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Abstract
We show that under an arithmetic condition the spectrum of a bounded multidimensional discrete Hausdorff 
operator in the Lebesgue space is an annulus (or a disc) centered at the origin, provided the perturbation 
matrices commute and are either positive or negative definite. Conditions for a point spectrum of such an 
operator to be empty are given and its norm is computed.

Keywords  Hausdorff operator · Discrete Hausdorff operator · Spectrum · Norm of an operator · Lebesgue 
space
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Introduction

One-dimensional Hausdorff operators were introduced by Rogosinskii and Garabedyan as a continuous analog of 
the Hausdorff method of generalized summation of series and sequences (see, e.g., [14, Chapter XI]). After the seminal 
work of Liflyand and Móricz [9] the theory of Hausdorff operators has become an active research area, see, e.g., [6, 10, 
11]. The first non-routine results on the boundedness of multidimensional Hausdorff operators were given by Lerner and 
Liflyand [8].
In [16] and [17], the diagonalization of normal Hausdorff operators over Euclidean spaces was established and as a con-
sequence, their spectra and norms were described in terms of the symbols of these operators. In the case where the kernel 
is positive these formulas give a direct expression of the norm in terms of the initial data, namely, in terms of the kernel 
and perturbation matrices.
The main goal of this paper is to compute the spectra of a wide class of discrete Hausdorff operators. More precisely, we 
show that under an arithmetic condition the spectrum of a bounded multidimensional discrete Hausdorff operator in the 
Lebesgue space is an annulus (or a disc) centered at the origin, provided the perturbation matrices commute and are either 
positive or negative definite. As a corollary, we give conditions for the validity of “direct” formulas for the norm of an 
operator for signed kernels as well. Also, conditions for a point spectrum of such an operator to be empty are given and 
several examples and counterexamples are considered.
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Preliminaries

The general form of a Hausdorff operator over ℝd is

where x ∈ ℝ
d is a column vector. Here (Ω,�) is a topological space endowed with positive regular Borel measure �, K is 

a locally integrable function on Ω (“kernel”), and (A(u))u∈Ω is a �-measurable family of real d × d matrices (“perturba-
tion matrices”) defined almost everywhere in the support of K and satisfying detA(u) ≠ 0. This is a particular case of a 
Hausdorff operator over a locally compact group [18].
Let a(u) ∶= (a1(u),… , ad(u)) be the family of eigenvalues (with their multiplicities) of the matrix A(u) and 
| detA(u)|−1∕pK(u) ∈ L1(Ω). Then the function

is called  the scalar symbol of the Hausdorff operator HK,A in Lp(ℝd) , 1 ≤ p < ∞ [16, 17]. It is assumed that

where |aj(u)|−1∕p−�sj ∶= exp((−1∕p − �sj) log |aj(u)|).
We have the following special case of a Hausdorff operator on Euclidean spaces.

Definition 1  . Let c = (c(k))k∈ℤ be a sequence of complex numbers, and A(k) ∈ GL(d,ℝ) for all k ∈ ℤ . A discrete Haus-
dorff operator acts on a function f ∶ ℝ

d
→ ℂ by the rule

provided the series converges absolutely.

Such operators appeared for the first time in [12, Section 4].
Note that

where s ⋅ log �a(u)� ∶=
∑d

j=1
sj log �aj(u)� . Therefore, the symbol of a discrete Hausdorff operator is of the form

As we shall see, spectral characteristics of a (nonzero) discrete Hausdorff operator depend on the arithmetic properties 
of A(k).
Notable examples of discrete Hausdorff operators are given by the q-calculus.
Recall that the q-integral for a function f ∶ ℝ → ℂ is defined as

(HK,Af )(x) = ∫Ω

K(u)f (A(u)x)d�(u),

�(s) ∶= ∫Ω

K(u)|a(u)|−1∕p−�sd�(u) (s = (sj) ∈ ℝ
d)

|a(u)|−1∕p−�s ∶=
d∏

j=1

|aj(u)|−1∕p−�sj ,

Hc,Af (x) =

∞∑

k=−∞

c(k)f (A(k)x)

|a(u)|−1∕p−�s =|
d∏

j=1

aj(u)|−1∕p
d∏

j=1

exp((−�sj) log |aj(u)|)

=| detA(u)|−1∕pe−�s⋅log |a(u)|,

(1)�(s) ∶=

∞∑

k=−∞

c(k)| detA(k)|−1∕pe−�s⋅log |a(k)|.

