Установка программы производится как в отдельный каталог, так и в каталог с программами аналогичного назначения.

Созданное программное обеспечение для расчета дальности работы точки доступа Wi-Fi позволило решить задачу автоматизации теоретических расчетов значимых параметров беспроводной сети Wi-Fi.

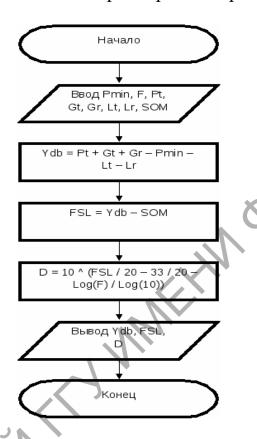


Рисунок 1 – Блок-схема алгоритма программы

Г. А. Лапунов (ГГУ имени Ф. Скорины, Гомель) Науч. рук. М. А. Подалов, ст. преподаватель

ИСПОЛЬЗОВАНИЕ ORANGEPI ДЛЯ РАЗРАБОТКИ БОТАНИЧЕСКОГО ЛАБОРАТОРНОГО КОМПЛЕКСА

На сегодняшний день мы находимся на пороге очередной промышленной революции, которая объединяет в себе три сферы глобальных производственных систем: биологическая, физическая и цифровая. Одна из технологий новой революции — это «интернет вещей» (IoT). Internet of Things — концепция вычислительной сети физических предметов, оснащённых встроенными технологиями для взаи-

модействия друг с другом или с внешней средой. Ярким примером IoT является система умный дом, включающая в себя сеть датчиков и центральный процессор, который обрабатывает полученные с датчиков данные.

Проект является дополнением системы «Умный дом» и предлагает возможности контроля условий микроклимата. Разработка представляет собой совокупность датчиков, которые работают под управлением микроконтроллера Raspberry Pi. Благодаря своим характеристикам данный микроконтроллер широко используется для разработки умных и мобильных устройств, а также элементов IoT. [1]

Персональная метеостанция может быть, как интегрируемым в уже существующую систему модулем, так и независимым устройством, представляющим собой распределённую аппаратнопрограммную систему. Физически устройство состоит из двух модулей: выносной и базовый. Выносной модуль содержит датчики влажности и температуры, микроконтроллер Raspberry Pi и трансивер для приёма-передачи данных на частоте 433 МГц. Базовый модуль принимает данные от выносного модуля и получает данные от датчиков (влажности, температуры, атмосферного давления), подключенных непосредственно к нему. [2] На базовом модуле развернут web-сервер на основе Orange Pi, что позволяет интегрировать устройство в существующую систему «Умный дом». [3]

Устройство позволяет считывать данные с точностью до 0,1 градуса для датчика температуры, 0,1% для датчика влажности и до 1 мм ртутного столбца для датчика давления. Настройка, программирование и сборка кода web-сервера производилась с помощью программного обеспечения PlatformIO IDE и на базе программной платформы Node.js. Для разработки клиентского приложения использовался следующий стек технологий: язык разметки HTML, язык программирования JavaScript, формальный язык описания внешнего вида документа CSS.

Устройство может быть интегрировано с клиентским приложением. Клиентское мобильное приложение позволит удаленно осуществлять контроль и наблюдение атмосферных параметров помещения, в котором установлена домашняя метеостанция. Корпуса базового и выносного устройств проектируется с помощью программного обеспечения Autodesk Inventor. Данная САПР позволила быстро и просто создать 3D-модель корпуса с посадочными местами для комплектующих элементов устройства, реализация модели осуществляется с помощью 3D-принтера.

Главным преимуществом данного проекта является его высокая аппаратная и программная вариативность. Аппаратная вариативность предоставляет возможность выбирать тот набор датчиков, который необходим для конкретного пользователя или существующей системы. Причем, для внедрения нового датчика в устройство его нужно лишь физически подключить к существующему интерфейсу, а программная составляющая автоматически его интегрирует в информационную систему. Программная вариативность подразумевает возможность выбора того стека технологий, который наиболее эффективно позволит решить поставленные задачи.

Литература

- 1. Raspberry Pi Series Datasheet Version 3.3 [Electronic resourse] // Espressif Systems. URL: https://wiki.merionet.ru/servernye-resheniya/36/arduino-vs-raspberry-pi-chto-vybrat/ Date of access: 21.03.2022.
- 2. Non-volatile storage library [Electronic resourse] // Espressif Systems (Shanghai). URL: https://habr.com/ru/post/167459/. Date of access: 21.03.2022.
- 3. Arduino core for the Raspberry Pi [Electronic resourse] // GitHub. URL: https://github.com/raspberrypi. Date of access: 21.03.2022.

Н. В. Лукашевич

(ГГУ имени Ф. Скорины, Гомель)

Науч. рук. Г. Ю. Тюменков, канд. физ.-мат. наук, доцент

ТЕХНОЛОГИЯ БЛОКЧЕЙН

Криптовалюта — это разновидность валюты в цифровой (виртуальной) среде. Системы таких валют являются децентрализованными (нет центрального органа администрирования). Существуют разные способы создания блоков в блокчейне, но мы рассмотрим майнинг и форжинг (минтинг).

Майнинг в дословном переводе добыча полезных ископаемых – это процесс создания блоков в блокчейне используя вычислительные мощности компьютерного оборудования.