с.

- 2. Компьютерное моделирование в инженерной графике / П. В. Асвинова // Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях : материалы XXIV Республиканской научной конференции студентов и аспирантов (Гомель, 22–24 марта 2021 г.) ; редкол. : С. П. Жогаль (гл. ред.) [и др.]. 2021. С. 35–36.
- 3. Асвинова, П. В. Вопросы применения машинной графики при решении технических и технологических задач машиностроения / П. В. Асвинова, О. А. Лапко // Исследования и разработки в области машиностроения, энергетики и управления : материалы XXI Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 22–23 апр. 2021 г. В 2 ч. Ч. 2 ; под общ. ред. А. А. Бойко. 2021. 307 с.

Н. С. Бабич

(ГГУ имени Ф. Скорины, Гомель) Науч. рук. **Е. А. Ружицкая**, канд. физ.-мат. наук, доцент

РАБОТА СО СДЕЛКАМИ И КЛИЕНТАМИ В CRM-СИСТЕМЕ ДЛЯ ТОРГОВОЙ КОМПАНИИ

Разработана часть CRM-системы, реализующая следующие функции:

- создание карточек клиентов;
- изменение статусов клиентов;
- создание сделок;
- редактирование информации о сделке;
- изменение статуса сделки;
- просмотр текущей информации о сделке;
- просмотр этапов сделок и воронок продаж.

Для хранения данных об этапах, база данных была дополнена четырьмя коллекциями — Deals (сделки), Leads (клиенты), DealStatus (статусы сделок), LeadStatus (статусы клиентов).

Для начала работы в CRM-системе необходимо авторизоваться. Свободной регистрации в системе нет.

Для работы со сделками и клиентами созданы соответствующие разделы.

Раздел «Лиды» содержит данные обо всех хранящихся в системе клиентах в виде карточек, отсортированных по воронкам. В правом верхнем углу при нажатии на кнопку «Новый» перед пользователем