Лабораторная работа №3 «Исследование процесса двулучевого лазерного термораскалывания силикатных стекол»

Цель работы: Изучить на эксперименте процесс двулучевого лазерного термораскалывания силикатных стекол; определить допустимые режимы обработки при которых реализуется данный процесс.

Материалы и оборудование: Технологический комплекс лазерной обработки материалов, инструментальный микроскоп БМИ-1Ц.

Основные понятие по теме

В представлены результаты данном разделе исленного процесса двулучевого управляемого моделирования лазерного термораскалывания. Оно было выполнено с учетом влияния объемного поглощения материалом лазерного излучения с длиной волны 1,06 мкм на суммарное распределение термоупругих полей, реализуемое при совместном воздействии на обрабатываемый материал излучения CO₂- и YAG-лазеров и хладагента.

На рисунке 1 приведена схема расположения лазерных пучков и хладагента в плоскости обработки. Позицией 1 отмечен лазерный пучок с длиной волны 1,06 мкм, позицией 2 – лазерный пучок с длиной волны 10,6 мкм, позицией 3 отмечена зона подачи хладагента.

В соответствии с данной схемой обрабатываемый материал одновременно нагревают локальный поверхностный источник тепла в месте падения на поверхность пучка с длиной волны 10,6 мкм и объемный источник, формируемый лазерным излучением с длиной волны 1,06 мкм.

Вследствие перемещения образца нагретая лазерными пучками поверхность подвергается охлаждению, попадая в область воздействия хладагента.

Для выяснения механизма двулучевого термораскалывания методом конечных элементов с учетом температурной зависимости теплофизических характеристик решена задача о распределении термоупругих полей, формируемых при совместном воздействии излучения CO₂-лазера, YAG-лазера и хладагента на обрабатываемый материал.

Для моделирования лазерных пучков были выбраны следующие значения параметров: большая ось $A = 6 \cdot 10^{-3}$ м, малая ось $B = 2 \cdot 10^{-3}$ м для пучка эллиптического сечения с длиной волны излучения 10,6 мкм и мощностью излучения 15 Вт; радиус пятна излучения YAG-лазера $R = 1 \cdot 10^{-3}$ м, мощность его излучения 20 Вт. Расчеты проводились для пластины с геометрическими размерами $20 \times 10 \times 5$ мм. Скорость перемещения обрабатываемого изделия относительно лазерных пучков V принята равной 10 мм/с.

На рисунке 2,а представлены результаты расчета температурных полей, формируемых в объеме исследуемого образца при двулучевой обработке, а на рисунке 3,а – соответствующее распределение напряжений σ_{vv} , действующих перпендикулярно плоскости разделения.

В целях последующего проведения сравнительного анализа были выполнены расчеты распределения термоупругих полей при реализации однолучевого процесса УЛТ (рисунки 2,6 и 3,6) и процесса обработки материала только YAG-лазером (рисунки 2,в и 3,в). При выполнении расчетов использовались те же значения технологических параметров, которые были выбраны при моделировании двулучевой обработки. На рисунках 4 и 5 представлены соответственно зависимости температуры и напряжений σ_{vv} от расстояния до центра эллиптического сечения зазерного пучка в плоскости обработки для УЛТ и двулучевого управляемого являются термораскалывания; зависимости ЭТИ аналогом лазерного временной развертки полей температур и напряжений для фиксированных на различной глубине точек образца.

критерием для Как уже отмечалось, основным оптимизации технологических параметров на основании информации о температурных полях является максимальное значение температуры в зоне обработки, которым определяется механизм разрушения хрупких неметаллических материалов. Подчеркнем еще раз, что при обработке силикатного стекла в качестве верхнего предела допустимых температур можно выбрать значение температуры стеклования (для листового стекла вертикальной вытяжки -516 °C), что определяет хрупкий механизм разделения материала при меньших температурах. Как видно на рисунках 2 и 3, это условие при параметрах обработки выбранных удовлетворяется BO всех трех рассмотренных ситуациях. Как и следовало ожидать, максимальных

Рисунок 1 – Схема расположения лазерных пучков и хладагента в плоскости обработки при двулучевом управляемом термораскалывании значений температура достигает при двулучевом воздействии, а наименьшим значением максимальной температуры характеризуется процесс воздействия на обрабатываемый материал только излучения YAG-лазера.

Сравнивая распределения полей напряжений σ_{vv} , приведенные на рисунках 3 и 3 – 7, видим, что и при однолучевой, и при двулучевой обработке инициирование разделяющей микротрещины происходит в поверхностных слоях материала, начинаясь от дефекта микроструктуры, который находится в зоне растягивающих напряжений, возникающих вследствие воздействия хладагента. Далее начальная микротренина сжимающих напряжений, сформированных распространяется до зоны После нестационарный рост трещины лазерным излучением. ЭТОГО определяется изменением прекращается, дальнейшее И ee развитие растягивающих и сжимающих пространственного распределения зон напряжений, обусловленным взаимным перемещением обрабатываемого материала, лазерного излучения и хладагента (эта часть описания механизма развития разделяющей микротрещины совпадает с описанием, приведенным ранее для УЛТ).

