= ФИЗИКА -

УДК 534.535

КОЛЛИНЕАРНАЯ АКУСТООПТИЧЕСКАЯ ФИЛЬТРАЦИЯ ПОЛИХРОМАТИЧЕСКИХ БЕССЕЛЕВЫХ СВЕТОВЫХ ПУЧКОВ В ОДНООСНЫХ КРИСТАЛЛАХ

Г.В. Кулак¹, Г.В. Крох¹, П.И. Ропот², Т.В. Николаенко¹

¹Мозырский государственный педагогический университет им. И.П. Шамякина ²Институт физики им. Б.И. Степанова НАН Беларуси

THE COLLINEAR ACOUSTO-OPTICAL FILTRATION OF POLYCHROMATIC BESSEL LIGHT BEAMS IN UNIAXIAL CRYSTALS

G.V. Kulak¹, G.V. Krokh¹, P.I. Ropot², T.V. Nikolaenko¹

¹*I.P. Shamyakin Mozyr State Pedagogical University* ² *B.I. Stepanov Institute of Physics of NAS Belarus*

Исследованы особенности коллинеарной акустооптической фильтрации квазибездифракционных бесселевых световых пучков o- и e- типа в одноосных кристаллах. С использованием метода интегралов перекрытия найдено выражение для эффективности дифракции в зависимости от параметров акустооптического взаимодействия, а также от значений интегралов перекрытия. Показано, что для моды нулевого порядка бесселевого светового пучка для кристалла ниобата лития в условиях поперечного фазового синхронизма и в диапазоне оптического спектра 0,4-0,7 мкм достижима полоса пропускания фильтра $\sim 0,2$ нм; с увеличением порядка моды $m \ge 1$ увеличение полосы пропускания незначительно и составляет $\sim 0,23-0,24$ нм.

Ключевые слова: коллинеарное акустооптическое взаимодействие, бесселевы световые пучки, акустооптическая фильтрация, одноосный кристалл, эффективность дифракции, разрешение фильтра.

The collinear acousto-optic filtration of quasi-nondiffracting Bessel light beams of *o*- and *e*-types in uniaxial crystals has been investigated. Using the method of overlap integrals the expression for the diffraction efficiency depending on the parameters of acoustooptical interacting of Bessel beams and the value of overlap integral is founded. It is shown that for zero order Bessel light beams in the transversal phase-matching conditions of the diffracted waves in the range of optical spectrum of 0,4–0,7 μ m for lithium niobate crystals the transmission bandwidth of ~0,2 nm is reached; with evaluation of Bessel beam order of $m \ge 1$ the bandwidth of transmission is not so significantly big, than ~0,23-0,24 nm.

Keywords: collinear acousto-optic interaction, acousto-optic filtration, Bessel light beams, uniaxial crystal, diffraction efficiency.

Введение

В настоящее время для целей акустооптического (АО) преобразования значительный интерес представляют бесселевы световые пучки (БСП), распространяющиеся в одноосных кристаллах [1], [2]. Ряд особенностей коллинеарных АО взаимодействий БСП исследованы в работах [3], [4]. При этом исследовались, в основном, особенности АО преобразований пространственной структуры БСП различных порядков. Следует отметить, однако, что для ряда важных применений значительный интерес представляют процессы коллинеарной АО фильтрации полихроматических БСП на ультразвуке в анизотропных средах [5]. Такие процессы перспективны для создания узкополосных коллинеарных перестраиваемых АО фильтров [6]. В этой связи, для целей АО фильтрации широкополосного оптического излучения важно использовать БСП, поскольку они обладают свойствами квазибездифракционности и самореконструкции пространственной структуры [4].