∫
∞

−∞

f (t)dqt ∶= (1 − q)

∞∑

k=−∞

(f (qk) + f (−qk))qk,
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with q ∈ ℝ, 0 < |q| < 1 , provided the series converges absolutely.
If f ∶ ℝ+ → ℂ , the q-integral is defined as

with q ∈ ℝ, 0 < |q| < 1 , provided the series converges absolutely. For these definitions and properties of q-integral, see, 
e. g., [4, p. 202] or [5, p. 23]). The first definition is, of course, more general and reduces to the second one for functions 
vanishing on the negative half-axis.
Thus, according to the general definition, we get the following class of discrete Hausdorff operators.

Definition 2  A q-Hausdorff operator acts on a function f ∶ ℝ → ℂ by the rule

where K and A are given functions on ℝ , A(u) ∈ ℝ ⧵ {0} for all u, provided the series converges absolutely.

This class of operators will serve as a source of useful examples and counterexamples (see below).

Main results

In order to formulate and prove our main results, we need some preparations. First, we note that the Lp boundedness 
of a Hausdorff operator readily follows from the Minkowski inequality.

Lemma 1  [2]. Let 1 ≤ p ≤ ∞ . If

then the operator Hc,A is bounded in Lp(ℝd) and its norm does not exceed Np(c,A).

It is known [16, 17] that the equality

holds if c(k) ≥ 0 for all k. We shall show that in some cases this equality is possible without this positivity condition, too. 
This statement is a consequence of the description of spectrum of discrete Hausdorff operators.
In the following, �∞ stands for the infinite-dimensional torus endowed with the metric

Lemma 2  If N2(c,A) < ∞ , then the function

∫
∞

0

f (t)dqt ∶= (1 − q)

∞∑

k=−∞

f (qk)qk,

(HK,Af )(x) ∶=∫
∞

−∞

K(u)f (A(u)x)dqu

= (1 − q)

∞∑

k=−∞

(K(qk)f (A(qk)x) + K(−qk)f (A(−qk)x))qk,

Np(c,A) ∶=

∞∑

k=−∞

|c(k)|| detA(k)|−1∕p < ∞,

‖Hc,A‖L2(ℝd) = N2(c,A)

�(t, s) =

√√√√
∞∑

k=−∞

|tk − sk|2.

�(t) ∶=

∞�

k=−∞

c(k)
√
� detA(k)�

tk, t = (tk)k∈ℤ ∈ 𝕋
∞,
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is continuous (and a closed map) on �∞.

Proof  Indeed, by the Schwartz inequality, for any t, s ∈ �
∞ , we have

Thus, � is continuous. Since �∞ is compact, the fact that � is a closed map follows. 	�  ◻

Recall that the real numbers b1,… , bm are linear independent over ℤ if the equality 
∑m

k=1
lkbk = 0 , where all lk ∈ ℤ , 

yields lk = 0 for all k. As usual, we say that an infinite family of real numbers is linear independent over ℤ if this is 
the case for any of its finite subfamilies.
We denote by a(k) the family of eigenvalues (a1(k),… , ad(k)) (with their multiplicities) of a real self-adjoint d × d 
matrix A(k).

The case of positive definite matrices

Theorem 1  Let (A(k))k∈ℤ be a commuting family of positive definite d × d matrices, and let for some j ∈ {1,… , d} , the 
numbers log aj(k) ( k ∈ ℤ ) be linear independent over ℤ . If N2(c,A) < ∞ , then for a discrete Hausdorff operator Hc,A in 
L2(ℝd) , the following assertions hold.

(i) The spectrum �(Hc,A) is the annulus {r(c,A) ≤ |� | ≤ N2(c,A)} if r(c,A) ∶= mint∈�∞ |𝜉(t)| > 0 , and the disc 
{|� | ≤ N2(c,A)} otherwise.