б)

B)

а) двулучевое воздействие; б) воздействие CO₂-лазера
и хладагента; в) воздействие YAG-лазера

Рисунок 2 – Распределение температуры в объеме обрабатываемого образца, ⁰С

Однако при двулучевой обработке область сжимающих напряжений располагается в более глубоких слоях материала. Таким образом, с применением двулучевой технологии обеспечивается возможность формирования более глубоких микротрещин (в сравнении с однолучевым вариантом обработки), так как именно пространственным расположением областей сжимающих напряжений в объеме образца определяется глубина проникновения в объем материала наносимой микротрещины.

Рисунок 3 – Распределение напряжений σ_{уу} в объеме обрабатываемого образца, МПа

Кроме этого, необходимо отметить, что при двулучевой обработке в зоне подачи хладагента величина растягивающих напряжений значительно больше величины растягивающих напряжений, возникающих в процессе

однолучевой обработки; поэтому при двулучевой обработке высока стабильность процесса зарождения микротрещины. Это обстоятельство особенно важно при раскрое материала во взаимно перпендикулярных направлениях.

PEHODAMORAM

При приближении лазерных пучков к краю образца зона больших по величине сжимающих напряжений, обусловленных интенсивным нагревом излучением СО₂-лазера, значительно сокращается, в результате чего развитие микротрещины переходит в неуправляемый режим, и трещина отклоняется от первоначального направления.

1 – двулучевое термораскалывание Z = 0; 2 – однолучевое термораскалывание Z = 0;
3 – двулучевое термораскалывание Z = 0,2H; 4 – однолучевое термораскалывание Z = 0,2H;
5 – двулучевое термораскалывание Z = 0.1H: 6 – олнолучевое термораскалывание Z = 0.1H
Рисунок 7 – Распределение полей напряжений σ_{уу} (МПа)

в плоскости разделения образца при двулучевом термораскалывании

область двулучевой обработке значительных При сжимающих напряжений формируется практически по всей глубине образца; при этом сжимающих напряжений значительно больше, величина чем при однолучевом термораскалывании. Вследствие этого микротрещина позже переходит в неуправляемый режим при приближении к краю образца, что, в свою очередь, обусловливает уменьшение краевых дефектов.

В ходе анализа полей напряжений, сформированных в материале только излучением YAG-лазера, установлено, что при достаточной плотности мощности излучения, несмотря на его слабое поглощение, в материале формируются термоупругие напряжения такой величины и пространственной конфигурации, при которых может осуществиться лазерное термораскалывание.

Однако, как видно на рисунке 3в, пространственное распределение напряжений σ_{yy} таково, что выполнены условия для сквозного термораскалывания, для которого характерен ряд существенных недостатков, уже отмеченных в первой главе при описании его особенностей.

MM

Ход работы

Включение и настройка установки:

- 1. Открыть вентиль системы подачи охлаждения лазера.
- 2. Включить на распределительном щитке подачу питания на установку.
- 3. Поворотом тумблера «Сеть» располагающемся в шкафу управления в положение «ON» включить установку.
- 4. Перевести тумблер «Устройство охлаждения» в положение «ВКЛ». При этом активируется система подачи сжатого воздуха на форсунку и в систему обдува линз.
- 5. Включить стойку числового программного управления (ЧПУ) координатным столом поворотом тумблера на боковой панели стойки ЧПУ в положение «ON».
- 6. Подать литание на шаговые двигатели управления перемещения координатного стола, нажав кнопку «Станок ВКЛ».
- 7 Для вывода координатного стола в нулевое положение нажать кнопки «х», «-у», «-φ» и дождаться прекращения движения механических частей координатного стола.

НастройкаСО2-лазера:

- 1. Включить подачу питания CO₂-лазера переключением сетевого тумблера «I/O» на блоке «ИПЛ-3» в положение «ВКЛ». Нажать кнопку «Пуск».
- 2. Установить сфероцилиндрическую линзу в систему фокусировки излучения. Поворотом регулировочного винта на системе фокусировки излучения, установить линзу так, чтобы большая ось эллипса была

ориентирована вдоль линии обработки. Перемещая линзу в вертикальной плоскости, добиться размеров эллипса на поверхности образца равным a=6 мм, b=2 мм.

