активную работу. Вместе с ними определяем цели урока, актуализируем понятие о движении как неотъемлемом свойстве всех объектов природы, и значение механики в разных сферах жизни. Предъявляя на слайде цитату из [2], спрашиваем: «Какое определение материи ближе всего к современной физической трактовке этого понятия? В какой части статьи из [2] найдётся место для электромагнитных, гравитационных, звуковых полей?». Обобщая результаты обсуждения, формулируем: «Материей называют всё, что реально существует. Материя – это объективная реальность, существующая независимо от нас и данная нам в ощущениях». С использованием опытов, слайдов презентации формируем понятие о формах материи, создаём условия для различения понятий «движение» и «механическое движение», «относительность движения», «пространство», «время». Закрепляя материал, предлагаем вопросы на сравнение понятий. Итоги урока подводят учащиеся. Предлагаем вариативное домашнее задание (для всех; для желающих).

Литература

1 Примерное календарно-тематическое планирование. Физика. Астрономия: VI– XI классы. – Минск: Авэрсэв, 2017. – 94 с.

2 Даль, В. И. Толковый словарь живого великорусского языка / В. И. Даль. – М.: издательство Эксмо, Компания РООССА, 2016. – В 2 т.; т. І. – 719 с.

А. И. Толкачёв Науч. рук. **В. Н. Капшай,** канд. физ.-мат. наук, доцент

ДИАГРАММЫ НАПРАВЛЕННОСТИ ГЕНЕРАЦИИ ВТОРОЙ ГАРМОНИКИ ОТ СФЕРИЧЕСКОГО СЛОЯ ПРИ НАЛИЧИИ ДВУХ ИСТОЧНИКОВ

Пусть на сферическую диэлектрическую частицу, покрытую оптически нелинейным слоем, падают две плоские электромагнитные волны. Используя дипольную модель Рэлея-Ганса-Дебая в сферической системе координат с началом координат в центре частицы [1], получим аналитическое выражение для электрического поля второй гармоники [2]

$$\mathbf{E}^{(2\omega)}(\mathbf{x}) = 4\pi\mu_{2\omega} \frac{(2\omega)^2}{c^2} \frac{\exp(ik_{2\omega}r)}{r} d_0 a^2 (1 - \mathbf{e}_r \otimes \mathbf{e}_r) \sum_{\alpha=1}^2 \sum_{\beta=1}^2 E_\alpha E_\beta \mathbf{f}^{(\alpha\beta)},$$

где a – радиус частицы, d_0 – толщина нелинейного слоя, E_α – комплексная амплитуда волны падающего излучения, вектора $\mathbf{f}^{(\alpha\beta)}$ имеют вид

$$\mathbf{f}^{(\alpha\beta)} = i\chi_{1}^{(2)} \begin{pmatrix} -j_{3}(z)\mathbf{v}^{(\alpha\beta)}(\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\alpha)})(\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\beta)}) + \frac{1}{5}(j_{1}(z) + j_{3}(z)) \times \\ \times (\mathbf{v}^{(\alpha\beta)}(\mathbf{e}^{(\alpha)}\mathbf{e}^{(\beta)}) + \mathbf{e}^{(\beta)}(\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\alpha)}) + \mathbf{e}^{(\alpha)}(\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\beta)}) \end{pmatrix} + ij_{1}(z)(\chi_{2}^{(2)}\mathbf{v}^{(\alpha\beta)}(\mathbf{e}^{(\alpha)}\mathbf{e}^{(\beta)}) + \chi_{3}^{(2)}\mathbf{e}^{(\beta)}(\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\alpha)}) + \chi_{3}^{(2)}\mathbf{e}^{(\alpha)}(\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\beta)}) - [\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\beta)}](\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\alpha)}) \end{pmatrix} - - \chi_{4}^{(2)}j_{2}(z)([\mathbf{e}^{(\alpha)}\times\mathbf{v}^{(\alpha\beta)}](\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\beta)}) - [\mathbf{v}^{(\alpha\beta)}\times\mathbf{e}^{(\beta)}](\mathbf{v}^{(\alpha\beta)}\mathbf{e}^{(\alpha)})).$$