(ii)

(iii) If the symbol � of Hc,A is a nonconstant real analytic function on ℝd , the point spectrum �p(Hc,A) is empty.

Proof  One can assume that Hc,A is nonzero.
(i) We split the proof into several steps.
1. We claim that the spectrum of the truncated discrete Hausdorff operator, i.e., the operator

in L2(ℝd) is

where

Indeed, the scalar symbol (1) of H(n)

c,A
 is a trigonometric polynomial of the form

��(t) − �(s)� ≤
∞�

k=−∞

�c(k)�
√
� detA(k)�

�tk − sk� ≤
����

∞�

k=−∞

�c(k)�2
� detA(k)�

�(t, s).

(2)‖Hc,A‖L2→L2 =

∞�

k=−∞

�c(k)�
√
detA(k)

.

H
(n)

c,A
f (x) ∶=

n∑

k=−n

c(k)f (A(k)x), n ∈ ℕ,

(3)�(H
(n)

c,A
) =

{
�n(t) ∶ t = (t−n,… , tn) ∈ �

2n+1
}
,

�n(t) ∶=

n�

k=−n

c(k)
√
detA(k)

tk.
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where s ⋅ log a(k) ∶= s1 log a1(k) +⋯ + sd log ad(k) . Moreover ([16, 17, Corollary 7]), �(H(n)

c,A
) equals to the closure of 

�n(ℝ
d) . But the corollary of Kronecker’s approximation theorem (see, e.g., [19, p. 44]) implies that the set

is dense in � 2n+1 . Therefore, the set

is dense in � 2n+1 and (3) follows. Indeed, since �n is a continuous and closed map, we have �n(Cl(M)) = Cl(�n(M)) for all 
M ⊂ �

2n+1 , where Cl stands for the closure (see, e.g., [1, Chapter 1, §5, Proposition 9]). Therefore,

2. Now we are going to show that

Let � = �(t) for some t = (tk) ∈ �
∞ . Then

and rn → 0 as n → ∞ . As has been proven above, �n ∶= �n(t) ∈ �(H
(n)

c,A
) . If R(n) ∶= Hc,A −H

(n)

c,A
 , then the operators R(n) 

and H(n)

c,A
 commute. It follows [20, Theorem IV.3.6] that dist(�n, �(Hc,A)) ≤ ‖R(n)‖ ≤ rn , and hence ‖�n − �n‖ ≤ rn for some 

�n ∈ �(Hc,A) . Passing, if necessary, to a subsequence, one can assume that �n → � ∈ �(Hc,A) . Since rn → 0 , this yields 
�n → � as n → ∞ . But �n → � . Thus, � = � ∈ �(Hc,A).

Let us now choose an arbitrary � ∈ �(Hc,A) . Again by [20, Theorem IV.3.6], we have dist(� , �(H(n)

c,A
)) ≤ rn for all n. 

Thus, |� − �n(t
(n))| ≤ rn for some t(n) = (t(n)

−n
),… , t(n)

n
)) ∈ �

2n+1 . Consider the point t(n)
∞

∶= (… , 1, 1, t(n)
−n
),… , t(n)

n
, 1, 1,…) in 

�
∞ . Since �∞ is compact in the (Tychonoff) topology induced by the metric � , we can assume without loss of generality 

that t(n)
∞

→ t ∈ �
∞ with respect to � as n → ∞ . Then

Since � is continuous on �∞ , it follows that � = �(t) . This proves (6).
3. Further, the continuity of the map � ∶ 𝕋

∞
→ ℂ and (6) imply that the set �(Hc,A) is connected. The observation that 

this set is rotational invariant shows that the spectrum is either an annulus {r(c,A) ≤ |� | ≤ R(c,A)} if r(c,A) > 0 or a disc 
{|� | ≤ R(c,A)} if r(c,A) = 0 , where r(c,A) ∶= mint∈�∞ |�(t)| and R(c, A) is a spectral radius of Hc,A . Since this operator 
is normal [17], R(c, A) equals to its norm. So, to complete the proof of (i) it suffices to prove (ii).