В настоящей работе с использованием метода интегралов перекрытия рассмотрена коллинеарная АО фильтрация бесселевых полихроматических световых пучков высоких порядков при коллинеарном АО взаимодействии в одноосных кристаллах. При этом, в качестве примера, рассмотрена АО дифракция БСП в кристаллах ниобата лития (*LiNbO*₃) на сдвиговой УЗ волне, распространяющейся под некоторым углом к оптической оси кристалла. Такая геометрия коллинеарного попутного АО взаимодействия является наиболее эффективной и реализуется, когда дифрагированные световые волны распространяются ортогонально оптической оси кристалла ($\theta_{o,e} = 0^0$) [7].

Кроме обычного продольного фазового согласования, БСП должны удовлетворять условиям поперечного фазового согласования [3], [4]. Такое согласование связано с тем, что БСП с различными углами конусности имеют различную пространственную структуру и, как следствие, различные величины интегралов перекрытия дифрагированных пучков. При этом вычисление

[©] Кулак Г.В., Крох Г.В., Ропот П.И., Николаенко Т.В., 2018 30

Коллинеарная акустооптическая фильтрация полихроматических бесселевых световых пучков в одноосных кристаллах

интегралов перекрытия (g_m) позволяет найти их максимальные значения в условиях поперечного синхронизма.

падающего и дифрагированного света при заданной частоте (f) ультразвука и длине волны (λ) света

1 Теоретические результаты

Рассмотрим геометрию АО взаимодействия, при которой УЗ волна распространяется в кристалле LiNbO3 в направлении оси X и занимает пространство между плоскостями x = 0 и x = l. Будем считать, что падающая волна в одноосном кристалле имеет обыкновенную «о» поляризацию и является бесселевым световым пучком отипа [7]. В свою очередь, дифрагированная волна имеет необыкновенную «е» поляризацию и является бесселевым пучком е-типа (рисунок 0.1). Ось падающего БСП о-типа расположена в плоскости XZ под некоторым углом к оптической оси Z кристалла. При этом реализуются условия пространственного $\vec{k}_o + \vec{K} + \Delta \vec{k} = \vec{k}_e$ и временного $\omega + \Omega = \omega_d$ синхронизма, где \vec{k}_a (\vec{k}_e) – волновой вектор бесселева пучка *о*-типа (*е*-типа), \vec{K} – волновой вектор УЗ волны, $\Delta \vec{k}$ – расстройка фазового синхронизма (продольное фазовое рассогласование). Система уравнений связанных волн для амплитуд падающего (А₀) пучка о-типа и дифрагированного (A_e) пучка *е*-типа имеет вид:

$$\frac{dA_o}{dz} = -i \frac{k^2 \int\limits_{0}^{2\pi R_B} (\vec{e}_o^* \Delta \hat{\epsilon} \vec{e}_e) \rho d\varphi d\rho}{2k_{oz} \int\limits_{0}^{2\pi R_B} (\vec{e}_o^* |\vec{e}_o|^2 \rho d\varphi d\rho)} A_e e^{-i\Delta k_z z}, \quad (1.1)$$
$$\frac{dA_e}{dz} = -i \frac{k^2 \int\limits_{0}^{2\pi R_B} (\vec{e}_e^* \Delta \hat{\epsilon} \vec{e}_o) \rho d\varphi d\rho}{2k_{ez} \int\limits_{0}^{2\pi R_B} (\vec{e}_e^* \Delta \hat{\epsilon} \vec{e}_o) \rho d\varphi d\rho} A_o e^{i\Delta k_z z},$$

где звездочка «*» означает комплексное сопряжение. В уравнениях (1.1) вектор-функции поляризации падающего бесселева пучка *о*-типа и дифрагированного пучка *е*-типа даются следующими выражениями [1], [2]:

$$\vec{e}_{o} = e_{o1}\vec{e}_{1} + e_{o2}\vec{e}_{2} + e_{o3}\vec{e}_{3},$$

$$\vec{e}_{e} = e_{e1}\vec{e}_{1} + e_{e2}\vec{e}_{2} + e_{e3}\vec{e}_{3},$$
(1.2)