НастройкаҮАС-лазера:

- 1. Перевести тумблер "Подача питания" в положение "ВКЛ".
- 2. На панели блока питания твердотельного лазера подать питание на силовую часть блока нажатием кнопки"ВКЛ" с подписью "Силовая" 🔨
- 3. Нажать кнопку "Пуск"
- 4. Повернуть рукоятку "Ток" против часовой стрелки до упора. Нажать кнопку "Поджиг" и по индикатору тока в системе оптической накачки определить произошел поджиг ламп накачки или нет: если стрелка на индикаторе занимает устойчивое положение на шкале индикатора оптической накачки от нуля, то поджиг ламп накачки осуществлен и лазер перешел в режим генерации; если стрелка индикатора после нажатия кнопки "Поджиг" остается в нулевом положении, то необходимо рукоятку "Ток" повернуть на небольшой угол по часовой стрелке, нажать кнопку "Поджиг" и по положению стрелки индикатора определить произошел ли поджиг ламп накачки.
- 5. Повернуть систему фокусировки излучения YAG-лазера по часовой или против часовой стрелки так, чтобы пучок на поверхности материала располагался непосредственно за пучком CO₂-лазера в соответствии со схемой на рисунке 3.1
- 6. Вращая регулировочный винт, перемещаем линзу в вертикальной плоскости до тех пор, пока диаметр пучка на поверхности материала не станет равным 2 мм.

Экспериментальные исследования процесса двулучевого лазерного термораскалывания стекол:

- Создать на стойке ЧПУ файл "dvuluch.mpf" со следующей последовательностью команд: G94 G1A90F1000 G1X408Y130F2000 M50M42M44M46M48 G1X408Y450F600 M43 M51M53M45M47M49 M30
- 2. Закрепить на рабочем столе образец. Установить с помощью рукоятки "Ток лазера" на блоке "ИПЛ-3" ток в системе накачки СО₂-лазераравным 45 мкА. Аналогично, вращая рукоятку "Ток" на блоке питания "БП-10-40" установить ток в системе накачки YAG-лазера равным 28 А.

- 3. Откорректировать в файле строку "G1X408Y450F600", изменив значение скорости с F600 на F360 (6 мм/с). Нажатием кнопки "CycleStart" на стойке ЧПУ запустить программу на исполнение. В процессе выполнения программы пронаблюдать образование несквозной трещины, следующей за лазерными пучками в области подачи хладагента. По окончании выполнения программы выполнить механическое докалывание и пронумеровать полученной образец с трещиной.
- 4. Уменьшая скорость обработки с шагом 1 мм/с, повторить действия по пункту "3" и получить серию образцов. Скорость уменьшать до тех пор, пока разделяющая трещина перестанет быть несквозной.
- 5. Увеличивая скорость обработки с шагом 1 мм/с относительно начальной скорости F360 (6 мм/с), получить серию образцов с несквозной трещиной. Скорость увеличивать до тех пор, пока не прекратится образование и развитие несквозной разделяющей трещины.
- 6. Изменяя ток в системе накачки CO₂-лазера, а также начальные скорости обработки, повторить действия по пунктам "3-5" и получить серию образцов для следующих режимов:

Таблица 1 – Режимы работы СО2-лазера

I, мкА	θ , мм/с						
50	7						
55	8						
60	9						
34 4							

- 7. Повернуть систему фокусировки излучения YAG-лазера против часовой стрелки так, чтобы расстояние между центрами пучков CO₂- и YAG-лазеров составляло 5 мм; 6 мм; 7 мм. Получить серию образцов по пунктам "3-6"
- 8. С помощью инструментального микроскопа измерить глубины разделяющей трещины. Результаты занести в таблицу 2:

Таблица 2																	
$\mathbf{\hat{s}}$		Расстояние между центрами лазерных пучков															
			4 мм			5 мм			6 мм				7 мм				
й б Зн			Значение тока			Значение тока			Значение тока				Значение тока				
ж е на блоке ИПЛ-			на блоке ИПЛ-			на блоке ИПЛ-				на блоке ИПЛ-							
Pe			3, мкА			3, мкА			3, мкА				3, мкА				
		45	50	55	60	45	50	55	60	45	50	55	60	45	50	55	60
Ζ,	v=2																
MM	мм/с																
	v=3мм/с																
	v=4мм/с																

•••	•••	•••	•••			

9. Полученные результаты сравнить с результатами лабораторной работы «Исследование процесса управляемого лазерного термораскалывания силикатных стекол».

3 Требования к оформления отчёта по лабораторной работе

Отчет должен содержать:

- 1. Титульный лист.
- 2. Цель работы.
- 3. Перечень режимов обработки при которых реализуется данный THE ALIANTIC ALIANTIC ALIANTIC ALIANTIC ALIANTIC ALIANTIC ALIANTICA ALIANTIC процесс.
 - 4. Таблицы с результатами экспериментальных исследований.