(ii) It was shown in [16, 17] that

Since (by the corollary of Kronecker’s theorem) the set (5) is dense in � 2n+1 , formula (4) yields

Taking into account that

(4)�n(s) =

n�

k=−n

c(k)
√
detA(k)

e−�s⋅log a(k) s ∈ ℝ
d,

{(e−isj log aj(−n),… , e−isj log aj(n)) ∶ sj ∈ ℝ}

(5){Λ(s) ∶= (e−is⋅log a(−n),… , e−�s⋅log a(n)) ∶ s ∈ ℝ
d}

�(H
(n)

c,A
) = Cl(�n(ℝ

d)) = Cl(�n(Λ(ℝ
d))) = �n(Cl(Λ(ℝ

d))) = �n(𝕋
2n+1).

(6)�(Hc,A) =
{
�(t) ∶ t = (… , t−n,… , tn,…) ∈ �

∞
}
.

�𝜉(t) − 𝜉n(t)� ≤ rn ∶=
�

�k�>n

�c(k)�
√
detA(k)

,

|� − �(t)| ≤|� − �n(t
(n))| + |�n(t(n)) − �(t(n)

∞
)| + |�(t(n)

∞
) − �(t)|

≤2rn + |�(t(n)
∞
) − �(t)|.

‖H(n)

c,A
‖L2→L2 = sup

ℝd

��n�.

‖H(n)

c,A
‖L2→L2 =

n�

k=−n

�c(k)�
√
detA(k)

.
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as n → ∞ , we get

(iii) It is known [16, Theorem 1 (iii)] that

where mes denotes the Lebesgue measure in ℝd . If � ∈ �p(Hc,A) , it follows that mes(Π ∩ 𝜑−1({𝜆}) > 0 for some parallel-
epiped Π =

∏d

j=1
[aj, bj] ⊂ ℝ

d . It follows, in turn, that each orthogonal projection of Π ∩ �−1({�}) on [aj, bj] is of positive 
Lebesgue measure. Since all of these projections have a cluster point, �(s) ≡ � by a version of a uniqueness theorem for 
real analytic functions [15] (see also [7, p. 83]). A contradiction. 	�  ◻

Remark. Since Hc,A is normal, the residual spectrum of Hc,A is empty.

Corollary 1  Let (A(k))k∈ℤ be a commuting family of positive definite d × d matrices, and let for some j ∈ {1,… , d} , the 
numbers log aj(k) ( k ∈ ℤ ) be linear independent over ℤ . If N2(c,A) < ∞ , then the discrete Hausdorff operator Hc,A in 
L2(ℝd) is invertible if and only if r(c,A) > 0.

Example 1. Let � be a real transcendental number. Consider the following one-dimensional nonzero discrete Hausdorff operator:

If N2(c,A) =
∑

k∈ℤ �c(k)�e−𝜃k∕2 < ∞ , this operator is bounded in L2(ℝ) . Moreover, if in addition, 
∑

k∈ℤ c(k)e−�
k∕2t0

k
= 0 

for some t0 ∈ �
∞ , Theorem 1 implies that �(H) = {|� | ≤ N2(c,A)} for this space.

On the other hand, if, e.g., �c(0)�e−1∕2 >
∑

k≠0 �c(k)�e−𝜃
k∕2 , we have

for all t ∈ �
∞ . Thus, in this case r(c,A) > 0 , and �(H) in L2(ℝ) is an annulus.

The following example shows that the conditions of Lemma 1 and Theorem 1 are essential.
Example 2. Consider the q-calculus version of a Cesàro operator introduced in [17]:

This is a q-Hausdorff operator in the sense of Definition 2, with K = �[0,1] , the indicator function of [0, 1], and A(u) = u 
(and a q-analog of the classical Cesàro operator [13]). Since in this case Np(c,A) < ∞ for all p > 1 , this operator is 
bounded in Lp(ℝ) for such p.
On the other hand, N1(c,A) = ∞ and Cq does not act in L1(ℝ) . Indeed, let f (x) = e−x�

ℝ+
(x) . Then for q > 0,

and by the B. Levy theorem,

‖H(n)

c,A
f −Hc,Af‖L2(ℝd) ≤

�

�k�>n
�ck�‖f (A(k)⋅)‖L2(ℝd)

=
�

�k�>n

�c(k)�
√
detA(k)

‖f‖L2(ℝd) → 0

‖Hc,A‖L2→L2 = lim
n→∞

‖H(n)

c,A
‖L2→L2 =

∞�

k=−∞

�c(k)�
√
detA(k)

= N2(c,A).