Problems of Physics, Mathematics and Technics, № 4 (37), 2018

$e_{a} - \frac{iq_{o\perp}\cos\theta_{o}(J_{m-1}(q_{o\perp}\rho)e^{-i\phi} + J_{m+1}(q_{o\perp}\rho)e^{i\phi})}{+} + \frac{iq_{o\perp}\rho_{o\perp$
<i>c</i> _{o1} – 2
$+iq_{o\parallel}\sin heta_{o}J_{m}(q_{o\perp} ho),$
$e = \frac{q_{o\perp} \cos \theta_o' (J_{m-1}(q_{o\perp}\rho)e^{-i\phi} - J_{m+1}(q_{o\perp}\rho)e^{i\phi})}{+} +$
$c_{o2} = 2\sqrt{1+a^4 \operatorname{tg}^4 \Theta_o^2}$
$+\frac{q_{o\perp}\sin^2\theta_o'(J_{m+1}(q_{o\perp}\rho)e^{i\phi}-J_{m-1}(q_{o\perp}\rho)e^{-i\phi})}{2},$
$\frac{2}{(1-q_{0})} = \frac{2}{(1-q_{0})} \frac{2}{q_{0}} = \frac{2}{(1-q_{0})} \frac{2}{q_{0}} $
$e_{o3} = \frac{q_{o\perp} \cos \phi_o (J_{m-1}(q_{o\perp} p)e^{-J_{m+1}}(q_{o\perp} p)e^{-J_m}) d^2 (q_{o\perp} p)e^{-J_m}}{2\sqrt{1 + e^4 t_c^4 0}} - \frac{1}{2}$
$2\sqrt{1+a} \log \Theta_o$
$+\frac{q_{o\perp}\sin 2\Theta_o(J_{m+1}(q_{o\perp}\rho)e^{i\phi}-J_{m-1}(q_{o\perp}\rho)e^{-i\phi})}{4},$
4
$e_{e1} = \kappa n_o n_e \times$
$\times \left\{ \frac{aq_{e\perp}^2 \sin^2 \theta_e(J_{m-2}(q_{e\perp}\rho)e^{-i2\varphi} - J_{m+2}(q_{e\perp}\rho)e^{i2\varphi})}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(J_{m-2}(q_{e\perp}\rho)e^{i2\varphi})}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(J_{m-2}(q_{e\perp}\rho)e^{i2\varphi} - J_{m+2}(q_{e\perp}\rho)e^{i2\varphi})}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(J_{m-2}(q_{e\perp}\rho)e^{i2\varphi} - J_{m+2}(q_{e\perp}\rho)e^{i2\varphi}}}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(J_{m-2}(q_{e\perp}\rho)e^{i2\varphi} - J_{m+2}(q_{e\perp}\rho)e^{i2\varphi}}}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(J_{m-2}(q_{e\perp}\rho)e^{i2\varphi}}}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(q_{e\perp}\rho)e^{i2\varphi}}}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(q_{e\perp}\rho)e^{i2\varphi}}}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(q_{e\perp}\rho)e^{i2\varphi}}}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(q_{e\perp}\rho)e^{i2\varphi}}}{4} + \frac{aq_{e\perp}^2 \sin^2 \theta_e(q_$
[4
$+\frac{aq_{e\perp}q_{e\parallel}\cos\theta'_{e}((J_{m+1}(q_{e\perp}\rho)e^{i\varphi'}-J_{m-1}(q_{e\perp}\rho)e^{-i\varphi'}))}{2}$
2
$e_{e2}=ik^{-1}n_o^{-2}n_e^{-2} imes$
$\int \frac{aq_{e\perp}^2 \sin 2\theta'_e}{(J_{m+2}(q_{e\perp}\rho)e^{i2\phi'} + J_{m-2}(q_{e\perp}\rho)e^{-i2\phi'})} -$
~ <u>4</u>
$-\frac{aq_{e\perp}q_{e\parallel}\cos 2\theta_{e}^{'}((J_{m-1}(q_{e\perp}\rho)e^{-i\varphi'}+J_{m+1}(q_{e\perp}\rho)e^{-i\varphi'})}{2}$
2
$-a\left(k^2-\frac{3q_{e\perp}^2}{2}\right)\sin 2\theta_e^{'}J_m(q_{e\perp}\rho)\bigg\},$
$e_{e3} = ik^{-1}n_o^{-4} \times$
$\left(-q_{e}^{2}\sin 2\theta'_{e}(J_{m+2}(q_{e},\rho)e^{i2\varphi'}+J_{m-2}(q_{e},\rho)e^{-i2\varphi'})\right)$
×{+
$q_{e\perp}q_{e\parallel}\sin 2\theta'_{e\parallel}((J_{m-1}(q_{e\perp}\rho)e^{-i\phi'}+J_{m+1}(q_{e\perp}\rho)e^{-i\phi'}))$
++
$+q_{e\perp}^2(1+\cos^2\theta_e^{'}+q_{e\parallel}^2\sin^2\theta_e^{'})J_m(q_{e\perp}\rho)\bigg\}.$