Здесь $\chi_{1-4}^{(2)}$ — значения независимых компонент тензора диэлектрической восприимчивости, $j_m(z)$ — сферические функции Бесселя порядка m, $z=\left|\mathbf{q}^{(\alpha\beta)}\right|a$, $\mathbf{q}^{(\alpha\beta)}=\mathbf{k}^{(\alpha)}+\mathbf{k}^{(\beta)}-\mathbf{k}^{(2\omega)}$, $\mathbf{k}^{(2\omega)}=k_{2\omega}\mathbf{e}_r$, $\mathbf{k}^{(\alpha)}$ — волновые вектора, $\mathbf{v}^{(\alpha\beta)}$ — единичный вектор вдоль $\mathbf{q}^{(\alpha\beta)}$, $\mathbf{e}^{(\alpha)}$ — единичный комплексный вектор поляризации. Из уравнений Максвелла определяем вектор магнитной напряженности

$$\mathbf{H}^{(2\omega)}(\mathbf{x}) = \frac{1}{\mu_{2\omega}} \frac{c}{2\omega i} \operatorname{rot} \mathbf{E}^{(2\omega)}(\mathbf{x}) = \frac{n_{2\omega}}{\mu_{2\omega}} \left[\mathbf{e}_r \times \mathbf{E}^{(2\omega)}(\mathbf{x}) \right].$$

Экспериментально наблюдаемой величиной является интенсивность излучения, поэтому определим радиальную компоненту вектора Умова-Пойтинга в дальней зоне

$$S_r^{(2\omega)}(\mathbf{x}) = \frac{c}{8\pi} \operatorname{Re} \left[\mathbf{E}^{(2\omega)}(\mathbf{x}) \times \left(\mathbf{H}^{(2\omega)}(\mathbf{x}) \right)^* \right]_r = \frac{c}{8\pi} \frac{n_{2\omega}}{\mu_{2\omega}} \left| \mathbf{E}^{(2\omega)}(\mathbf{x}) \right|^2.$$

Мы рассмотрели некоторые интересные и важные частные случаи, например, при угле раскрытия $\gamma=0$, когда источники сонаправлены и при $\gamma=\pi$, когда падающие волны идут навстречу друг другу.

Литература

- 1 Kapshai V.N., Shamyna A.A. // Optics and Spectroscopy. 2017. V. 123. № 3. P. 440. doi 10.1134/S0030400X17090144; Капшай В.Н., Шамына А.А. // Оптика и спектроскопия. 2017. Т. 123. № 3. С. 416–429. doi 10.7868/S003040341709015X.
- 2 Толкачёв, А. И. Генерация второй гармоники от тонкого сферического слоя при наличии двух источников / А. И. Толкачёв, В. Н. Капшай // Актуальные вопросы физики и техники: Материалы VII Респ. научной конф. студентов, магистрантов и аспирантов. 2018. Ч. 1. С. 287–290.

СЕКЦИЯ ЭКОНОМИКИ

Экономический факультет

Е. А. Абаревич

Науч. рук. **Н. А. Алексеенко,** канд. экон. наук, доцент

СУЩНОСТЬ ПРИБЫЛИ ОРГАНИЗАЦИИ И ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПРОПОРЦИИ ЕЁ РАСПРЕДЕЛЕНИЯ

Прибыль как экономическая категория характеризует финансовый результат предпринимательской деятельности и является показателем, который наиболее полно отражает эффективность производства, объема и качество произведенной продукции, состав производительности труда и уровень себестоимости. Формирование прибыли связано с определением прибыли отчетного периода (до налогообложения – до стр. 160, отчет о прибылях), которая в дальнейшем распределяется на налогооблагаемую и чистую прибыль. Значимость прибыли для круга заинтересованных лиц меняется по этапам ее формирования и распределения. Собственник предприятия заинтересован в увеличении чистой прибыли, направляемой на накопление или потребление.