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Abstract—An approach is being proposed for constructing a
new generation intellectual system based on OSTIS technology for
decision making during realization of adaptive control procedures
for technological cycle of robotic manufacturing based on the
means of software-hardware coupling. At the basis of the decision
making intellectual system lays the idea of using neural network
controllers that solve the task of searching for optimal maintenance
strategy for a technological cycle of robotic manufacturing. A
formalization of such a system is being proposed based on OSTIS
technology implementation.
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I. INTRODUCTION

The modern convergence direction of research in the sphere
of intellectual systems development [1] requires creation of
the corresponding software with elements of cognition based
on semantically compatible artificial intelligence technologies.
Such a direction must also include the creation of computer
systems, that provide intellectualization of making analytical
decisions, which is directly related to adapting control processes
for complex technological systems (technological objects) in
real time, creation of semantically compatible knowledge bases
in the sphere of analysis of dynamic systems operation and
optimization of complex technical systems operation based
on them through the creation of open source software for
intellectual decision making systems.

When constructing a software solution for solving complex
control-related tasks it is important to have a universal interface
that would provide semantic compatibility for its elements,
allowing their interchangeability and independent development
with simple integration. OSTIS technology can serve as a means
of achieving this goal and providing a universal platform for
connecting various separate problem solvers [2].

Technological systems that can be formalized as probabilistic
network graph structures and mathematical models of semi-
Markov processes are the object under study in this paper
[3].

Adaptive control of a technological cycle is meant as the abil-
ity of a control system adequately react on external disturbances
and standard control effects with changing the corresponding
parameters of control during the system operation.

Optimal control in the scope of this paper is meant as a
formalized by a neural network structure of an adaptive control
of a technological cycle that is constructed in the base nodes of
a probabilistic network graph structure or semi-Markov network
model within the chosen quality criteria. The formalization
of the control system and mathematical models of the object
under study is based upon the authors’ scientific research and
development in the sphere of simulation modeling of complex
technological systems [4].

In this paper a task of optimal maintenance strategy search is
being considered for a technological cycle with implementation
of reinforcement learning methods based on the selection of
criteria chosen by user. An approach is proposed for solving
such tasks based on neurocontroller usage that is trained sing
policy gradient methods [5].

II. FORMALIZED DESCRIPTION OF A TECHNOLOGICAL
CYCLE

A technological cycle is understood as a sequence of actions
and operations, based on which the manufacturing of products
is achieved. There are N technological nodes (machines) in
cycle Mi . During the execution of a cycle K operations Oj

are being run sequentially. For each operation are given the
execution time t(Oi), the set of nodes {Mijk}, that operate in
mode rj (Mi) for the current operation. The set and content of
such operations are defined by the corresponding technological
production process.

During the execution of Oj operation an equipment failure of
the i-th type node can occur, which demand pausing the cycle
and performing maintenance and repair actions. The costs for
repairing the i-th type node CMi and costs for liquidating the
consequences of it’s failure during the cycle operation CMOi

are given.
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When the i-th type node fails during the execution of the
corresponding operation it is possible that an emergency may
occur. The costs for repairing the i-th type node in case of
emergency CEi and the costs for liquidating the consequences
of emergency CEOi are given.

Before the cycle execution has started maintenance actions
may be performed - one or more of the nodes may be checked
and repaired.

The maintenance of all kinds is performed by the manufac-
turing facility personnel, that has a corresponding qualification.
The available trained personnel is a limited resource and no
more than L nodes can be repaired at the same time. In case
a repair is necessary and the required personnel in unavailable,
it is necessary to wait until one of the current repair operations
ends. The repair times are not static and of probabilistic nature.
The costs for cycle not operating (as a result of nodes failure,
repair operations, maintenance, liquidation of emergencies) are
also given - CI(T ) for the non operating period T .

It is assumed that the technological production cycle has
integration of means of software-hardware coupling that allow
transferring node observation data into the control system
when cycle operates, as well as a system of processing
recommendations for cycle maintenance that are produced
by the control system.

III. DESCRIPTION OF THE SIMULATION MODEL THAT IS
USED IN THIS PAPER

For implementation of a simulation model in the given
formalization the data is used:

• distributions for the duration of non-failure operation for
the nodes of i-th type Fir(twf ) in mode r(Mi);

• distributions for the restoration (repairs) for the nodes of
i-th type after a failure Fif (tr) ;

• distributions for the liquidation of emergency for the nodes
of i-th type Fife(tre);

• probabilities of emergency during a failure for the nodes
of i-th type Pie.