Здесь введены следующие обозначения: $\vec{e}_1, \vec{e}_2, \vec{e}_3$ – единичные векторы в кристаллографической системе координат X_1, X_2, X_3 ; ρ, ϕ – цилиндрические координаты БСП, $\phi' = \arctan[a \ tg(\phi)], a = n_o / n_e;$ $n_o (n_e)$ – обыкновенный (необыкновенный) показатель преломления кристалла; $q_{o\perp,e\perp} = k_{o,e} \sin \gamma_{o,e},$ $q_{o\parallel,e\parallel} = \sqrt{k_{o,e}^2 - q_{o\perp,e\perp}^2},$ причем $\gamma_{o,e}$ – параметр конусности БСП; $\theta'_o = 90^\circ - \theta_o; \theta'_e = 90^\circ - \arctan[a \ tg(\theta_e)];$ $\Delta \hat{\epsilon}$ – изменение тензора диэлектрической проницаемости, индуцированное ультразвуковой волной.

Из (1.2) следует, что падающий и дифрагированный пучки соответственно *о*- и *е*-типа обладают сложной неоднородной по сечению пучка поляризационной структурой [1], [2]. При этом векторы поляризации \vec{e}_o и \vec{e}_e моды бесселева пучка порядка *m* зависят от функций Бесселя пяти порядков $J_m, J_{m\pm 1}, J_{m\pm 2}$. Здесь, по определению, бесселев пучок порядка *m* имеет общий фазовый множитель $e^{i(mz+k_zz-\omega t)}$, то есть распространяется в кристалле с фазовой скоростью ω/k_z без изменения пространственного распределения поперечной составляющей.

Решение системы уравнений связанных волн (1.1) ищем с использованием следующих граничных условий: $A_o(z=0) = A$, $A_e(z=0) = 0$. Тогда эффективность АО дифракции $\eta = |A_e(z=l)|^2 / |A|^2$ дается соотношением:

$$\eta = \frac{\chi^2 \sin^2 \left[l_a \sqrt{\chi^2 + (\Delta k_z / 2)^2} \right]}{\chi^2 + (\Delta k_z / 2)^2}, \quad (1.3)$$

где

$$\Delta k_z = \left(-\frac{2\pi n_o}{\lambda_0^2} \right) [\xi(\alpha) - \eta - 1] \Delta \lambda,$$

$$\xi(\theta_o) = \frac{n_e}{\sqrt{n_o^2 \cos^2 \theta_o + n_e^2 \sin^2 \theta_o}}, \quad \eta = \frac{\lambda_0 f}{n_o \upsilon},$$

 $\chi = \frac{\pi n_o^4 g_m p_{s\phi}}{2n\lambda_0 \cos^2 \theta_o} \sqrt{\frac{2I_a}{\sigma \upsilon^3}},$