𝜎p(Hc,A) = {𝜆 ∈ ℂ ∶ mes(𝜑−1({𝜆}) > 0},

Hf (x) =
∑

k∈ℤ

c(k)f (e�
k

x), x ∈ ℝ.

|||||

∑

k∈ℤ

c(k)e−𝜃
k∕2tk

|||||
≥ |c(0)|e−1∕2 −

∑

k≠0
|c(k)|e−𝜃k∕2 > 0,

(7)(Cqf )(x) ∶=
1

x ∫
x

0

f (t)dqt ∶= (1 − q)

∞∑

k=0

f (qkx)qk.

(Cqf )(x) = (1 − q)

∞∑

k=0

e−q
kxqk�

ℝ+
(x),
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This example shows that the arithmetic condition in Theorem  1 is essential. Indeed, in this case the numbers 
log a(k) = k log q ( k = 0, 1,… ) are linear dependent over ℤ and, as mentioned in [17, Example 3], if q > 0 , then the spec-
trum of Cq in L2(ℝ) is a circle {� ∈ ℂ ∶ �� − 1� =

√
q} . This implies ‖Cq‖ = 1 +

√
q , which is consistent with formula (8)1.

For a detailed study of spectral properties of Cesàro operators in several settings, see, e.g., [3] and references therein.

The case of negative definite matrices

The case of negative definite matrices can be reduced to the previous one.

Theorem 2  Let (A(k))k∈ℤ be a commuting family of negative definite d × d matrices, and let for some j ∈ {1,… , d} , the 
numbers log(−aj(k)) ( k ∈ ℤ ) be linear independent over ℤ . If N2(c,A) < ∞ , then for a discrete Hausdorff operator Hc,A 
in L2(ℝd) , the following statements hold.

(i) The spectrum �(Hc,A) is the annulus {r(c,−A) ≤ |� | ≤ N2(c,A)} if r(c,−A) > 0 , and the disc {|� | ≤ N2(c,A)} 
otherwise.

(ii)

(iii) If the symbol � of Hc,A is a nonconstant real analytic function on ℝd , the point spectrum �p(Hc,A) is empty.

Proof  The scalar symbol of the operator Hc,A is

Thus, �− coincides with the scalar symbol � of the operator Hc,(−A) where all the matrices (−A(k)) are positive definite.
According to [17, Corollary 8], �(Hc,A) equals to the set

where Cl denotes the closure in ℂ . But as shown in Theorem 1, Cl(�(ℝd)) is either the annulus {r(c,−A) ≤ |� | ≤ N2(c,A)} 
or the disc {|� | ≤ N2(c,A)} , and so −Cl(�(ℝd)) = Cl(�(ℝd)) . In view of Theorem 1, it follows that �(Hc,A) = �(Hc,(−A)) . 
Since r(c,−A) = r(c,A) , this proves (i).

The statement (ii) follows from the fact that Hc,A = JHc,(−A) , where Jg(x) ∶= g(−x) is a unitary operator in L2(ℝd).
(iii) It is known [17, Theorem 1] that the point spectrum �p(Hc,A) consists of such complex numbers � for which the 

set E(�) ∶= {s ∈ ℝ
d ∶ det(� − Φ(s)) = 0} has positive Lebesgue measure. Here Φ stands for the matrix symbol of Hc,A . 

The proof of Corollary 8 in [17] shows that in our case det(� − Φ(s)) = (�2 − �2(s))2
d−1 . Since the function �2 − �2 is real 

analytic and nonconstant, mes(E(�)) = 0 by the uniqueness theorem as in the proof of Theorem 1. 	�  ◻

∫
ℝ

(Cqf )(x)dx = (1 − q)

∞∑

k=0

qk ∫
ℝ+

e−q
kxdx = ∞.

(8)‖Hc,A‖L2→L2 =

∞�

k=−∞

�c(k)�
√
(−1)d detA(k)

.