The simulation model operates during the given time period,
it restarts the production cycle and, possibly, performs the
maintenance actions before each start. The technological cycle
control system is being used to make decisions regarding the
necessity and contents of the maintenance procedure.

The data describing the current condition of the technological
cycle nodes - duration of non-failure operation for all node
Mi is passed inside the control system. Based on the control
system recommendations the maintenance for the nodes is
performed.

IV. POSSIBLE APPROACHES TO SOLVING THE TASK

When considering a task of such type the method for
constructing an optimal strategy is not obvious which makes the
usage of traditional supervised learning algorithms problematic.
The complex structure and the nature of the possible solutions
space in this task make it sensible to consider the reinforcement
learning group of algorithms.

Analysis of the modern state of developments in the artificial
intelligence field demonstrates that two most effective groups
of reinforcement learning algorithms exist for solving complex
control tasks:

• value-based - when controller is trained to estimate the
future rewards for the actions it selects;

• policy-based - when controller is trained to predict
distribution of actions that would lead to the choice of
optimal action-selection policy.

In this paper a policy gradient neural network controller will
be used for the task under consideration.

Implementation of the reinforcement learning methods
implies construction of an environment in which the agent
performs actions. The agent selects actions based on the
current observations of the environment, and based on the
actions performed and the possible changes in the state of the
environment a reward is being calculated and may be observed
by the agent.

In this paper the environment in which the agent operates is
the control system of the technological production cycle that
makes available of agent’s observation of all nodes Mi non-
failure operation duration. Based on the agent’s action selection
the decision making system forms requests for the maintenance
of the technological cycle nodes. When the agent is being
trained jointly with the simulation model reward calculation is
also done.

V. SHAPING THE REWARD FUNCTION

The reward shaping plays in important role, as it defines
the agent’s behavior that it learned during training. The choice
of the reward function allows to select for optimization the
criteria that user prioritizes.

The approach used in this paper includes into reward shaping
such components as cycle non-failure operation time (Rnop),
total sum of maintenance and emergency liquidation costs
(Rcost), total number of nodes failures (Rf ), including the ones
that resulted in emergency (Rfe), total number of maintenance
performed per cycle (Rrep). Each of the reward components
is present in the equation with a weight coefficient αi, which
characterizes the importance of the component.

During the agent training the value of the reward function
is calculated as following:
R = α1Rnop + α2Rcost + α3Rf + α4Rfe + α5Rrep

VI. POLICY GRADIENT

In the policy-based methods instead of the approximation of
a numeric function that estimates rewards that agent receives
from the environment as a result of his actions, the policy
function for action selection is being constructed directly, that
connects environment states with agent’s actions. The action
selection policy is parameterized by the trained parameters of
the model that is used to control agent.

Numeric function (reward function) in this case can be used
to optimize policy regarding the trained parameters but is not
used for action selection. Stochastic action selection policy
gives the probability distribution for the possible actions. Such
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policies are often used in the partially-observable environments
when uncertainty exists.

It was shown that for some classes of tasks the policy based
methods converge faster than value-based (Q-learning), and
also are preferable when the action selection space is of large
dimension [5]. The convergence towards at least the local
quality maximum is guaranteed.

Policy π is parameterized by the trainable parameters θ.
πθ(a|s) = P [a|s]
This policy returns distribution of actions a when the

observable state of the environment is s.
In order to find the values for trainable parameters an

optimization problem must be solved for the quality estimation
function J(θ).
J(θ) = Eπθ(

∑
γr)

Rules to update trainable parameters on the t step:
θ(t+1) := θt + α▽ J(θt)
According to the Policy Gradient Theorem[6]
▽Eπθ(r(τ)) = Eπθ(r(τ)▽ logπθ(τ)),
which can be transformed as
▽Eπθ(r(τ)) = Eπθ(r(τ)(

∑T
t=1 ▽logπθ(at|st))).