причем λ_0 – центральная длина световой волны, $\Delta\lambda$ – отклонение длины волны света от центральной, f – частота УЗ волны, υ – фазовая скорость сдвиговой УЗ волны; $p_{3\phi} = p_{14}$ (p_{14} – фотоупругая постоянная, σ – плотность кристалла, υ – фазовая скорость УЗ волны, $n = (n_o + n_e)/2$, I_a – интенсивность УЗ волны). Интеграл перекрытия g_m дифрагированных волн находим из соотношения:

$$g_{m} = \frac{\left| \int_{0}^{2\pi} \int_{0}^{R_{B}} (\vec{e}_{o}^{*}\vec{e}_{e})\rho d\varphi d\rho \right|}{\sqrt{\int_{0}^{2\pi} \int_{0}^{R_{B}} |\vec{e}_{e}|^{2} \rho d\varphi d\rho} \sqrt{\int_{0}^{2\pi} \int_{0}^{R_{B}} |\vec{e}_{o}|^{2} \rho d\varphi d\rho}, \quad (1.4)$$

где *R*_В – радиус БСП.

2 Результаты расчетов

На рисунке 2.1 представлена зависимость интеграла перекрытия g_m от параметра $q_n = \Delta q / q_{o\perp}$ ($\Delta q = |q_{e\perp} - q_{o\perp}|$) для дифракции БСП малых (m = 0, 1, 2, 3) (a) и больших (m = 10, 11, 12, 13) (δ) значений моды m.

Из рисунка 2.1 следует, что интегралы перекрытия БСП достигают максимального значения при точном поперечном синхронизме дифрагированных волн ($\Delta q = 0$). Для малых значений моды БСП (рисунок 2.1, *a*) и при условии поперечного синхронизма ($q_n = 0$) интегралы перекрытия принимают следующие максимальные значения: $g_m = 0,67$ (m = 0), $g_m = 0,84$ (m = 1), $g_m = 0,96$ (m = 2), $g_m = 0,99$ (m = 3). Для больших значений моды БСП и при условии поперечного синхронизма имеет место пересечение кривых $g_m(q_n)$ с последующим изменением на противоположную зависимость интеграла перекрытия от порядка моды БСП.

На рисунке 2.2 представлена зависимость эффективности дифракции η от параметра отстройки поперечного (q_n) синхронизма для малых (a) и больших (δ) значений моды БСП.

Из рисунка 2.2, *а* следует, что при интенсивностях ультразвука, соответствующим максимальным значениям эффективности дифракции при условии продольного и поперечного синхронизма, с увеличением (отклонением) отстройки поперечного синхронизма q_n от оптимального, происходит снижение эффективности дифракции. При точном поперечном синхронизме ($q_n = 0$) и малых порядках БСП (m = 0...3) максимальная эффективность дифракции не достигается. Для больших порядков БСП (m = 3...30) при $q_n \ge 1$ эффективность дифракции $\eta \approx 0$ (рисунок 2.2, δ).

С использованием соотношений (1.3)–(1.4) рассмотрим физические характеристики АО фильтрации в диапазоне оптического спектра 0,4–0,7 мкм [8]. Выберем для исследования в качестве центральной длины волны перестраиваемого фильтра центральную длину волны

Рисунок 2.1 – Зависимость интеграла перекрытия g_m от параметра $q_n = \Delta q / q_0$ для дифракции БСП различных порядков m = 0 (1), 1 (2), 2 (3), 3 (4) (*a*) и m = 10 (1), 11 (2), 12 (3), 13 (4) (δ) (кристалл $LiNbO_3$; $\theta_{o,e} = 0^0$; $\gamma_o = \gamma_e = 0.5^0$, $R_B = 6$ мм, $\lambda_0 = 0.63$ мкм)