�−(s) ∶=

∞�

k=−∞

c(k)
√
� detA(k)�

e−�s⋅log(−a(k))

=

∞�

k=−∞

c(k)
√
det(−A(k))

e−�s⋅log(−a(k)).

−Cl(�−(ℝd)) ∪ Cl(�−(ℝd)) = −Cl(�(ℝd)) ∪ Cl(�(ℝd)),

1  Here we fix a typo in [17, Example 3].
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Corollary 2  Let (A(k))k∈ℤ be a commuting family of negative definite d × d matrices, and let for some j ∈ {1,… , d} , the 
numbers log(−aj(k)) ( k ∈ ℤ ) be linear independent over ℤ . If N2(c,A) < ∞ , then the discrete Hausdorff operator Hc,A in 
L2(ℝd) is invertible if and only if r(c,−A) > 0.

Concluding remarks

In this section, we collect two more counterexamples that the q-calculus version of a Cesàro operator gives.
Example 3. We are going to compute the spectrum of the Cesàro operator (7) with −1 < q < 0 by making use of [16, Theo-
rem 2]. (In this case Theorems 1 and 2 do not work.) The scalar symbol (1) for this operator is

Further, the conjugate scalar symbol is �∗ ∶= �+ − �− , where

and

Thus,

It follows that

and

�(s) =(1 − q)
�

k∈ℤ+

qk�qk�−1∕2�qk�−�s = (1 − q)

∞�

k=0

(−(−q)1∕2−�s)k

=
1 − q

1 + (−q)1∕2−�s
=

1 − q

1 +
√
−q(−q)−�s

.

�+(s) =(1 − q)
∑

k∈2ℤ+

qk|qk|−1∕2|qk|−�s = (1 − q)

∞∑

l=0

(−(−q)1∕2−�s)2l

=
1 − q

1 − ((−q)1∕2−�s)2
=

1 − q

1 + q(−q)−2�s
,

�−(s) =(1 − q)
∑

k∈2ℤ++1

qk|qk|−1∕2|qk|−�s

=(1 − q)

∞∑

l=0

(q(−q)−1∕2−�s)2l+1 = q(−q)−1∕2−�s�+(s).

�∗(s) =(1 − q(−q)−1∕2−�s)�+(s)

=
(1 − q)(1 + (−q)1∕2−�s)

1 − (−q)1−2�s
=

1 − q

1 −
√
−q(−q)−�s

.

�(ℝ) =

�
1 − q

1 +
√
−qz

∶ z ∈ 𝕋

�
= {� ∈ ℂ ∶ �� − 1� =

√
−q},

�∗(ℝ) =

�
1 − q

1 −
√
−qz

∶ z ∈ 𝕋

�
= {� ∈ ℂ ∶ �� − 1� =

√
−q}.
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Finally, by Theorem 2 in [16], we obtain2

Example 4. Recall that a measurable function a on ℝ is called an (1, r)-atom ( r ∈ (1,∞] ) if
(i) the support of a is contained in an interval (b, c);
(ii) ‖a‖∞ ≤ 1

b−c
 if r = ∞ , and ‖a‖r ≤ (b − c)

1

r
−1 if r ∈ (1,∞)3;

(iii) ∫
ℝ
a(x)dx = 0.

By atom we mean an (1, r)-atom on ℝ.
The Hardy space H1(ℝ) = H1,r(ℝ) is a space of such functions f on ℝ that admit an atomic decomposition of the form

where aj are (1, r)-atoms on ℝ and 
∑∞

j=1
�𝜆j� < ∞.

Theorem 4.1 from [12] shows that the condition N1(c,A) < ∞ is sufficient for the operator Hc,A to be bounded in H1,r(ℝ) 
( r ∈ (1,∞] ). The operator Cq considered in Example 2 satisfies N1(c,A) = ∞ and does not act in H1,r(ℝ) as well. Indeed, 
the function

is an (1, r)-atom. If we assume that Cqa ∈ H1,r(ℝ) , then the restriction (Cqa)|ℝ+ belongs to L1(ℝ+) . On the other hand, 
e.g., for q > 0 , we have by the B. Levy theorem that

a contradiction.
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