The REINFORCE algorithm that in meant to train the agent
to perform actions according to the policy that results in
maximization of the future rewards could be written like this
[5]:

1. Initialize parameters θ
2. Generate an episode in which agent interacts with the

environment with {Si}, {Ai}, {Ri} – sequences of length T
of the observed environment

3. For each step t calculate discounted reward
Gt :=

∑T
k=t+1 γ

k−t−1Rk

4. Update the parameters by a rule (perform a gradient
ascent)
θ := θ + αγtG▽θ lnπ(At|St, θ)
5. Repeat steps 2-4

VII. NEURAL NETWORK STRUCTURE CHOICE

For the agent control recurrent neural network based on
multi=layer perceptron with LSTM block is being used. As
we are working with policy gradient the network output must
return the distribution of action probability, thus softmax is
used. Network structure:

1) Dense x64 ReLU;
2) Dense x64 ReLU;
3) LSTM x32 ReLU;
4) Dense x6 Softmax.

VIII. RESULTS OF THE TRAINING

One cycle execution in the normal condition takes 48 units
of model time. One simulation lasts for 64*48 = 3072 units
of model time.

On figure 1-5 the graphs show how various metrics change
during the training that lasts 500 episodes.

Distribution of the most frequently produced by the system
recommendations for maintenance (7) corresponds with the
ones expected based on the chosen simulation parameters for

Figure 1. Total reward that agent receives during one simulation run. Total
costs for executing the cycle during one simulation during training. A tendency
to the increase of the reward and decrease of the costs can be observed during
training.

Figure 2. Number of maintenance operations performed according to the
system’s recommendations.

Figure 3. Number of failures during the simulations

Figure 4. The average time of normal operation of the cycle during simulation.

Figure 5. Distribution of recommendations for maintenance, that are most
frequently generated by the system.

Figure 6. Histogram of distribution of costs and normal operation of the cycle
during 5000 of test runs of the simulation
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the distribution of the normal operations duration Fir(twf )
and probabilities of emergencies Pie for nodes M0, M2, the
ones for which the emergencies probabilities happens most
frequently.

Figure 7. Distribution of the actions most frequently selected by the system

IX. FORMALIZING THE CONTROLLER AS A PROBLEM
SOLVER OF A DECISION MAKING OSTIS SYSTEM

In order to provide a possibility for the integration of the
developed system concept with other intellectual systems a
formalization of the proposed decision-making system based
on OSTIS technology is proposed.

In the context of the OSTIS technology problem solvers are
based on the multi-agent approach. According to this approach
the problem-solver is implemented as a set of agents which
are called sc-agents. These agents have shared memory and
can exchange data through sc-texts. It is important to note that
agents can be non-atomic, meaning that two or more sc-agents
are operating to provide functionality for such an agent.

The problem solver for the task under consideration can be
viewed as a decomposition of abstract non-atomic sc-agent.

abstract non-atomic sc-agent of cycle maintenance
recommendation system
⇒ decomposition of abstract sc-agent*:

{{{• abstract sc-agent of interaction with the
observation system

• abstract sc-agent of forming recommendations
• abstract sc-agent of forming maintenance

requests
}}}

1) abstract sc-agent of interaction with the observation
system – performs extraction of observations from the
means of hardware-software coupling in the technological
production cycle, it initializes the operation of agent
responsible for proposing recommendations.

2) abstract sc-agent of forming recommendations – based on
the received observations initializes the operation of neu-
rocontroller for receiving maintenance recommendations.

3) abstract sc-agent of forming maintenance requests –
based on the data received from the agent of forming
recommendation forms requests for maintenance for the
corresponding means of hardware-software coupling.

X. CONCLUSION

In this paper an approach is proposed to constructing an
intellectual system based on OSTIS technology for decision
making when realizing the adaptive control procedures for the
technological cycle.

The maintenance decision making system for the techno-
logical cycle is based on the neural network controller that is
constructed using the methods of reinforcement learning for
solving the task of optimal strategy search for the maintenance
of the technological cycle.

A formalization of the decision making system based on
the OSTIS technology is proposed, that allows integration into
other intellectual systems when solving the task of technological
production cycle control.
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Программно-технологический
инструментарий адаптивного управления

технологическим циклом роботизированного
производства

Смородин В.С., Прохоренко В.А.
Предлагается подход к построению интеллектуальной

системы нового поколения в рамках технологии OSTIS для
принятия управляющих решений при реализации процедур
адаптивного управления технологическим циклом роботи-
зированного производства на базе средств программного-
аппаратного сопряжения.
В основе интеллектуальной системы принятия решений

лежит идея применения нейросетевых контроллеров, реша-
ющих задачи поиска оптимальной стратегии обслуживания
технологического цикла роботизированного производства.
Предлагается формализация подобной системы в рамках
применения технологии OSTIS.
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