Проблемы физики, математики и техники, № 4 (37), 2018

Рисунок 2.2 – Зависимость эффективности дифракции η от параметра отстройки поперечного синхронизма *q_n* для *m* = 0 (1),1 (2), 2 (3), 3 (4) (*a*) и *m* = 10 (1), 11 (2), 12 (3), 13 (4) (*б*) (кристалл *LiNbO*₃; θ_{0,e} = 0⁰; γ_o = γ_e = 0,5⁰, *R_B* = 6 мм, *I_a* = 0,2 Вт/см², *f* = 570 МГц, *l* = 10 см, λ₀ = 0,63 мкм)

исследуемого диапазона $\lambda_0 = 0,63$ мкм. Для данной длины волны света показатели преломления кристалла *LiNbO*₃ соответственно равны: $n_o = 2,29$, $n_e = 2,2$ [9]. Для длины АО взаимодействия l = 10 см максимальная эффективность дифракции ($\eta = 1$) достигается в условиях продольного и поперечного синхронизма при УЗ интенсивности $I_a = 0,2$ Вт/см² [7].

Зависимости эффективности дифракции η от ширины полосы спектра $\Delta\lambda$ акустооптического перестраиваемого фильтра (АОПФ) для центральной длины волны $\lambda_0 = 630$ нм представлены на рисунок 2.3.

Рисунок 2.3 – Зависимость эффективности дифракции η от ширины полосы пропускания $\Delta\lambda$ при условии поперечного синхронизма для различных порядков БСП *m*: 0 (1), 1 (2), 2 (3), 3÷30 (4) (кристалл *LiNbO*₃; $\theta_{o,e} = 0^0$; $\gamma_o = \gamma_e = 0.5^0$, $R_B = 6$ мм, $I_a = 0.2$ Вт/см², f = 570 МГц, l = 10 см, $\lambda_0 = 0.63$ мкм)

Ширина полосы АО фильтрации рассчитывалась по уровню 50% от максимального значения дифракционной эффективности. В условиях продольного и поперечного синхронизма ширина полосы пропускания составила $\Delta\lambda_{1/2} = 0,01$ нм $(m = 0), \ \Delta\lambda_{1/2} = 0,02$ нм $(m = 1), \ \Delta\lambda_{1/2} = 0,022$ нм $(m = 2), \ \Delta\lambda_{1/2} = 0,023$ нм $(m = 3 \div 30)$.

В условиях опыта наряду с рассмотренной шириной спектра, обусловленной условиями брэгговского синхронизма, следует учитывать также изменение ширины спектра, связанное с уширением ультразвукового и светового пучков [10], [11]. Расчет данных ширин спектра для ультразвукового ($\Delta\lambda_S$) и светового ($\Delta\lambda_L$) пучков достигается с использованием соотношений [10]: $\Delta \lambda_{s,L} = \lambda_0 \phi_{s,L}^2 / 4$, где ϕ_s – расходимость УЗ пучка, ф_L – расходимость светового пучка. Таким образом, общая ширина спектра составляет: $\Delta \lambda_{o \delta} = \Delta \lambda_{1/2} + \Delta \lambda_S + \Delta \lambda_L$. Следует отметить, что для квазибездифракционных бесселевых световых пучков выполняются естественные соотношения: $\Delta \lambda_L \ll \Delta \lambda_{1/2}$, $\Delta \lambda_L \ll \Delta \lambda_S$. В таком случае, использование БСП для АО фильтрации предпочтительнее, например, чем гауссовых пучков [10]. Положив, к примеру, $\Delta \lambda_{\rm S} = 0.2$ нм, $\Delta \lambda_{\rm L} = 0.02$ нм получим, что $\Delta \lambda_{\rm tot} = 0.230$ нм (m = 0), $\Delta \lambda_{\text{tot}} = 0,240 \text{ Hm} (m = 1), \Delta \lambda_{\text{tot}} = 0,242 \text{ Hm} (m = 2),$ $\Delta \lambda_{\text{tot}} = 0,243$ нм ($m = 3 \div 30$). Спектральная разрешающая способность АО фильтрации дается соотношением: $N_{\lambda} = \delta \lambda / \Delta \lambda_{tot}$, где $\delta \lambda$ – ширина исследуемого диапазона спектра [1]. Для рассматриваемого диапазона спектра $N_{\lambda} \approx 1300$ $(m = 0), N_{\lambda} \approx 1200 \ (m \ge 1).$

Заключение

Таким образом, в одноосных кристаллах в широком диапазоне оптического спектра возможна коллинеарная АО фильтрация полихроматических бесселевых световых пучков *о-* и *е*типов для различных мод *m* в условиях поперечного синхронизма дифрагированных волн. Для кристаллов ниобата лития в диапазоне оптического спектра 0,4–0,7 мкм ширина полосы пропускания АО фильтра для бесселевой моды нулевого порядка может составить ~0,23 нм. При этом разрешающая способность АО фильтрации ~1300. Для бесселевых мод прядка $m \ge 1$ ширина полосы пропускания ~0,24 нм и разрешающая способность ~1200.

ЛИТЕРАТУРА

1. Second Harmonic Generation with Elliptical Bessel beams / V.N. Belyi, N.A. Khilo, E.S. Petrova, A.G. Maschenko, V.E. Leparskii // Proc. SPIE. – 2002. – Vol. 4751. – P. 97–103.

2. Гиргель, С.С. Бесселевы световые пучки в одноосных кристаллах / С.С. Гиргель // Ковариантные методы в теоретической физике. Оптика и акустика: сб. научных трудов. – Минск, 2005. – С. 170–176.

3. Generation of TH- and TE-polarized Bessel light beams at acousto-optic interaction in anisotropic crystals / V.N. Belyi, P.A. Khilo, N.S. Kazak, N.A. Khilo // Optics commun. – 2014. – Vol. 325. – P. 84–91.

4. Peculiarities of Acoustooptic Transformation of Bessel Light Beams in gyrotropic Crystals / V.N. Belyi, N.S. Kazak, P.A. Khilo, E.S. Petrova, N.A. Khilo // Universal Journal of Physics and Application. – 2015. – Vol. 9 (5). – P. 220–224.

5. Добровольский, Ю.С. Влияние невзаимного эффекта на работу коллинеарного акустооптического фильтра / Ю.С. Добровольский, В.Б. Волошинов, Ю.А. Зюрюкин // Квант. электроника. – 2008. – Т. 38, №1. – С. 46–50.

6. *Мачихин, А.С.* Аберрации изображения в акустооптическом перестраиваемом фильтре / А.С. Мачихин, В.Э. Пожар // ЖТФ. – 2010. – Т. 80, В. 10. – С. 101–107.

7. *Ярив*, *А*. Оптические волны в кристаллах / А. Ярив, П. Юх. – М.: Мир, 1987. – 616 с.

8. *Блистанов*, *А.А.* Кристаллы квантовой и нелинейной оптики / А.А. Блистанов. – М.: МИ-СИС, 2000. – 431 с.

9. Акустические кристаллы. Справочник / А.А. Блистанов, В.С. Бондаренко, В.В. Чирков [и др.]; под ред. М.П. Шаскольской. – М.: Наука, 1986. – 629 с.

10. Балакший, В.Н. Физические основы акустооптики / В.Н. Балакший, В.Н. Парыгин, Л.Е. Чирков. – М.: Радио и связь, 1985. – 279 с.

11. Спектральное пропускание широкоапертурного брэгговского акустооптического фильтра на парателлурите / В.Б. Волошинов, Н.С. Казак, А.С. Лугина, А.В. Надененко, В.К. Павленко, Ю.А. Санников // ЖПС. – 1990. – Т. 52, В. 2. – С. 284–289.

Поступила в редакцию 31.08.18.